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Abstract
Let F be a set of n objects in the plane and let G×(F) be its intersection graph.
A balanced clique-based separator of G×(F) is a set S consisting of cliques whose
removal partitions G×(F) into components of size at most δn, for some fixed constant
δ < 1. The weight of a clique-based separator is defined as

∑
C∈S log(|C | + 1).

Recently De Berg et al. (SIAM J. Comput. 49: 1291-1331. 2020) proved that
if S consists of convex fat objects, then G×(F) admits a balanced clique-based
separator of weight O(

√
n). We extend this result in several directions, obtain-

ing the following results. (i) Map graphs admit a balanced clique-based separator
of weight O(

√
n), which is tight in the worst case. (ii) Intersection graphs of

pseudo-disks admit a balanced clique-based separator of weight O(n2/3 log n). If the
pseudo-disks are polygonal and of total complexity O(n) then the weight of the sep-
arator improves to O(

√
n log n). (iii) Intersection graphs of geodesic disks inside

a simple polygon admit a balanced clique-based separator of weight O(n2/3 log n).
(iv) Visibility-restricted unit-disk graphs in a polygonal domain with r reflex ver-
tices admit a balanced clique-based separator of weight O(

√
n + r log(n/r)),

which is tight in the worst case. These results immediately imply sub-exponential
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algorithms for Maximum Independent Set (and, hence, Vertex Cover), for
Feedback Vertex Set, and for q-Coloring for constant q in these graph classes.

Keywords Computational geometry · Intersection graphs · Separator theorems

1 Introduction

The famous Planar Separator Theorem states that any planar graph G = (V , E) with
n nodes1 admits a subset S ⊂ V of size O(

√
n) nodes whose removal decomposes G

into connected components of size at most 2n/3. The subset S is called a balanced2

separator of G. The theorem was first proved in 1979 by Lipton and Tarjan [21], and it
has been instrumental in the design of algorithms for planar graphs: it has been used to
design efficient divide-and-conquer algorithms, to design sub-exponential algorithms
for various np-hard graph problems, and to design approximation algorithms for such
problems.

ThePlanar SeparatorTheoremhas been extended to various other graph classes.Our
interest lies in geometric intersection graphs, where the nodes correspond to geometric
objects and there is an arc between two nodes iff the corresponding objects intersect.
If the objects are disks, the resulting graph is called a disk graph. Disk graphs, and in
particular unit-disk graphs, are a popular model for wireless communication networks
and have been studied extensively. Miller et al. [25] and Smith and Wormald [30]
showed that if F is a set of balls in Rd of ply at most k—the ply of F is the maximum
number of objects in F with a common intersection—then the intersection graph of F
has a separator of sizeO(k1/dn1−1/d). Thiswas generalized byChan [6] andHar-Peled
and Quanrud [16] to intersection graphs of so-called low-density sets. Separators for
string graphs—a string graph is an intersection graph of sets of curves in the plane—
have also been considered [15, 20, 24], with Lee [20] showing that a separator of
size O(

√
m) exists, where m is the number of arcs of the graph.

Even for simple objects such as disks or squares, onemust restrict the ply to obtain a
separator of small size.Otherwise the objects can forma single clique,which obviously
does not have a separator of sublinear size. To design subexponential algorithms for
problems such as Maximum Independent Set, however, one can also work with
a separator consisting of a small number of cliques instead of a small number of
nodes. Such clique-based separators were introduced recently by De Berg et al. [11].
Formally, a clique-based separator of a graphG is a collectionS of node-disjoint cliques
whose union is a balanced separator of G. The weight of S is defined as weight(S) :=∑

C∈S log(|C |+1). DeBerg et al.[11] proved that the intersection graph of any set F of
n convex fat objects in the plane admits a clique-based separator of weight O(

√
n), and

they used this to obtain algorithms with running time 2O(
√
n) for many classic np-hard

problems on such graphs. This running time is optimal, assuming the Exponential-

1 We use the terms node and arc when talking about graphs, and vertex and edge for geometric objects.
2 For a separator to be balanced it suffices that the components have size at most δn for some constant δ < 1.
When we speak of separators, we always mean balanced separators, unless stated otherwise.
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Fig. 1 Amap graph, a pseudo-disk graph, a geodesic-disk graph, and a visibility restricted unit-disk graph.
For the latter class, the grey disks in the picture have radius 1

2

Time Hypothesis (ETH). The result generalizes to convex fat objects inRd , where the
bound on the weight of the clique-based separator becomes O(n1−1/d).

The goal of our paper is to investigate whether similar results are possible for
non-fat objects in the plane. Note that not all intersection graphs admit clique-based
separators of small weight. String graphs, for instance, can have arbitrarily large com-
plete bipartite graphs as induced subgraphs, in which case any balanced clique-based
separator has weight �(n).

The first type of intersection graphs we consider aremap graphs, which are a natural
generalization of planar graphs. The other types are generalizations of disk graphs.
One way to generalize disk graphs is to consider fat objects instead of disks, as done
by De Berg et al. [11]. We will study three other generalizations, involving non-fat
objects: pseudo-disks, geodesic disks, and visibility-restricted unit disks. Next we
define the graph classes we consider more precisely; see Fig. 1 for an example of each
graph class.

In the following, we use G×(F) to denote the intersection graph induced by a set
F of objects. For convenience, we do not distinguish between the objects and the
corresponding nodes, so we use F to denote the set of objects as well as the set of
nodes in G×(F). We assume that the objects in F are connected, bounded, and closed.
Throughout the paper, we will use log for the base 2 logarithm and ln for the base e
logarithm.

Map graphs Let M be a planar subdivision and F be its set of faces. The graph
with node set F that has an arc between every pair of neighboring faces is called the
dual graph of M, and it is planar. Here two faces are neighbors if their boundaries
have an edge of the subdivision in common. A map graph [8] is defined similarly,
except now two faces are neighbors even if their boundaries meet in a single point.
Alternatively, we can define amap graph as the intersection graph of a set F of interior-
disjoint regions in the plane. Since arbitrarily many faces can share a vertex on their
boundary, map graphs can contain arbitrarily large cliques. If at most k faces meet at
each subdivision vertex, the graph is called a k-map graph. Chen [7] proved that any
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k-map graph has a (normal, not clique-based) separator of size O(
√
kn), which is also

implied by Lee’s recent result on string graphs [20].

Pseudo-disk graphs A set F of objects is a set of pseudo-disks if for any f , f ′ ∈ F
the boundaries ∂ f and ∂ f ′ intersect at most twice. Pseudo-disks were introduced
in the context of motion planning by Kedem et al. [17], who proved that the union
complexity of n pseudo-disks is O(n). Since then they have been studied extensively.
We consider two types of pseudo-disks: polygonal pseudo-disks with O(n) vertices
in total, and arbitrary pseudo-disks.

Geodesic-disk graphs and visibility-restricted unit-disk graphs As mentioned, unit-
disk graphs are popularmodels forwireless communication networks.Weconsider two
natural generalizations of unit-disk graphs, which can be thought of as communication
networks in a polygonal environment that may obstruct communication.

• Geodesic-disk graphs in a simple polygon P are intersection graphs of geodesic
disks inside P . (The geodesic disk with center q ∈ P and radius r is the set of
all points in P at geodesic distance at most r from q, where the geodesic distance
between two points is the length of the shortest path between them inside P .)

• In visibility-restricted unit-disk graphs the nodes correspond to a set Q of n points
inside a polygon P , which may have holes, and two points p, q ∈ Q are connected
by an arc iff |pq| ≤ 1 and p and q see each other (meaning that pq ⊂ P).3

A more general, directed version of such graphs was studied by Ben-Moshe et
al. [2] under the name range-restricted visibility graph. They presented an output-
sensitive algorithm to compute the graph.

1.1 Our Results: Clique-Based Separator Theorems

So far, clique-based separators were studied for fat objects: DeBerg et al. [11] consider
convex or similarly-sized fat objects, Kisfaludi-Bak et al.[19] study how the fatness
of axis-aligned fat boxes impacts the separator weight, and Kisfaludi-Bak [18] studies
balls in hyperbolic space. The O(

√
n) bound on the separator weight is tight even for

unit-disk graphs. Indeed, a
√
n × √

n grid graph can be realized as a unit-disk graph,
and any separator of such a grid graphmust contain�(

√
n) nodes. Since themaximum

clique size in a grid graph is two, any separator must contain�(
√
n) cliques. All graph

classes we consider can realize a
√
n×√

n grid graph, so �(
√
n) is a lower bound on

the weight of the clique-based separators we consider.We obtain the following results.
In Sect. 2 we show that any map graph has a clique-based separator of

weight O(
√
n). This gives the first ETH-tight algorithms for Maximum Indepen-

dent Set (and, hence, Vertex Cover), Feedback Vertex Set, and Coloring
in map graphs; see below.

In Sect. 2.1 we show that any intersection graph of pseudo-disks has a clique-
based separator of weight O(n2/3 log n). If the pseudo-disks are polygonal and of
total complexity O(n) then the weight of the separator improves to O(

√
n log n).

3 Visibility-restricted unit-disk graphs are, strictly speaking, not intersection graphs. In particular, if Rq
is defined as the region of points within P that are visible from q and lie within distance 1/2, then the
visibility-restricted unit-disk graph is not the same as the intersection graph of the objects Rq .
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In Sect. 3we consider intersection graphs of geodesic disks inside a simple polygon.
At first sight, geodesic disks seem not much harder to deal with than fat objects:
they can have skinny parts only in narrow corridors and then packing arguments
may still be feasible. Unfortunately another obstacle prevents us from applying a
packing argument: geodesic distances in a simply connected polygon induce a metric
space whose doubling dimension depends on the number of reflex vertices of the
polygon. Nevertheless, by showing that geodesic disks inside a simple polygon behave
as pseudo-disks,we are able to obtain a clique-based separator ofweightO(n2/3 log n),
independent of the number of reflex vertices.

In Sect. 4 we study visibility-restricted unit-disk graphs.We give an�(min(n, r log
(n/r)) + √

n) lower bound for the separator weight, where r is the number of reflex
vertices of the polygon in which the graph is defined. We thus show that a clique-
based separator whose weight depends only on n, the number of points defining the
visibility graph, is not possible.We then showhow to construct a clique-based separator
of weight O(min(n, r log(n/r)) + √

n).
All separators can be computed in polynomial time. For map graphs and for the

pseudo-disk intersection graphs, we assume the objects have total complexity O(n).
If the objects have curved edges, we assume that basic operations (such as computing
the intersection points of two such curves) take O(1) time.

1.2 Applications

In Sect. 5 we apply our separator theorems to obtain subexponential algorithms for
Maximum Independent Set, Feedback Vertex Set, and q-Coloring for con-
stant q in the graph classes discussed above. The crucial property of these problems
that makes our separator applicable, is that the possible ways in which a solution can
“interact” with a clique of size k is polynomial in k. We use known techniques (mostly
from De Berg et al. [11]) to solve the three problems on any graph class that has small
clique-based separators.

All our graph classes are subsumed by string graphs. Bonnet and Rzazewski [4]
showed that string graphs have 2O(n2/3 log n) algorithms forMaximum Independent
Set and 3-Coloring, and a 2n

2/3 logO(1) n algorithm for Feedback Vertex Set, and
that string graphs do not have subexponential algorithms for q-Coloring with q ≥ 4
under ETH.One can also obtain subexponential algorithms in some of our classes from
results of Fomin et al. [7, 14] orMarx and Philipczuk [22]. The running timeswe obtain
match or slightly improve the results that can be obtained from these existing results.
It should be kept in mind, however, that the existing results are for more general graph
classes. An exception are our results on map graphs, which were explicitly studied
before andwhere we improve the running time forMaximum Independent Set and
Feedback Vertex Set from 2O(

√
n log n) to 2O(

√
n). (But, admittedly, the existing

results apply in the parameterized setting while ours don’t.) In any case, the main
advantage of our approach is that it allows us to solveMaximum Independent Set,
Feedback Vertex Set and q-Coloring on each of the mentioned graph classes in
a uniform manner.
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Fig. 2 (i) A witness graph for the map graph induced by the grey regions. Points in P are blue, points in Q
are red. (ii) The gadget used to replace a witness point. The edges of Tq are black, the cycles connecting
nodes at the same level are grey and thick, the edges to triangulate the 4-cycle are grey and thin. (iii) The
green paths show an example of how the separator can intersect a gadget. (Note that the tree “wraps around”,
as in part (ii) of the figure; see also one of the green paths.) The objects added to the clique Cq correspond
to the leaves indicated by the blue rectangles

2 Map Graphs

Recall that a map graph is the intersection graph of a set F of interior-disjoint objects
in the plane. We construct a clique-based separator for G×(F) in four steps. First, we
construct a bipartite plane witness graphH1 with node set P ∪ Q, where the nodes in
P correspond to the objects in F and the nodes in Q (with their incident arcs) model
the adjacencies in G×(F). Next, we replace each node q ∈ Q by a certain gadget
whose “leaves” are the neighbors of q, and we triangulate the resulting graph. We then
apply the Planar Separator Theorem to obtain a separator for the resulting graph H2.
Finally, we turn the separator for H2 into a clique-based separator for G×(F). Next
we explain these steps in detail.

Step 1: Creating a witness graph To construct a witness graph for G×(F) we use
the method of Chen et al. [8]: take a point p f in the interior of each object f ∈ F ,
and take a witness point q ∈ ∂ f ∩ ∂ f ′ for each pair of touching objects f , f ′ ∈ F
and add arcs from q to the points p f and p f ′ .

Let P = {p f : f ∈ F} and let Q be the set of all witness points added. We denote
the resulting bipartite graph with node set P ∪ Q byH1; see Fig. 2(i) for an example.
Observe that points where many objects meet can serve as witness points for many
neighboring pairs in G×(F). Chen et al. [8, Lemma 2.3] proved that any map graph
admits a witness set Q of size O(n). If the objects in F are polygons with O(n)

vertices in total then Q can be found in O(n) time (since the vertices can serve as the
set Q.)

Step 2: Replacing witness points by gadgets and triangulating We would like to
construct a separator for H1 using the Planar Separator Theorem, and convert it to
a clique-based separator for G×(F). For every witness point q ∈ Q in the separator
for H1, the conversion would add a clique Cq to the clique-based separator, namely,
the clique corresponding to all objects f ∈ F such that p f is adjacent to q. However,
the node q adds 1 to the separator size, but the clique Cq adds log(|Cq | + 1) to the
weight of the clique-based separator. To deal with this we modifyH1, as follows.

Consider a node q ∈ Q. Let N (q) ⊆ P denote the set of neighbors of q. For all
nodes q ∈ Q with |N (q)| ≥ 3, we replace the star induced by {q} ∪ N (q) by a gadget
Gq , which is illustrated in Fig. 2(ii) and defined as follows.
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First, we create a tree Tq with root q and whose leaves are the nodes in N (q), as
follows. Define the level �(v) of a node v in Tq to be the distance of v to the root; thus
the root has level 0, its children have level 1, and so on. All leaves in Tq are at the same
level, denoted �max. The root has degree 3, nodes at level � with 1 ≤ � < �max − 1
have degree 2, and nodes at level �max − 1 have degree 2 or 1. For each � < �max
we connect the nodes at level � into a cycle. After doing so, all faces in the gadget
(except the outer face) are triangles or 4-cycles. We finish the construction by adding
a diagonal in each 4-cycle. Define the height of a node v as height(v) := �max − �(v).
The following observation follows from the construction.

Observation 1 Let v be a node at height h > 0 in the gadget Gq.

(i) The subtree of Tq rooted at v, denoted Tq(v), has at most 3 · 2h−1 leaves.
(ii) The distance from v to any leaf in Tq is at least h.

To unify the exposition, it will be convenient to also create a gadget for the case where
q has only two neighbors in H1, say p f and p f ′ . We then define Tq to consist of the
arcs (q, p f ) and (q, p f ′). Note that Observation 1 holds for this gadget as well.

By replacing each witness point q ∈ Q with a gadget Gq as above, we obtain a
(still planar) graph. We triangulate this graph to obtain a maximal planar graph H2.

Step 3: Constructing a separator forH2 We nowwant to apply the Planar Separator
Theorem toH2.Ourfinal goal is to obtain a balanced clique-based separator forG×(F).
Hence, we want the separator for H2 to be balanced with respect to P . We will also
need the separator for H2 to be connected. Both properties are guaranteed by the
following version of the Planar Separator Theorem, which was proved by Djidjev and
Venkatesan [13].

Planar Separator Theorem. Let G = (V , E) be a maximal planar graph with
n nodes. Let each node v ∈ V have a non-negative cost, denoted cost(v), with∑

v∈V cost(v) = 1. Then V can be partitioned in O(n) time into three sets
A, B,S such that (i)S is a simple cycle of size O(

√
n), (ii)G has no arcs between

a node in A and a node in B, and (iii)
∑

v∈A cost(v) ≤ 2/3 and
∑

v∈B cost(v) ≤
2/3.

When applying the Planar Separator Theorem to H2, we set cost(p) := 1/n for
all nodes p f ∈ P and cost(v) := 0 for all other nodes. We denote the resulting
separator for H2 by S(H2) and the node sets inside and outside the separator by
A(H2) and B(H2), respectively.

Step 4: Turning the separator for H2 into a clique-based separator for G×(F) We
convert S(H2) into a clique-based separator S for G×(F) as follows.

• For each node p f ∈ S(H2) ∩ P we put the (singleton) clique { f } into S.
• For each gadget Gq we proceed as follows. Let Vq be the set of all nodes v ∈ Tq
that are in S(H2), and define Cq := { f ∈ F : p f is a leaf of Tq(v) that has an
ancestorin Vq}; see Fig. 2(iii). Observe that Cq is a clique in G×(F). We add4 Cq

to S.

4 We tacitly assume that if an object is in multiple cliques in S, we remove all but one of its occurrences.
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The clique-based separator S induces a partition of F \ ⋃
C∈S C into two parts

A and B, with |A|, |B| ≤ 2n/3, in a natural way, namely as A := { f ∈ F : f /∈⋃
C∈S C and p f ∈ A(H2)} and B := { f ∈ F : f /∈ ⋃

C∈S C and p f ∈ B(H2)}.
The following lemma ensures that S is a valid separator.

Lemma 2 There are no arcs in G×(F) between a node in A and a node in B.

Proof Suppose for a contradiction that there are objects f ∈ A and f ′ ∈ B such
that ( f , f ′) is an arc in G×(F). Let q ∈ Q be a witness point for the arc ( f , f ′);
thus (p f , q) and (p f ′ , q) are arcs inH1. Consider the gadget Gq and the tree Tq . Let
π denote the path from p f to p f ′ in Tq . Note that none of the nodes on π can be
in S(H2), otherwise Vq contains an ancestor of p f or of p f ′ , and (at least) one of the
nodes p f , p f ′ is in a clique that was added to S. But then the nodes p f , p f ′ are still
connected in H2 after the removal of S(H2). Hence, we have p f , p f ′ ∈ A(H2) or
p f , p f ′ ∈ B(H2), both contradicting that f ∈ A and f ′ ∈ B.

It remains to prove that S has the desired weight.

Lemma 3 The total weight of the separator S satisfies
∑

C∈S log(|C |+1) = O(
√
n).

Proof Since S(H2) contains O(
√
n) nodes, it suffices to bound the total weight of the

cliques added for the gadgets Gq . Consider a gadget Gq . Recall that Vq is the set of
all nodes v ∈ Tq that are in S(H2). We claim that log(|Cq | + 1) = O(|Vq |), which
implies that

∑
q log(|Cq | + 1) = ∑

q O(|Vq |) = O(
√
n), as desired. It remains to

prove the claim.
Since S(H2) is a simple cycle, its intersection with Gq consists of one or more

paths. Each path π enters and exits Gq at a node in N (q). Let Dπ denote the set of
all descendants of the nodes in π . We will prove that log(|Dπ | + 1) = O(|π |), where
|π | denotes the number of nodes of π . This implies the claim since log(|Cq | + 1) ≤∑

π log(|Dπ | + 1) = ∑
π O(|π |) = O(|Vq |).

To prove that log(|Dπ | + 1) = O(|π |), let hmax be the maximum height of any
node in π . Thus |π | ≥ hmax by Observation 1(ii). Consider all subtrees of height hmax
in Tq . If π visits t such subtrees, then |π | ≥ t . Moreover, |Dπ | ≤ 3t · 2hmax−1 by
Observation 1(i). Hence, log(|Dπ | + 1) ≤ log

(
3t · 2hmax−1 + 1

)
< hmax + log(3t) =

O(max(hmax, t)) = O(|π |).
By putting everything together we obtain the following theorem.

Theorem 4 Let F be a set of n interior-disjoint regions in the plane. Then the inter-
section graph G×(F) has a clique-based balanced separator of weight O(

√
n). The

separator can be computed in O(n) time, assuming that the total complexity of the
objects in F is O(n).

2.1 Pseudo-Disk Graphs

Our clique-based separator construction for a set F of pseudo-disks uses so-called
planar supports, defined as follows. Let H be a hypergraph with node set Q and
hyperedge set H . A graph Gsup is a planar support [29] forH if Gsup is a planar graph
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with node set Q such that for any hyperedge h ∈ H the subgraph of Gsup induced by
the nodes in h is connected. In our application we let the node set Q correspond to a
set of points stabbing all pairwise intersections between the pseudo-disks, that is, for
each intersecting pair f , f ′ ∈ F there will be a point q ∈ Q that lies in f ∩ f ′. The
goal is to keep the size of Q small, by capturing all intersecting pairs with few points.
The hyperedges are defined by the regions in F , that is, for every f ∈ F there is a
hyperedge h f := Q ∩ f . Let HQ(F) denote the resulting hypergraph.

Lemma 5 Let F be a set of n objects in the plane, let Q be a set of points stabbing all
pairwise intersections in F, and let HQ(F) denote the hypergraph as defined above.
IfHQ(F) has a planar support Gsup then G×(F) has a clique-based separator of size
O(

√|Q|) and weight O(
√|Q| log n).

Proof Let S(Gsup) be a separator for Gsup of size O(
√|Q|), which exists by the Planar

Separator Theorem, and let A(Gsup) and B(Gsup) be the corresponding separated parts.
To ensure an appropriately balanced separator we use the cost-balanced version of the
Planar Separator Theorem, as stated in the previous section. For each object f ∈ F
we give one point q f ∈ Q ∩ f a cost of 1/n and all other points cost 0. We call
q f the representative of f . (We assume for simplicity that each f ∈ F intersects
at least one other object f ′ ∈ F , so we can always find a representative. Objects
f ∈ F not intersecting any other object are singletons in G×(F) and can be ignored.)
For a point q ∈ Q, define Cq to be the clique in G×(F) consisting of all objects
f ∈ F that contain q. Our clique-based separator S for G×(F) is now defined as
S := {Cq : q ∈ S(Gsup)}, and the two separated parts are defined as: A := { f ∈ F :
f /∈ S and q f ∈ A(Gsup)} and B := { f ∈ F : f /∈ S and q f ∈ B(Gsup)}. Clearly, the
size of S is O(

√|Q|) and its weight is O(
√|Q| log n). Moreover, |A|, |B| ≤ 2n/3

because S(G∗) is balanced with respect to the node costs.
We claim there are no arcs in G×(F) between a node in A and a node in B. Suppose

for a contradiction that there are intersecting objects f , f ′ such that f ∈ A and f ′ ∈ B.
By definition of Q there is a point q ∈ Q that lies in f ∩ f ′. By the planar-support
property, the hyperedge h f induces a connected subgraph of Gsup, so there is a path
π that connects q to the representative q f and such that all nodes of π are points
in f ∩ Q. No node on the path π can be in S(Gsup), otherwise f is in a clique that
was added to S. Similarly, there is a path π ′ connecting q f ′ to q such that no point
on π ′ is in S(Gsup). But then there is a path from q f to q f ′ in Gsup after the removal
of S(Gsup). Hence, q f and q f ′ are in the same part of the partition, which contradicts
that f and f ′ are in different parts.

We conclude that S is a clique-based separator with the desired properties.

Remark 6 The witness set Q in the previous section stabs all pairwise intersections
of objects in the map graph, and so P ∪ Q stabs all pairwise intersections as well.
P ∩ Q has planar support, so we can get a separator for map graphs using Lemma 5.
Its weight would be O(

√
n log n), however, while in the previous section we managed

to get O(
√
n) weight.
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2.2 Polygonal Pseudo-Disks

We now apply Lemma 5 to obtain a clique-based separator for a set F of polygonal
pseudo-disks. To this end, let Q be the set of vertices of the pseudo-disks in F .
Observe that whenever two pseudo-disks intersect, one must have a vertex inside the
other. Indeed, either one pseudo-disk is entirely inside the other, or an edge e of f
intersects an edge e′ of f ′. In the latter case, one of the two edges ends inside the
other pseudo-disk, otherwise there are three intersections between the boundaries.
Furthermore, pseudo-disks have the non-piercing property: f \ f ′ is connected for
any two pseudo-disks f , f ′. Raman and Ray [29] proved5 that the hypergraphHQ(F)

of a set of non-piercing regions has a planar support for any set Q, so in particular for
the set Q just defined.We can thus apply Lemma 5 to compute a clique-based separator
for G×(F). The time to compute the separator is dominated by the computation of the
planar support, which takes O(n3) time [29].

Theorem 7 Let F be a set of n polygonal pseudo-disks in the plane with O(n) vertices
in total. Then the intersection graph G×(F) has a clique-based balanced separator of
size O(

√
n) and weight O(

√
n log n), which can be found in O(n3) time.

2.3 Arbitrary Pseudo-Disks

To construct a clique-based separator using Lemma 5 we need a small point set Q that
stabs all pairwise intersections. Unfortunately, for general pseudo-disks a linear-size
set Q that stabs all intersections need not exist: there is a collection of n disks such that
stabbing all pairwise intersections requires �(n4/3) points. (Such a collection can be
derived from a construction with n lines and n points with �(n4/3) incidences [26].)
Hence, we need some more work before we can apply Lemma 5.

Our separator result for arbitrary pseudo-disks works in a more general setting,
namely for sets from a family F with linear union complexity. (We say that F has
union complexity U (n) if, for any n ≥ 1 and any subset F ⊂ F of size n, the union
complexity of F isU (n).) Recall that the union complexity of a family of pseudo-disks
is O(n) [17]. The next theorem states that such sets admit a clique-based separator of
sublinear weight. Note that the bound only depends on the number of objects, not on
their complexity.

Theorem 8 Let F be a set of n objects from a family F of union complexity U (n),
where U (n) ≥ n. Then G×(F) has a clique-based separator of size O((U (n))2/3) and
weight O((U (n))2/3 log n). In particular, if F is a set of pseudo-disks then G×(F) has
a clique-based separator of size O(n2/3) and weight O(n2/3 log n). The separator can
be computed in O(n3) time, assuming the total complexity of the objects is O(n).

Proof We construct the separator S in two steps.

5 Raman and Ray assume the sets F and Q defining the hypergraph are in general position. Therefore
we first slightly perturb the pseudo-disks in F to get them into general position (while keeping the same
intersection graph), then we take Q to be a point set coinciding with the vertex set of F , and then we slightly
move the points in Q such that the hypergraph remains the same.

123



1662 Algorithmica (2023) 85:1652–1678

The first step proceeds as follows. For a point p in the plane, let Cp denote the
set of objects from the (current) set F containing p. As long as there is a point p
such that |Cp| > n1/3, we remove Cp from F and put Cp into S; here n refers to
the size of the initial set F . Thus the first step adds O(n2/3) cliques to S with total
weight O(n2/3 log n). This step can easily be implemented in O(n3) time.

In the second step, let F∗ ⊆ F denote the set of n∗ remaining objects after the first
step. Recall that the ply of a family of objects is defined as the maximum number of
objects from the family with a common intersection. Then for F∗ we have that n∗ ≤ n
and k ≤ n1/3, where k is the ply of F∗. Let A(F∗) denote the arrangement induced
by F∗. Since F∗ has ply k, the Clarkson-Shor technique [9] implies that the complexity
of the arrangement A(F∗) is O(k2 · U (n∗/k)). We can compute this arrangement in
O(k2 · U (n∗/k) log n) = O(n2 log n) time [12]. Take a point q in each face of the
arrangement, and let Q be the resulting set of O(k2 · U (n∗/k)) points. The set Q
stabs all pairwise intersections and the dual graph G∗ of the arrangement A(F∗) is a
planar support for the hypergraphHQ(F∗). Hence, by Lemma 5 there is a clique-based
separatorS∗ forG×(F∗) of size O

(
k
√
U (n∗/k)

)
andweight O

(
k
√
U (n∗/k) log n∗).

Note that U (n) is a superadditive function [1] which implies that U (n/k) ≤ U (n)/k
and therefore k

√
U (n∗/k) ≤ √

k U (n) ≤ (U (n))2/3. By adding S∗ to the set S of
cliques generated in the first step, we obtain a clique-based separator with the desired
properties.

3 Geodesic Disks Inside a Simple Polygon

Let P be a simple polygon. We denote the shortest path (or: geodesic) in P between
two points p, q ∈ P by π(p, q); note that π(p, q) is unique since P is simple. The
geodesic distance between p and q is defined to be ‖π(p, q)‖, where ‖π‖ denotes the
Euclidean length of a path π . For a given point q ∈ P and radius r > 0, we call the
region D(q, r) := {p ∈ P : ‖π(p, q)‖ ≤ r} a geodesic disk. Let D = {D1, . . . , Dn}
be a set of geodesic disks in P . To construct a clique-based separator for G×(D) we
will show that D behaves as a set of pseudo-disks so we can apply the result of the
previous section.

3.1 The Structure of a Geodesic Disk

The boundary ∂D(q, r) of a geodesic disk D(q, r) consists of circular arcs lying in
the interior of P (centered at q or at a reflex vertex of P) and parts of the edges of P .
We split ∂D(q, r) into boundary pieces at the points where the circular arcs meet ∂P .
This generates two sets of boundary pieces: a set containing the pieces that consist of
circular arcs, and a set �(D) containing the pieces that consist of parts of edges of P .
An example can be seen in Fig. 3.

A region R ⊆ P is geodesically convex if for any points p, q ∈ R we have
π(p, q) ⊆ R. Pollack et al. [28] showed that geodesic disks inside a simple polygon
are geodesically convex. An immediate consequence is that the intersection of two
geodesic disks is connected.
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Fig. 3 (i) A geodesic disk D with center q and radius r . The set �(D) has three pieces, γ1, γ2 and γ3,
shown in blue. (ii) The result of the perturbation. Note that |γ1| < |γ2| < |γ3| and so εγ1 > εγ2 > εγ3 .
(iii) Illustration for the proof of Theorem 11 (Color figure online)

3.2 Geodesic Disks Behave as Pseudo-Disks

Geodesic disks in a simple polygon are not proper pseudo-disks. For example, if D1
and D2 are the blue and pink pseudo-disk in the third image in Fig. 1, then D1 \D2 has
two components, which is not allowed for pseudo-disks. Nevertheless, we will show
that D behaves as a set of pseudo-disks in the sense that a small perturbation turns
them into pseudo-disks, while keeping the intersection graph the same.

As a first step in the perturbation, we increase the radius of each geodesic disk Di ∈
D by some small εi . We pick these εi such that the intersection graph G×(D) stays the
same while all degeneracies disappear. In particular, the boundary pieces of different
geodesic disks have different lengths after this perturbation, and no two geodesic disks
touch.With a slight abuse of notation, we still denote the resulting set of geodesic disks
by D.

The second step in the perturbation moves each γ ∈ ∪n
i=1�(Di ) into the interior

of the polygon over some distance εγ , which is smaller than any of the perturbation
distances chosen in the first step. More formally, for each γ ∈ �(Di ) we remove all
points from Di that are at distance less than εγ from γ ; see Fig. 3(ii). To ensure this
gives a set of pseudo-disks we choose the perturbation distances εγ according to the
reverse order of the Euclidean lengths of the pieces. That is, if ‖γ ‖ > ‖γ ′‖ then we
pick εγ < εγ ′ . The crucial property of this scheme is that whenever γi ⊂ γ j then γi
is moved more than γ j .

We denote the perturbed version of Di by D∗
i and define D∗ := {D∗

i : Di ∈ D}.
Remark 9 As already stated, the intersection of two geodesic disks is connected. This
property is not invalidated by the perturbation. To see this, consider the intersection
D1 ∩ D2 of two geodesic disks before the perturbation. The only way that D∗

1 ∩ D∗
2

would not be connected, is if the perturbation transforms ∂(D1 ∩ D2) into a curve that
intersects itself. Recall that we are only actually perturbing parts of the boundary of a
geodesic disk that are also parts of the boundary of P . So if we think of the perturbation
as a “shrinking” of P , we need to ensure that this does not make the polygon self-
intersect. For this it suffices to find the minimum over all distances between vertices
of P and their non-incident edges of P . Let ε denote this distance. Then it suffices to
choose all the perturbation distances smaller than ε/2.

The perturbed versions have the following important property:
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Fig. 4 Illustration for proof of
Lemma 10

Lemma 10 Let D∗
i , D

∗
j ∈ D∗. Every connected component of D∗

i \ D∗
j contains a

point u with u ∈ Di \ Dj .

Proof The only case of interest is when there exist γi ∈ �(Di ) and γ j ∈ �(Dj ) such
that γi ∩γ j 
= ∅. Suppose now there is a connected component of D∗

i \D∗
j which does

not contain such a point. Since D∗
i ⊂ Di and D∗

j ⊂ Dj , this connected component
must have been introduced due to the perturbation (in other words its intersection with
all connected components of Di \ Dj must be empty). This means that this connected
component must be the region contained between γ ∗

i and γ ∗
j andwhichwas previously

contained in Di ∩ Dj . It is enough to only examine the case when γi is bigger than
γ j as otherwise this component only contains points of D∗

j . There are two cases:
γ j ⊂ γi , or γ j 
⊂ γi . In both cases note that there will exist an endpoint p of γ ∗

j that
lies inside D∗

i . Choose now a point q in (Dj \ D∗
j ) \ (Di \ D∗

i ) at distance ε from
γ j with εγi < ε < εγ j . See Fig. 4 for an illustration of the case γ j ⊂ γi . Consider
the dashed path starting at q that stays at distance ε from ∂P going towards p. Due
to the definition of our perturbation this path will stay inside D∗

i and remain outside
D∗

j . Hence, after exiting D∗
j near the point p we reach a point u ∈ Di \ Dj , which is

a contradiction.

Theorem 11 Any set D of geodesic disks inside a simple polygon P can be slightly
perturbed such that the resulting set D∗ is a set of pseudo-disks with G×(D) =
G×(D∗).

Proof Consider the set D∗ resulting from the perturbation described above. Suppose
for a contradiction that there exist two objects D∗

1 , D
∗
2 ∈ D∗ such that ∂D∗

1 and ∂D∗
2

cross four or more times. By Remark 9 we know that D∗
1 ∩ D∗

2 is connected. Hence,
if ∂D∗

1 and ∂D∗
2 cross four or more times then D∗

1 \ D∗
2 (and, similarly, D∗

2 \ D∗
1) has

two or more components.
For i = 1, 2, let qi and ri denote the center and radius of Di . Without loss of

generality assume that r1 ≤ r2. Let x and y be points in different components of
D∗
1 \ D∗

2 ; see Fig. 3 (iii). By Lemma 10 we can pick x and y such that x, y ∈ D1 \ D2.
By concatenating the geodesics π(x, q1) and π(q1, y)we obtain a curve that splits D∗

2
into at least two parts—this is independent of where q1 lies, or whether π(x, q1) and
π(q1, y) partially overlap. (Note that these geodesics lie in D1 but not necessarily in
D∗
1 . However, they cannot “go around” a component of D∗

2 \ D∗
1 , because D1 cannot

fully contain such a component by Lemma 10. Hence,π(x, q1)∪π(q1, y)must indeed
go through D∗

2 .) Not all components of D∗
2 \D∗

1 can belong to the same part, otherwise
x and y would not be in different components of D∗

1 \ D∗
2 . Take a point z ∈ D∗

2 \ D∗
1
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that lies in a different part than q2, the center of D2. Again by Lemma 10 we can pick
z such that z ∈ D2 \ D1. Then the geodesic π(q2, z) must cross π(x, q1) ∪ π(q1, y),
say at a point w ∈ π(q1, y). Since z /∈ D1 and y /∈ D2 we must have ‖π(q1, w) ∪
π(w, z)‖ + ‖π(q2, w) ∪ π(w, y)‖ > r1 + r2. But this gives a contradiction because
y ∈ D1 and z ∈ D2 implies ‖π(q1, w)∪π(w, y)‖+‖π(q2, w)∪π(w, z)‖ ≤ r1 +r2.

It remains to show that G×(D) = G×(D∗). As mentioned earlier, the increase of
the radii in the first step of the perturbation is chosen sufficiently small so that no new
intersections are introduced. The second step shrinks the geodesic disks, so no new
intersections are introduced in that step either. Finally, the fact that the perturbations
in the second step are smaller than in the first step guarantees that no intersections are
removed.

Theorem 11 allows us to apply Theorem 8. When doing so, we actually do not need
to perturb the geodesic disks. We only use the perturbation to argue that the number
of faces in the arrangement defined by n geodesic disks of ply k is O(nk). Computing
the geodesic disks (and then computing the separator) can be done in polynomial time
in n and the number of vertices of P . We obtain the following result.

Corollary 12 LetD be a set of n geodesic disks inside a simple polygonwithm vertices.
Then G×(D) has a clique-based separator of size O(n2/3) and weight O(n2/3 log n),
which can be computed in time polynomial in n and m.

4 Visibility-Restricted Unit-Disk Graphs Inside a Polygon

Let P be a simple polygon, possibly with holes, and let Q be a set of n points inside P .
We define G×

vis,P (Q) to be the visibility-restricted unit-disk graph of Q. The nodes

in G×
vis,P (Q) correspond to the points in Q and there is an edge between two points

p, q ∈ Q iff |pq| ≤ 1 and p and q see each other. A vertex of P is reflex if its angle
within the polygon is more than 180 degrees; note that for a vertex of a hole we look
at the angle within P , not within the hole. Our separator construction will make use
of the notion of a centerpoint of P which we introduce below.

4.1 Centerpoint of a Simple Polygon

This is a natural extension of the notion of the centerpoint for a set Q of n points in the
plane, which is a point p (not necessarily from Q) such that any line through p divides
the plane in two half-planes each containing at most 2n/3 of the points from Q. Recall
that a chord in P is a line segment s ⊂ P that connects two points on the boundary
of P . Since we consider P to be a closed set, a chord may pass through one or more
reflex vertices of P . We say that a chord is maximal if it cannot be extended without
exiting the polygon. We define a half-polygon of P to be a sub-polygon of P that is
bounded by a (not necessarilymaximal) chord s and a portion γ ⊂ ∂P of the boundary
of P such that s ∩ γ = {z1, z2}, where z1, z2 are the endpoints of s. Note that any
chord splits P into two or more half-polygons.
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Definition 13 (Centerpoint in a Simple Polygon) Let P be a simple polygon and Q
be a set of n points in P . A centerpoint for Q in P is a point p ∈ P such that any
maximal chord through p splits P into half-polygons that each contain at most 2n/3
points from Q in their interior.

Theorem 14 For any simple polygon P and point set Q ⊂ P, a centerpoint for Q in
P exists.

Proof To prove the theorem we can follow the standard proof [23] of the existence of
a centerpoint in the plane almost verbatim. Thus, consider the family H of all half-
polygons of P whose interior contains more than 2n/3 points of Q. Any three of these
half-polygons must intersect, because the complement of each of them contains less
than n/3 points from Q. Recall that Helly’s Theorem states that if we have a family of
convex sets in the plane such that any three of them intersect, then they all intersect in a
common point. While our half-polygons are not convex, the same result is true here, as
follows fromMolnar’s Theorem [5] which states that if a family of simply connected
compact sets in the plane is such that any two members have a connected intersection
and any three members have a non-empty intersection, then the intersection of the
family is non-empty. Our family H satisfies these conditions and hence

⋂
H 
= ∅.

We claim that any point c in the common intersection of the half-polygons in H
is a centerpoint for Q in P . To see this take a chord s through c and let H1, H2, . . .

be the half-polygons into which s splits P . Suppose for contradiction that some Hi

contains more than 2n/3 points of Q. Let si ⊆ s be the part of s bounding Hi . Then, if
we slightly shrink Hi by moving si infinitesimally, we obtain a half-polygon H ′

i that
contains more than 2n/3 vertices, contradicting the definition of c.

Our main result is the following:

Theorem 15 Let Q be a set of n points inside a polygon (possibly with holes) with r
reflex vertices. Then G×

vis,P (Q) admits a clique-based separator of size O(min(n, r)+√
n) and weight O(min(n, r log(n/r) + √

n)). The bounds on the size and weight of
the separator are tight in the worst case, even for simple polygons.

4.1.1 The Lower Bound

Recall that even for non-visibility restricted unit-disk graphs,�(
√
n) is a lower bound

on the worst-case size of the separator. Hence, to prove the lower bound of Theo-
rem 15 it suffices to give an example where the size and weight are �(min(n, r)) and
�(min(n, r log(n/r))), respectively. This example is given in Fig. 5(i).

4.1.2 The Upper Bound

We first describe our construction for polygons without holes. Our separator construc-
tion has two steps. In the first step we put all points that can see a reflex vertex within
distance

√
2 into the separator. We will argue that we can do this in such a way that

we put O(1) cliques per reflex vertex into the separator. In the second step we handle
the remaining points. We take a centerpoint c inside P and then define

√
n chords
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Fig. 5 (i) Each cluster Ai sees any of the clusters B j completely and all distances are atmost 1, so a separator

that splits G×
vis,P

(⋃
Ai ∪ ⋃

B j
)
into two or more components must fully contain

⋃
Ai or

⋃
B j . Since

the clusters Ai (and similarly B j ) do not see each other, such a separator has size at least r/2 and weight
at least ((r/2) log(n/r)). (ii) Splitting R∗(u) into two convex parts

through c. For each chord si we put the points within distance 1/2 into the separator,
suitably grouped into cliques. We will argue that the total weight of the cliques, over
all chords si is O(n). Hence, there is a chord whose cliques have total weight O(

√
n).

Adding theweight of the cliques we added in Step 1 then gives us the desired separator.
Step 1: Handling points that see a nearby reflex vertex Let Vref be the set of reflex

vertices of P , and let Q1 ⊆ Q be the set of points that can see a reflex vertex within
distance

√
2. Consider the geodesic Voronoi diagram of Vref within P . Let R(u) be

the Voronoi region of vertex u ∈ Vref and define R∗(u) := R(u) ∩ D(u,
√
2). Note

that all points in R(u) can see u and that all points in Q1 are in R ∗ (u) for some
vertex u ∈ Vref . The following lemma is illustrated in Fig. 5(ii).

Lemma 16 Let e be an edge incident to u. If we extend e until it hits ∂R∗(u) then
R∗(u) is split into two convex parts.

Proof It suffices to argue that the angle of R(u) corresponding to u is the only reflex
angle within R(u). Then the result will follow from the fact that D(u,

√
2) is convex.

Clearly the shortest path connecting any point p ∈ R(u) to u is the segment pu. This
implies that ∂R(u) consists of straight line segments that are parts of perpendicular
bisectors of the segments connecting u to other reflex vertices of P . Any two such
consecutive edges then cannot form a reflex angle within R(u).

Since R∗(u) has diameter O(1), Lemma 16 implies that Q1∩R∗(u) can be partitioned
into O(1) cliques. We collect all these cliques into a set S1. Since there are r reflex
vertices, S1 consists of O(r) cliques whose total weight is O(r log(n/r)). Indeed,
the total weight of these cliques is

∑
C∈S1

log(|C | + 1), where |S1| = O(r) and∑
C∈S1

|C | ≤ n. Jensen’s Inequality for concave functions implies that the sum of
the weights is maximized when the clique sizes are all the same, which means that∑

C∈S1
log(|C | + 1) = O(r log(n/r)).

Step 2: Handling points that do not see a nearby reflex vertex Our separator S
consists of the cliques in S1 plus a set S2 of cliques that are found as follows. Let
Q2 := Q \ Q1 be the set of points that do not see a reflex vertex within distance

√
2.

Let c be a centerpoint for Q2 inside P , that is, a point such that any chord through c
splits P into two half-polygons containing at most 2|Q2|/3 points from Q. Such a
point exists by Theorem 14. Let G be a

√
n×√

n grid centered at c, where we assume
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Fig. 6 (i) The grid G defining the chords si . (ii) The points in the top-left cell do not see each other, but
they see a reflex vertex and so they are not in Q2(si ). The points in the top-right cell can be partitioned into
O(1) cliques

for simplicity that
√
n is integer. For each of the

√
n points gi in the rightmost column

of the grid (even if gi /∈ P), we define a maximal chord si by taking the line �i through
c and gi and then taking the component of �i ∩ P that contains c; see Fig. 6(i). We
assume for simplicity that the chords si doe not pass through reflex vertices; this can
be ensured by slightly rotating the grid, if necessary.

For each chord si , we define Q2(si ) to be the set of points q ∈ Q2 such that there
is a point z ∈ si that sees q with |qz| ≤ 1/2.

Note that G×
vis,P (Q) cannot have an arc between a point p ∈ Q2 \ Q2(si ) above si

and a point q ∈ Q2 \ Q2(si ) below si ; otherwise p and/or q see a point on z within
distance 1/2, and so at least one of p, q is in Q2(si ). Since si is a chord through the
centerpoint c, this means that si induces a balanced separator.

It remains to argue that at least one of the chords si induces a separator whose
weight is small enough. We will do this by creating a set S(si ) of cliques for each
chord si , and prove that the total weight of these cliques, over all chords si , is O(n).
Since there are

√
n chords, one of them has the desired weight.

Step 2.1: Points outside the grid We simply put all points from Q2(si ) that lie
outside the grid G—that is, the points that do not lie inside a grid cell—into S(si ), as
singletons.

Observation 17 Let q be a point that does not lie in any of the cells of the grid G.
Then q lies within distance 1/2 of at most two chords si .

Observation 17 implies that the total number of singleton cliques of points outside
grid cells, summed over all chords S(si ), is O(n).

Step 2.2: Points inside the grid Next, consider a cell T of the grid G. Suppose a
point q ∈ Q2(si ) sees a point z ∈ T ∩ si such that |qz| ≤ 1/2. Then q must lie inside
one of the at most nine grid cells surrounding and including T . Consider such a cell
T ′.

Lemma 18 The points from Q2(si )∩ T ′ that can see a point on si ∩ T within distance
1/2 can be partitioned into O(1) cliques.

Proof We will show that we can split these points into at most four cliques. To this
end we split T ′ in four equal-sized subcells; see Fig. 7. Clearly each subcell has a
diameter 1

2

√
2 < 1. It suffices now to show that if two points p, q in the same subcell
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Fig. 7 Illustration for the proof of Lemma 18

do not see each other, then they see a reflex vertex within distance
√
2; hence they are

in Q1 and not in Q2(si ) ∩ T ′.
Let z1 and z2 be points on si ∩ T that see p, q, respectively, with |pz1| ≤ 1/2 and

|qz2| ≤ 1/2. The quadrilateral formed by the points p, q, z1, z2 must always lie within
a square of side length 1. This square is shown in green in Fig. 7, for three different
cases depending on the relative position of T ′ and T . In this quadrilateral, the side pq
has to be crossed by ∂P , since we assumed p and q do not see each other. Moreover,
∂P cannot cross si or the segments pz1, qz2. Thus at least one reflex vertex of ∂P lies
within the quadrilateral. It’s then clear that both p, q will be able to see a reflex vertex
within the quadrilateral (possibly not the same); since all points lie within a square
of side length 1, the result follows. Note that in Fig. 7 (iii) we have made the edges
pz1, qz2 cross each other to showcase that the proof still goes through in this case.

We thus create O(1) cliques for each cell T ′ that is one of the at most nine cells
surrounding a cell T crossed by si , and put them into S(si ). This adds at most
O(log(nT ′ + 1)) weight to S(si ), where nT ′ := |Q2 ∩ T ′|. Since there are n cells
in total, this immediately gives a total weight of O(n log n) over all sets S(si ). Next
we show that the the total weight of the cliques is actually O(n). In what follows we
denote by weight(S(si )) the total weight of the cliques corresponding to chord si .

Lemma 19 The total weight of the cliques corresponding to the chords si is O(n), that
is:

√
n∑

i=1

weight(S(si )) = O(n).

Proof Let T (si ) denote the cells crossed by a chord si , and let N [T ] denote the at
most nine cells surrounding a cell T , including T itself. By the arguments above, the
total weight of all separators is.

√
n∑

i=1

∑

T∈T (si )

∑

T ′∈N [T ]
O(log(nT ′ + 1)) (1)

Let K1 be the set of cells in the central column of the grid, that is, the column containing
the centerpoint c. For 2 ≤ j ≤ m, where m := �√n/2�, let K j be the cells in the pair
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of columns at distance j − 1 from K1. For example, K2 are the cells in the columns
immediately to the left and right of K1. Then we can make the following observations.

• The set K j contains 4 j − 2 = O( j) cells that are crossed by at least one chord s j .
• Cells in K j are crossed by O(

√
n/ j) chords.

Now define K ∗
j to be the set of cells T

′ in K j such that one of the nine cells surrounding
T ′ is crossed by at least one chord. Note that each T ′ ∈ K ∗

j is in N [T ] for at most nine
cells T , which are all in K j−1 ∪ K j ∪ K j+1. (Here we define K−1 = Km+1 = ∅.) It
then follows from the above observations that |K ∗

j | = O( j). Moreover, if T ′ ∈ K ∗
j

and T ′ ∈ N [T ], then T is crossed by O(
√
n/ j) chords. Hence, we can rewrite (1) as

m∑

j=1

⎛

⎜
⎝O

(√
n

j

)

·
∑

T ′∈K ∗
j

O(log(nT ′ + 1))

⎞

⎟
⎠ = O

⎛

⎜
⎝

m∑

j=1

√
n

j
·

∑

T ′∈K ∗
j

log(nT ′ + 1)

⎞

⎟
⎠

(2)
Now we are ready to compute the total weight of the separator. Note that

∑

T ′∈K ∗
j

log(nT ′ + 1) = log

⎛

⎜
⎝

∏

T ′∈K ∗
j

(nT ′ + 1))

⎞

⎟
⎠

Now define n j to be the total number of points in the cells in K ∗
j . The AM-GM

inequality gives us:

log

⎛

⎜
⎝

∏

T ′∈K ∗
j

(nT ′ + 1)

⎞

⎟
⎠ ≤ log

⎛

⎝

(∑
T ′∈K ∗

j
(nT ′ + 1)

|K ∗
j |

)|K ∗
j |
⎞

⎠ = |K ∗
j | log

(
n j

|K ∗
j |

+ 1

)

,

Since |K ∗
j | = O( j) we have

|K ∗
j | log

(
n j

|K ∗
j |

+ 1

)

= O

(

j · log
(
n j

j
+ 1

))

We conclude that the total weight over all separators is bounded by

O

⎛

⎝
m∑

j=1

√
n

j
· j log

(
n j

j
+ 1

)
⎞

⎠ = O

⎛

⎝
m∑

j=1

√
n · log

(
n j

j
+ 1

)
⎞

⎠ (3)

We have that:
m∑

j=1

log

(
n j

j
+ 1

)

= log

(∏m
j=1(n j + j)

m!

)

(4)
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Recall that m = �√n/2�, which implies that n/m ≤ 2m. Furthermore, Stirling’s
approximation tells us that ln(m!) = m lnm −m + O(lnm). Changing the logarithm
to base 2 we get log(m!) = m logm−m log e+O(logm). Since

∑m
j=1(n j + j) ≤ 3n,

using the AM-GM inequality we derive

log

(∏m
j=1(n j+ j)

m!
)

≤ log
(( 3n

m

)m)
− log(m!)

= m log
( 3n
m

) − (m logm − m log e + O(logm))

≤ m log(6m) − (m logm − m log e + O(logm))

≤ 5m + O(logm)

= O(
√
n)

Combing this with Equations (3) and (4) we conclude that the total weight of the sets
S(s) is O(n), as claimed.

We conclude that there will be a chord si whose cliques have total weight O(
√
n).

Then our desired separator is the set S = S1 ∪ S(si ).

4.2 Extension to PolygonsWith Holes

Wenow showhow to extend the previous approach so that it alsoworks for a polygon P
with holes. The key ideas remain the same.

As previously, the first step is to put the points that see a reflex vertexwithin distance√
2 into the separator. This can again be done using the geodesic Voronoi diagram

of the reflex vertices. Recall that a vertex of a hole is defined to be reflex if its angle
within P (not: within the hole) is more than 180 degrees.

In the second step we again construct
√
n potential separators. When P has holes, a

chordmay not split P into two half-polygons. Hence, instead of taking chords though a
centerpoint for Q2 in P , we proceed slightly differently. We take a regular centerpoint
for Q2, and for each point gi in the rightmost column of the grid G we take the full
line �i through c and pi . Note that �i ∩ P can consist of many chords. Together, these
chords split P into several parts; the parts above �i contain at most 2|Q2|/3 points,
and the parts below �i contain at most 2|Q2|/3 points as well. Hence, the resulting
separators will be balanced.

Points in Q2 that lie outside the grid G can be handled as before. They are added
as a singleton to O(1) lines �i , so they contribute weight O(n) in total.

We now proceed to describe how to split points in Q2 within the grid into cliques.
For each line �i and each grid cell T we define an entrance piece to be the first piece
of �i ∩ T ∩ P . The remaining pieces will be referred to as non-entrance pieces (see
Fig. 8). Entrance pieces can be handled exactly as in the case without holes: we look
at all the points in the nine cells surrounding and including T which see this piece
within a distance 1/2 and split them in a constant number of cliques. Then the total
sum of the weights of these cliques for all the lines will be O(n) as before. Thus we
can select a line �i such that the weight of the cliques we add for the entrance pieces
is O(

√
n).
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Fig. 8 A line �i which crosses a cell T that has three holes, colored in red. The blue piece of �i is the
entrance piece, while the two green pieces are the non-entrance pieces. Note that each green piece can be
uniquely associated to the pair of entrance-exit points of the hole preceding it. Marked with a cross are two
possible choices of reflex vertices that are then associated with the green pieces

It remains now to handle the non-entrance pieces. Let �i be the line we selected.We
will show that �i has O(r) non-entrance pieces and that for each of them we only need
to add O(1) cliques. For the first part, observe that if a line �i intersects a hole 2k times
then the hole must have at least k reflex vertices of P . These 2k points of intersection
can be split into k pairs of entrance-exit points. Now note that a non-entrance piece can
be uniquely associated with a unique pair of entrance-exit points. Therefore we have
associated each non-entrance piece with a unique reflex vertex of P and as a result the
number of these pieces is indeed O(r). The second part is handled as before by adding
a constant number of cliques from the nine cells that surround the cell that contains
each non-entrance piece. Therefore the cliques that correspond to these pieces add a
total weight of O(r log n

r ).
To summarize, after having found a separator such that the total weight of the

entrance pieces is O(
√
n)we can add the cliques for the non-entrance pieces to obtain

a separator of weight O(r log n
r + √

n). Together with the cliques from S1 this gives
the final separator. This finishes the proof of Theorem 15.

5 Applications

In this section, we show how one can use clique-based separators to get subexponential
algorithms for several classic graph problems, namelyMaximum Independent Set,
Feedback Vertex Set, and q-Coloring for constant q. The algorithms are very
generic: they only use the fact that the clique-based separators exist and can be com-
puted in polynomial time, so they can immediately be combined with any of our
separator theorems.

There are subexponential algorithms for Maximum Independent Set, Feed-
back Vertex Set, and 3-Coloring in the class of string graphs. In par-
ticular, Bonnet and Rzazewski [4] obtain a running time of 2O(n2/3 log n) for
Maximum Independent Set and 3-Coloring, and 2O(n2/3 logO(1) n) for Feedback
Vertex Set . They also show that there is no subexponential algorithm for q-
Coloring in string graphs in case of q ≥ 4. All graph classes studied in this
paper are a subclass of string graphs, therefore the algorithmic results of Bonnet and
Rzazewski carry over. In the case ofmap graphs, one can derive 2O(

√
n log n) algorithms
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for Maximum Independent Set and Feedback Vertex Set by using the trivial
bound k ≤ n in the subexponential parameterized algorithms of Fomin et al. [14].
Moreover, the separator theorem of Matoušek [7] can be used to directly get a 2O(

√
n)

algorithm for q-Coloring for fixed constant q. Finally, for polygons of total com-
plexity O(n), one can use the parameterized algorithm of Marx and Philipczuk [22]
to derive a 2O(

√
n log n) algorithm forMaximum Independent Set.

Using our separator theorems, we get subexponential algorithms for the three prob-
lems mentioned above in the various graph classes under consideration. The running
times we obtain match or slightly improve the results that can be obtained by applying
the existing results mentioned above. It should be kept in mind, of course, that the
existing results are formore general graph classes. An exception are our results onmap
graphs, which were explicitly studied before and where we improve the running time
forMaximum Independent Set and Feedback Vertex Set from 2O(

√
n log n) to

2O(
√
n). (Admittedly, the existing results apply in the parameterized setting while ours

don’t.) In any case, the main advantage of our approach is that it allows us to solve
Maximum Independent Set, Feedback Vertex Set and q-Coloring on each
of the mentioned graph classes in a uniform manner. Specifically, our result are as
follows.

Inmap graphs that are given by a linear-sized representation we obtain 2O(
√
n) algo-

rithms for all three problems. In pseudodisk graphs and in intersection graphs of objects
with linear union complexity, we get 2O(n2/3 log n) algorithms forMaximum Indepen-
dent Set and Feedback Vertex Set, and a 2O(n2/3) algorithm for q-Coloring
with constant q. In intersection graphs of polygonal pseudodisks of total complexity
O(n), the obtained running times are 2O(

√
n log n) for Maximum Independent Set

and Feedback Vertex Set, and 2O(
√
n) for q-Coloringwith constant q. For inter-

section graphs of geodesic disks in a simple polygon, our separators yield the same run-
ning times as for pseudodisks: 2O(n2/3 log n) algorithms forMaximum Independent Set
and Feedback Vertex Set, and a 2O(n2/3) algorithm for q-Coloringwith constant
q.

We also get subexponential algorithms for each of our problems in visibility-
restricted unit-disk graphs in polygons with r reflex vertices (assuming the total
number of vertices is polynomial in n). The running time is 2 f (n,r), where f (n, r) =
O(min(n, r log(n/r)) + √

n).

5.1 The Algorithms

Recall that theMaximum Independent Set problem is to find amaximum-size sub-
set of pairwise non-adjacent nodes in a given graph G. The Feedback Vertex Set
problem asks to find a minimum-size subset of nodes whose deletion makes G cycle-
free. Here it will be more convenient to work with the complement of the solution,
which corresponds to the Maximum Induced Forest problem: find a maximum-
size subset of nodes that induce a forest in G. Finally, in the q-Coloring problem,
the goal is to decide if G has a proper q-coloring (that is, a coloring of the nodes
using q colors such that adjacent nodes have different colors). For q-Coloring, we
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can immediately reject any instance that contains a clique of size at least q + 1, as
such a clique has no proper q-coloring. Therefore the weight of each clique is at most
log(q + 1) = O(1), and we only need to deal with instances of maximum clique size
q. Consequently, if we have a clique-based separator S with s cliques in the graph,
then the weight of the separator is at most s · log(q + 1) = O(s).

We can simplify the presentation by abstracting away the geometry. Inwhat follows,
wefix a graph classG, andwe assume that for any n-node graphG ∈ Gwe can compute
a balanced clique-based separator S of G in polynomial time of size sG(n) and weight
wG(n). Note that our separator computations rely on having a geometric representation
of the input graph G. We will prove the following theorem.

Theorem 20 Let G be a class of geometric intersection graphs, and suppose that G
has a clique-based separator theorem of weight wG(n) and size sG(n) = nc for some
constant 0 < c < 1. Suppose moreover that these separators can be computed in poly-
nomial time. Then for an n-node graph G ∈ G given by its geometric representation,
one can solve:

(1) Maximum Independent Set in 2O(wG(n)) time,
(2) Feedback Vertex Set in 2O(wG(n)) time,
(3) and q-Coloring for fixed constant q in 2O(sG(n)) time.

Proof (1) We use the same algorithm as De Berg et al. [11], which we recall here.
Let X be a maximum independent set. Notice that any clique C can contain at most
one node from X . Therefore, the number of ways that a given set X can intersect a
clique-based separator S is at most

∏

C∈S
(|C | + 1) = 2

∑
C∈S log(|C|+1) = 2weight(S).

We can use a simple divide-and-conquer strategy to find the set X . We compute a
separator S, and for all independent sets XS in

⋃
C∈S C , we will find the largest

independent set that XS is a part of. To this end we consider the graph GXS := G[V \
(N (XS)∪⋃

C∈S C)], that is, the graphG where we remove the nodes of the separator
aswell as those nodes that neighbor a node in XS .Wecompute amaximum independent
set on each side of the separator, restricting ourselves to GXS , in a recursive fashion.
The correctness follows from the fact that the set X∗

S := X ∩ (
⋃

C∈S C) will be
considered by the algorithm, and then the remainder of X on each side of the separator
will form maximum independent sets within that side.

Since the number of sets XS to enumerate is at most 2weight(S) ≤ 2wG(n), we get
the following recursion for the running time:

T (n) = 2wG(n)
(
2T (βn) + poly(n)

)
,

where β < 1 is the balance factor of the separator theorem. Solving this recursion
yields that T (n) = 2O(wG (n)), as required.
(2) We solve the complement problem, Maximum Induced Forest. Observe that
an induced forest can have at most two nodes in each clique, therefore an induced
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forest with node set X can intersect a clique-based separator S in at most

∏

C∈S

((|C |
2

)

+ |C | + 1

)

<
∏

C∈S
(|C | + 1)2 = 2

∑
C∈S 2 log(|C|+1) = 22·weight(S)

many ways. However, unlike with Maximum Independent Set, the solutions on
the two sides of the separator are not completely independent: we must ensure that
their union is a forest, and does not induce any cycles. Let H be a set of nodes in G,
called boundary nodes, and let π be a partition of H . We say that a forest X realizes
π if H ⊆ X and x, y ∈ H are in the same connected component of G[X ] if and only
if they are in the same partition class of π .

A separator can contain up to O(|S|) nodes of the solution forest, which will
become boundary nodes in A ∪ S and B ∪ S with some specific partitions. Formally,
we need to solve the following problem: given a graph G, a boundary node set H
and a partition π , find the maximum induced forest of G that realizes π on H . In
order to keep the running time small, we need to ensure that this boundary set stays
small compared to the size of the instance in the recursion tree. We observe that all
of our separators can be extended to achieve balance with respect to any node set
W ⊂ V (G). Using such separators, we can ensure that the number of boundary nodes
for an instance of size n during the recursion is at most O(sG(n)) by for example
taking separators that are balanced with respect to all nodes and the boundary set H
alternatingly. See [10] for a different way to keep the boundary set small. As H has
|H |O(|H |) = 2O(|H | log |H |) = 2O(sG(n) log n) partitions, the running time recursion is

T (n) = 22wG(n)+O(sG (n) log n)(T (β ′n) + poly(n)),

where β ′ < 1 is a constant that depends only on the separator balance factor β and
the size function sG . This gives a running time of

T (n) = 2O(wG(n)+sG (n) log n).

The running time can be further reduced by using the rank-based approach of Bod-
laender et al. [3]. Here instead of trying all partitions, one only needs to keep track of a
so-called representative set of 2O(|B|) weighted partitions, and update these represen-
tative sets bottom-up in the recursion tree. We can implement this technique similarly
to earlier implementations. See [11] for an example with maximum induced forest
and [10] for using the technique in a separator-based divide-and-conquer algorithm)
without a tree-decomposition. The resulting algorithm has the following running time
recursion:

T (n) = 22wG(n)+O(sG (n))(T (β ′n) + poly(n)) = 2O(wG(n))(T (β ′n) + poly(n)).

Solving the recursion gives the desired running time of T (n) = 2O(wG(n)).
(3) We start by checking if there is a clique of size at least q + 1. This can be done
by brute force in O(nq+1) = poly(n) time. If such a clique is found then we can
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reject. Otherwise, we use a divide-and-conquer strategy: for all proper q-colorings of
the separator node set S = ⋃

C∈S C , we solve the problem recursively for the node
sets S1 = S ∪ A and S2 = S ∪ B, where A and B are the two sides of the separator.
Note that in order to make this work, we in fact solve a slightly extended problem,
where some arbitrary subset of nodes are already colored, and the task is to extend
this coloring to a proper q-coloring.

As cliques have size at most q = O(1), a separator consisting of sG(n) cliques has
O(sG(n)) nodes, and its nodes can be colored in at most qO(sG(n)) = 2O(sG(n)) many
ways. The running time obeys the recurrence

T (n) = 2O(sG(n))(T (β ′n) + poly(n)),

where β ′ < 1 is a constant such that max(|A|, |B|) + |S| < β ′n is guaranteed by the
separator for n large enough. The recursion solves to T (n) = 2O(sG(n)).

6 Concluding Remarks

We showed how clique-based separators with sub-linear weight can be constructed
for various classes of intersection graphs which involve non-fat objects. The main
advantage of our approach is that we can solve different problems in the graph classes
we study in a uniform manner. There are several natural questions that are left open.
Some are listed below.

• Improving the bound for geodesic disks and adding holes. Our bound on geodesic
disks is directly derived by our result on pseudo-disks. However, geodesic disks are
much less general than pseudo-disks (and “closer” to regular disks). Hence, one
would expect that the optimal weight is closer to O(

√
n). If we allow our polygon

to have holes, then our approach for geodesic disks no longer works. Indeed, it is
easy to see that even after applying our perturbation scheme, the resulting objects
can intersect each other more than two times.

• Improving the bound for pseudo-disks. Regarding pseudo-disks, an interesting
result [27] states that in every finite family of pseudo-disks in the plane one can
find a “small” one, in the sense that it is intersected by only a constant number
of disjoint pseudo-disks. This property is also shared by, for instance, convex fat
objects. Does this mean that the two graph classes are related in some natural
way? If yes, could this connection be exploited to construct separators with better
bounds?
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grant NETWORKS-024.002.003.
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