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Abstract
An instance of the non-preemptive tree packing problem consists of an undirected
graph G = (V , E) together with a weight w(e) for every edge e ∈ E . The goal is to
activate every edge e for some time interval of lengthw(e), such that the activated edges
keep G connected for the longest possible overall time. We derive a variety of results
on this problem. The problem is strongly NP-hard even on graphs of treewidth 2, and it
does not allow a polynomial time approximation scheme (unless P=NP). Furthermore,
we discuss the performance of a simple greedy algorithm, andwe construct and analyze
a number of parameterized and exact algorithms.

Keywords Spanning tree packing · Non-preemptive scheduling · Combinatorial
optimization · Timevarying graphs · Keeping a network connected over time

1 Introduction

The tree packing problem of Nash-Williams. For a given undirected connected graph
G = (V , E) and a weight function w : E → N, Nash-Williams [14] considered
the optimization problem of packing as many spanning trees as possible into the
graph, such that every edge e ∈ E appears in at mostw(e) of these spanning trees. For
example, consider Fig. 1, whereG is a complete graph on three vertices, andw(e) = 2
for all edges. The optimal solution packs three spanning trees. It is not possible to pack
more spanning trees, because every edge is already used twice.

Nash-Williams [14] derives a min-max relation for the problem that connects it
to certain cut conditions. Building on these results, Cunningham [8] constructs a
polynomial time algorithm for the problem by reducing it to a polynomial number of
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Fig. 1 An instance of
Nash-Williams’ spanning tree
packing problem. The optimal
solution packs three spanning
trees, as indicated on the right

Fig. 2 The three edges in the graph on the left hand side have weights w(e1) = w(e2) = w(e3) = 2. The
schedule on the right hand side keeps the graph connected for a total of three time units

maximum flow problems. Barahona [3] presents another algorithm with a better time
complexity.

The tree packing problem may also be interpreted as a scheduling problem: Every
edge e ∈ E is a resource that can be activated for a total of w(e) time units. The
objective now is to activate the edges in such a way that the graph remains connected
for the longest possible overall time. Figure 2 contains a simple illustrating example on
the three-vertex cycle. There are three spanning trees (that each consist of two edges),
and an optimal schedule uses each of these spanning trees for exactly one time unit.
It is easy to see that in every optimal schedule, one of the three edges will be active
during the first and the third time slot and will be inactive during the second time slot;
in the language of scheduling, we say that the execution of that edge is preempted at
time 1 and afterwards resumed at time 2. (In the schedule shown in Fig. 2, edge e3 is
the preempted edge.)

The non-preemptive version of tree packing.We consider a non-preemptive variant of
the above tree packing problem, where the execution of edges must not be preempted:
Every edge e is activated at some time point τ(e) chosen by the scheduler, and then
remains active without interruption during the full time interval [τ(e), τ (e) + w(e)].
The objective is again to activate the edges in such a way that the graph remains con-
nected for the longest possible overall time. The resulting combinatorial optimization
problem is called non-preemptive tree packing (N- TreePack for short), and the opti-
mal objective value for a graph G = (V , E) with edge weights w : E → N0 will be
denoted ntp(G, w).

In the example in Fig. 2, every reasonable non-preemptive schedule will activate
two of the edges at time 0. As there is no way of keeping the graph connected for more
than two time units, the optimal objective value is ntp(G, w) = 2.

Related literature. The non-preemptive tree packing problem can be understood as a
topic with connections to several different areas. First of all, it can be understood as

123



Algorithmica (2023) 85:783–804 785

a non-preemptive scheduling problem equipped with a structurally rich global con-
straint. In scheduling it is the conventional case to assume non-preemption of the
scheduled tasks (see the seminal books of Pinedo [18] andBrucker [5]). This shows the
importance of handling non-preemption also for more structured scheduling problems
like tree packing. In the work of Adjiashvili et al. [1] the computational complexity of
time-expanded packing problems with non-preemption constraints is studied and the
authors obtain approximation algorithms for several of the studied problem variants.

Our model is also strongly related to the area of time-varying graphs (TVG). These
are graphs over time, where every edge is equipped with the information at which time
it is available. Time-varying graphs are used to model networks, where change in the
network topology is an inherent part of the system. This includes for example delay-
tolerant networks where information links often fail, like satellite networks, vehicular
or passenger networks.

In the seminal paper of Casteigts, Flocchini, Quattrociocchi and Santoro, differ-
ent classes of TVGs are identified [6]. In particular, class 9 is the class of constant
connected (also called 1-connected [15]) TVGs and contains those TVGs which are
connected at every point in time. This class was for example used to always guarantee
progression of a broadcast operation [16], or to enable consensus in a TVG [13]. Our
problem of non-preemptive tree packing can therefore be understood as scheduling
the edges in a dynamic network in such a way that the resulting time-varying graph is
1-connected for as long as possible.

Finally, our problem is a modification of the classic tree packing problem (like the
classical results of Nash-Williams [14] and Edmonds [10]) with additional global con-
straints enforcing non-preemptiveness. A similar problem has been studied by Heuvel
and Thomassé [12]. Translated to our vocabulary, their work is also an investigation
of non-preemptive scheduling, but there are two key differences to our problem: First,
they consider a cyclic scheduling where the lifetime of a scheduled element can wrap
around from the end to the beginning of the schedule. Second, instead of finding the
longest possible time such that the scheduled elements connect the graph at any time
point, they consider a dual problem, where the goal is to find the shortest possible time
such that the scheduled elements are acyclic at any time point.

Contributions of this paper.We analyze the computational complexity and the approx-
imability of non-preemptive tree packing, and we also provide some parameterized
and exact algorithms for it. The complexity results are devastating:

– N- TreePack is strongly NP-hard, even on complete bipartite graphs K2,n .
– N- TreePack is strongly NP-hard, even on graphs of bandwidth 2.

Since complete bipartite graphs K2,n are series-parallel and since graphs of band-
width 2 are outerplanar, our results yield strong NP-hardness for essentially all natural
subclasses of graphs with treewidth 2. As edges of zero-weight are irrelevant for the
objective value of N- TreePack, NP-hardness immediately propagates from graphs
to supergraphs; hence our results also imply strong NP-hardness for all the standard
families of specially structured graphs, like planar graphs, bipartite graphs, interval
graphs, cographs, etc. The only notable exception are the trees and the cactus graphs.
Furthermore, we analyze the complexity of cases with small objective values: Decid-
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ing whether ntp(G, w) ≥ β can be done in polynomial time for β = 3 and is NP-hard
for β = 7; the intermediate cases with β ∈ {4, 5, 6} remain open.

With respect to polynomial time approximation, we introduce a simple greedy algo-
rithm which has a worst case guarantee of n− 1 on n-vertex graphs. On cactus graphs
it always succeeds in finding an optimal solution, whereas for every non-cactus graph
G there exist edge weights w so that on the input (G, w) the greedy algorithm fails
to find an optimal solution. We show by means of a gap-reduction that (unless P=NP)
problem N- TreePack does not allow a polynomial time approximation algorithm
with worst case ratio strictly better than 7/6; this of course excludes the existence of
a PTAS.

Finally, we derive a number of FPT-results in the area of parameterized complexity.
The special case of N- TreePack where both the treewidth and the maximum edge
weight are bounded by a constant k allows an FPT-algorithm whose running time is
linear in |E |. (The case where only the treewidth is bounded and the case where only
the maximum edge weight is bounded are both para-NP-hard, and hence unlikely to
belong to FPT.) Furthermore we design an exact algorithm for N- TreePack whose
(exponential) running time is bounded by |E |! · poly(|E |).

Organization of the paper. Section 2 provides central definitions and summarizes the
notation. Section 3 contains the NP-hardness results for specially structured graph
classes. Sections 4 and 5 contain the negative and positive results for small objective
values. Section 6 discusses the greedy algorithm, Sect. 7 states some parameterized
and exact algorithms for N- TreePack, and Sect. 8 concludes the paper with some
discussion.

2 Preliminaries

We write N0 = N ∪ {0} for the set of nonnegative integers. For a ≤ b, the term [a, b]
denotes the time slot starting at a and ending at b. For an integer t ≥ 1, the time slot
[t−1, t] is often called the t-th time slot or time slot t . Every graphG = (V , E) in this
paper is simple, undirected and without loops. We write V (G) = V and E(G) = E .
For V ′ ⊆ V , the edge cut δ(V ′) is the set of edges with one endpoint in V ′ and one
endpoint in V − V ′; for v ∈ V , we write δ(v) = δ({v}). We denote by G[V ′] the
induced subgraph of G by V ′. By removing a vertex v from G, we obtain the graph
G−v = G[V −{v}]. Similarly, for E ′ ⊆ E and e ∈ E we haveG−E ′ = (V , E−E ′)
and G − e = G − {e}. For all other graph-theoretic concepts used in the paper, we
refer the reader to the text book by West [19].

2.1 Formal Problem Definition

An instance for problemN- TreePack is aweighted graph (G, w), whereG = (V , E)

and w : E → N0. A schedule for instance (G, w) is a map σ : E → N0, that maps
each edge e to its activation time σ(e). For a schedule σ and an edge e, the activity
interval of e is [σ(e), σ (e) + w(e)]. For t ≥ 1, we let
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Eσ
t = {e ∈ E : σ(e) + 1 ≤ t ≤ σ(e) + w(e)}

denote the set of edges that are active in the t-th time slot, and we let Gσ
t = (V , Eσ

t )

denote the graph on vertex set V with all the edges that are active in the t-th time slot.
Finally, we define the objective value ntp(σ ) of schedule σ as the number of time slots
[t − 1, t] for which Gσ

t is connected. When the schedule σ is clear from the context,
we often simply write Et and Gt instead of Eσ

t and Gσ
t .

We clarify a few points in this definition: First, the time duringwhichG is connected
does not necessarily have to be one continuous time interval. Formally, ifC(σ ) = {t ∈
N : Gσ

t is connected} denotes the set of time slots where the graph is connected by
schedule σ , then ntp(σ ) = |C(σ )| is simply the cardinality of C(σ ). Second, there
can be a time slot t , where Gσ

t is connected and contains more edges than a spanning
tree, that is, the set of active edges contains a cycle. By our definition, such a time slot
also increases ntp(σ ) by one. At first glance, it seems like these are important details
in the definition of ntp(σ ). However, this is not the case – the next lemma shows that
one can always assume without loss of generality that an optimal schedule connects
the graph for a continuous time interval and does so by using only spanning trees.

2.2 Further Definitions

Throughout the paper, we investigate the (parameterized) complexity of non-
preemptive tree packing with respect to different graph classes and structural graph
parameters.

The treewidth of a graph is a popular parameter in the area of parameterized algo-
rithms and measures in some sense how close the graph is to a tree. It can be defined
as the minimum integer k > 0 such that G is subgraph of a k-tree [4]. A k-tree is
constructed by starting with a (k + 1)-clique and then repeatedly connecting a new
vertex to all vertices of an existing k-clique. Two popular subclasses of treewidth-2
graphs are series-parallel graphs and outerplanar graphs. An undirected graph G is
series-parallel, if there exist two vertices s, t in G, such that G has a series-parallel
decomposition with respect to the source s and the sink t (see for example [4, p. 22]
for details). A graph is outerplanar if it has a planar drawing where all the vertices
belong to the outer face. Every outerplanar graph is subgraph of a series-parallel graph
[4]. The bandwidth of a graph is the minimum width of a linear arrangement, where
a linear arrangement of a graph is a labeling which assigns to each vertex v a distinct
integer f (v) and thewidth of a linear arrangement ismax{| f (v)− f (u)| : {u, v} ∈ E}.
Graphs of bandwidth 2 are outerplanar.

A problem is strongly NP-hard if it is NP-hard even if all its numerical parameters
are bounded by a polynomial (see Garey and Johnson [11]). For an introduction to
parameterized complexity and formal definitions of those concepts we refer the reader
to the book of Cygan et al. [9]. Amatroid is a pair (E,F), where E is a finite set called
the ground set and F is a family of subsets of E with the following properties: (i) We
have ∅ ∈ F . (ii) For all F ∈ F and F ′ ⊆ F we have F ′ ∈ F . (iii) For all F, F ′ ∈ F
such that |F ′| < |F |, there exists an element e ∈ F − F ′ such that F ′ ∪ {e} ∈ F .
The sets in F are called independent and a maximal independent set is called a base.
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An important class of matroids are the graphical matroids, where E is the edge set of
some graph and a set F ⊆ E of edges is independent if it does not induce a cycle. The
bases in a graphical matroid correspond exactly to the spanning trees of the graph.

2.3 General Insights

Lemma 1 For every instance (G, w)ofN- TreePackwithntp(G, w) = β, there exists
an optimal schedule σ which makes the graph connected for the first β consecutive
time slots (that is C(σ ) = {1, . . . , β}) and additionally the graphs Gσ

1 , . . . ,Gσ
β are

spanning trees.

Proof Let G = (V , E). We proceed in two steps: First, we prove that one can always
make the schedule connected, then we prove that one can always turn the graphs
Gσ

1 , . . . ,Gσ
β into spanning trees.

For the first step, assume that σ : E → N0 is an optimal schedule with ntp(σ ) = β,
but σ is not connected during all of the first β time slots, that is C(σ ) 
= {1, . . . , β}.
Then let s be the smallest integer for which Gσ

s is disconnected. This corresponds to
the s-th time slot [s − 1, s]. By our assumption we have 1 ≤ s ≤ β. We now partition
the edge set E into two sets. The set EA contains all edges e with σ(e) < s − 1 and
the set EB contains all edges e with σ(e) ≥ s − 1. Now consider the new schedule σ ′
defined by

σ ′(e) =
{

σ(e) ; if e ∈ EA

σ(e) − 1 ; if e ∈ EB .

In other words, σ ′ is created from σ by scheduling all edges of EB one time unit earlier.
Because the edges in EA connect the graph in σ for all time slots 1, . . . , s − 1, we
immediately see that also all the graphs Gσ ′

1 , . . . ,Gσ ′
s−1 are connected. Furthermore,

for every t ≥ s, we claim that Eσ ′
t ⊇ Eσ

t+1. Indeed, if some edge e is contained in
Eσ
t+1, then there are two cases: If e ∈ EB , then it is scheduled one time unit earlier

in the schedule σ ′ and hence it is also contained in Eσ ′
t . In the other case, if e ∈ EA,

then by definition we have σ(e) < s − 1. But together with the assumption e ∈ Eσ
t+1,

nonpreemptiveness implies that e ∈ Eσ
t . Because σ(e) = σ ′(e)we also have e ∈ Eσ ′

t .
This proves the claim. In total, we have that if Gσ

t+1 is conneted, then so is G
σ ′
t for all

t ≥ s. This proves that ntp(σ ′) ≥ ntp(σ ). If the new schedule σ ′ still does not connect
the graph for the first continuous β time slots, we can again repeat this procedure,
until we arrive at a schedule with the desired property.

For the second step, assume thatσ is a schedulewhich already connects the graph for
the first β time slots (that isC(σ ) = {1, . . . , β}), but not all of the graphs Gσ

1 , . . . ,Gσ
β

are spanning trees. Then let s be the smallest integer such that Gσ
s contains a cycle.

Because Gσ
s−1 does not contain a cycle, there is some edge e� on the cycle, which

is activated for the first time in the s-th time slot [s − 1, s], that is σ(e�) = s − 1.
Consider the new schedule σ ′ which results from σ by scheduling the edge e� one time
unit later, that is σ ′(e�) = σ(e�)+ 1 and σ ′(e) = σ(e) for all other edges. Because e�

was closing a cycle in Gσ
s , we have that G

σ ′
s = Gσ

s − e� is still connected. Because
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the only change in the new schedule σ ′ in comparison to the old schedule σ is that we
increased the activation time of e� by one, we obtain that ntp(σ ′) ≥ ntp(σ ).

In summary, the preceding argument shows that if we select a schedule σ with
the property that

∑
e∈E σ(e) is maximal among all the schedules that keep the graph

connected for the first consecutive β time units, then all the graphs Gσ
1 , . . . ,Gσ

β are
spanning trees. This proves the lemma. �


The ideas presented in Lemma 1 also provide a formal proof that the problem N-
TreePack is indeed a nonpreemptive variant ofNash-Williams’ tree packing problem.
Indeed, consider the problem of keeping the weighted graph (G, w) connected, but
in the case where edge preemption is allowed. We claim this problem is equivalent
to Nash-Williams’ tree packing problem. Indeed, if (T1, . . . , Tβ) is a sequence of β

spanning trees, then we can schedule in the i-th time slot exactly the edges of the i-th
tree Ti (this is feasible, since preemption is allowed). On the other hand, if we can
find a schedule that keeps the graph connected for β time units, we can in the same
manner as in the proof of Lemma 1 transform the schedule in such a way that all the
graphs given by the active edges in the first β time slots are spanning trees. Therefore,
it is possible to pack β spanning trees.

3 NP-Hardness

In this section, we establish the NP-hardness of problem N- TreePack for certain
families of highly restricted graphs (Fig. 3). All proofs are done by reductions from
the strongly NP-hard 3- Partition problem; see Garey & Johnson [11].

Problem 3- Partition:
Instance: Positive integers q1, . . . , q3n with sum

∑3n
i=1 qi = nQ that satisfy

Q/4 < qi < Q/2 for all i .
Question: Is there a partition of these 3n numbers into n into triplets, such that
the numbers in every triplet sum up to Q?

In the following,we show thatN- TreePack is stronglyNP-hard for complete bipartite
graphs K2,� (Theorem 1). As the graph K2,� has unbounded bandwidth, one could
hope that the problem becomes easy for graphs of bandwidth 2. But as we show
in Theorem 2, also in this case the problem stays strongly NP-hard. As the graph

Fig. 3 A complete bipartite graph K2,� and a graph of bandwidth 2. Problem N- TreePack is NP-hard
even on these simple graphs
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K2,� is series-parallel and bandwidth-2 graphs are outerplanar, it follows that problem
N- TreePack is intractable even on popular subclasses of treewidth-2 graphs.

Theorem 1 Problem N- TreePack is strongly NP-hard, even on complete bipartite
graphs K2,�.

Proof Let q1, . . . , q3n be an instance of 3- Partition as defined above. Let β =
nQ+n−1.We construct an instance ofN- TreePack on the complete bipartite graph
K2,4n−1 with bipartition {a, b} and {x1, . . . , xn−1, y1, . . . , y3n}. For i ∈ {1, . . . , n−1},
we setw({xi , a}) = i(Q+1) andw({xi , b}) = (n−i)(Q+1). For i ∈ {1, . . . , 3n}, we
set w({yi , a}) = qi and w({yi , b}) = β. We claim that the constructed instance of N-
TreePack possesses a schedule with objective value β, if and only if the underlying
3- Partition instance has answer YES.

(Only if) Assume that for the constructed N- TreePack instance there exists a
schedule σ with objective value β. Note that for every i ∈ {1, . . . , n − 1}, we have
w({xi , a}) + w({xi , b}) = β + 1. Hence the sum of all the edge weights in the graph
is (n−1)(β +1)+3nβ + (β −n+1) = 4βn. As every spanning tree for K2,4n−1 has
4n edges, each of the connected graphs G1, . . . ,Gβ must have exactly 4n edges (and
must actually be a spanning tree). The fact that the sum of all edge weights is 4βn
furthermore implies that the activity interval of every edge is contained in [0, β]. Now
consider some vertex xi with i ∈ {1, . . . , n−1}. Sincew({xi , a})+w({xi , b}) = β+1,
there is exactly one k ∈ {1, . . . , β} so that the edge set Ek contains both edges incident
to vertex xi . Because there are only two possibilities for the two activity intervals of
length w({xi , a}) = i(Q + 1) and w({xi , b}) = (n − i)(Q + 1) to cover the whole
interval [0, β], we see that either k = i(Q + 1) or k = (n − i)(Q + 1) holds, and we
say that this value k is associated with vertex xi . If some value k is associated with
two distinct vertices xi and x j , then Gk contains a cycle; a contradiction. We conclude
that each of the values k ∈ {Q + 1, 2(Q + 1), . . . , (n − 1)(Q + 1)} is associated with
exactly one of the vertices x1, . . . , xn−1. This means that for the corresponding time
slots [k−1, k], vertex a is connected to vertex b via the two edges that are incident to the
associated vertex xi . The remaining β − n + 1 time slots form n (maximal) intervals
each of length Q. It is easily verified that during each such interval exactly three
vertices yi , y j , y� ensure the connection between a and b, and that the weights of the
three edges {yi , a}, {y j , a}, {y�, a} satisfy qi +q j +q� = Q. Hence the corresponding
triplets form a solution for the 3- Partition instance.

(If) Now assume that the 3- Partition instance has a solution. For 1 ≤ i ≤ n − 1,
we activate edge {xi , a} at time 0 and edge {xi , b} at time i(Q+1)−1. For 1 ≤ i ≤ n,
we activate edge {yi , b} at time 0; finally, the edges {yi , a} are grouped into triplets
according to the solution of the 3- Partition instance and scheduled as indicated in
the proof of the (only if) part. �

Theorem 2 Problem N- TreePack is strongly NP-hard, even on graphs of band-
width 2.

Proof Let q1, . . . , q3n be an instance of 3- Partition as defined above. We construct
an instance of N- TreePack as follows. The graph G has 4n + 1 vertices u0, . . . , un
and v1, . . . , v3n . We will sometimes denote vertex uk also by the name vk−n , for
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1 ≤ k ≤ n + 1; in particular we use un = v0 and un−1 = v−1. Furthermore we define
β = (2n − 1)Q.

– For k = 0, . . . , n − 1, the edge {uk, uk+1} receives weight w({uk, uk+1}) =
2(n − k − 1)Q.

– For k = 0, . . . , n − 2, the edge {uk, uk+2} receives weight w({uk, uk+2}) =
2(k + 1)Q.

– For k = 1, . . . , 3n, the edge {vk−1, vk} has weight w({vk−1, vk}) = qk .
– For k = −1, . . . , 3n − 2, the edge {vk, vk+2} has weight w({vk, vk+2}) = β.

In the ordering u0, u1, . . . , un, v1, v2, . . . , v3n , every edge either connects two adja-
cent vertices or two vertices at distance 2. Hence, the constructed graph G = (V , E)

has bandwidth 2.
We will study schedules σ of objective value β. As the sum of all edge weights in

G equals β(|V |−1), each of the graphs Gσ
1 , . . .Gσ

β is a spanning tree and the activity
interval of every edge is contained in [0, β]. We will discuss the behavior of σ on the
induced subgraph Hi = G[{u0, . . . , ui }] for 1 ≤ i ≤ n. Since the only connections
between Hi and the rest of the graph are via the two vertices ui−1 and ui , during any
time slot [t − 1, t] with 1 ≤ t ≤ β, graph Hi will consist of one or two connected
components under schedule σ . If there is a single connected component, we say that
Hi is fully-connected during the t-th time slot. If there are two connected components
(one containing vertex ui−1, the other one containing vertex ui ), we say that Hi is
semi-connected during the t-th time slot. Note that if Hi is semi-connected during the
t-th time slot, then the edge {ui−1, ui+1} must be active during that slot, as there are
no other edges that would be able to connect the component containing ui−1 to the
rest of the graph.

The graph H1 consists of the vertices u0 and u1 and of the edge {u0, u1} of weight
(2n − 2)Q. Suppose for the sake of contradiction that H1 is neither fully-connected
during the first time slot nor during the β-th time slot. Then the edge {u0, u2} (of value
2Q) must be contained both in E1 and in Eβ , which is impossible. By symmetry,
we will henceforth assume that under schedule σ the graph G1 is fully-connected
during the β-th time slot. This implies that {u0, u1} is active during [Q, β] and that
{u0, u2} is active during [0, 2Q]. For graph Hi (with 1 ≤ i ≤ n) one can show
by induction that Hi is semi-connected during the time intervals [0, Q], [2Q, 3Q],
…, [(2i − 2)Q, (2i − 1)Q] and fully-connected at all other moments in [0, β]. The
induction uses the following facts and observations on the two edges {ui−2, ui } and
{ui−1, ui } that are in Hi but not in Hi−1:

– Graph Hi is semi-connected during the first time slot: By the inductive hypothesis
we have Hi−1 semi-connected during the first time slot. If Hi would be fully-
connected during the first time slot, wewould getσ({ui−2, ui }) = σ({ui−1, ui }) =
0. Since all involved edges have weight w(e) > Q, this yields a cycle at time
t = Q + 1 as the desired contradiction.

– Since graph Hi−1 is semi-connected at time 0, the edge {ui−2, ui } must be active
at time 0 and hence must be active during [0, (2i − 2)Q].

– Graph Hi is fully-connected during the β-th time slot: Otherwise, Hi is fully-
connected neither during the first time slot nor during the β-th time slot. Then the
edge {ui−1, ui+1} would have to be active for β time units.
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– Since Hi is fully-connected during the β-th time slot, the edge {ui−1, ui } must
be active during the β-th time slot, and hence must be active during the interval
[(2i − 1)Q, β].

The induction yields for i = n that the induced subgraph Hn is semi-connected during
the time intervals [0, Q], [2Q, 3Q],…, [(2n−2)Q, (2n−1)Q] (that is, all the intervals
of length Q that start at an even multiple of Q) and fully-connected during the time
intervals [Q, 2Q], [3Q, 4Q], …, [(2n − 3)Q, (2n − 2)Q] (that is, all the intervals of
length Q that start at an odd multiple of Q).

Next, consider the subgraph G ′ that is induced by the 3n + 2 vertices v−1 = un−1,
v0 = un and v1, . . . , v3n . As the edges {vk, vk+2} with k = −1, . . . , 3n − 2 all have
value β, there is an active path P0 through the vertices with even index during the full
interval [0, β] and there is an active path P1 through the vertices with odd index during
[0, β]. By the above discussion, graph Hn connects these two paths P0 and P1 to each
other during the time intervals [Q, 2Q], [3Q, Q4], …, [(2n − 3)Q, (2n − 2)Q]. The
only way for connecting P0 and P1 to each other during the remaining time intervals
[0, Q], [2Q, 3Q], …, [(2n − 2)Q, (2n − 1)Q] is by using the edges {vk−1, vk} with
k = 1, . . . , 3n of weight qk . As this groups the numbers q1, . . . , q3n into n groups
with sum Q, we get a solution for the instance of 3- Partition.

Vice versa, if the 3- Partition instance has a solution, thenwe build a schedule σ of
objective value β: For k = 0, . . . , n−1, we activate edge {uk, uk+1} at time (2k+1)Q.
For k = 0, . . . , n− 2, we activate edge {uk, uk+2} at time 0. For k = −1, . . . , 3n− 2,
we activate edge {vk, vk+2} at time 0. Finally, the edges {vk−1, vk} are grouped into
triplets and scheduled as described in the other direction of the proof. �


4 A Negative Result for Objective Value Seven

In this section, we show that it is NP-hard to decide whether there exists a schedule of
objective value at least 7. The reduction is from the following version of the Hamilton
cycle problem; see Akiyama, Nishizeki & Saito [2]

Problem Hamilton- 3- reg
Instance: A bipartite, 3-regular graph H ′.
Question: Does H ′ possess a Hamilton cycle?

The reduction is done in two steps. The first step transforms an instance H ′ of
Hamilton- 3- reg into a new 4-regular graph H with the properties described in
Lemma 2. The second step then transforms the 4-regular graph H from Lemma 2 into
a corresponding instance of problem N- TreePack.

Lemma 2 There is a polynomial time algorithm that takes an instance H ′ of
Hamilton- 3- reg as input and outputs a 4-regular bipartite graph H together with
an edge {u, z} ∈ E(H) (which we call the special edge), so that the following holds:

(i) If H ′ is a YES-instance of Hamilton- 3- reg, then the new graph H contains a
Hamilton cycle that traverses the special edge {u, z}.

(ii) If H ′ is a NO-instance ofHamilton- 3- reg, then the new graph H has no Hamil-
ton path starting in vertex u.
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Fig. 4 Construction used in the proof of Lemma 2

Proof The reduction is sketched in Fig. 4. Let H ′ = (V , E). The algorithm chooses
some arbitrary vertex x ∈ V . The graph H then consists out of the following parts:
There are two copies of H ′, called H ′

1 and H ′
2 respectively. For each vertex v ∈ V , we

denote by v1 its copy in H ′
1 and by v2 its copy in H ′

2. For each vertex v ∈ V −{x}, we
take a copy Av of K4,4, remove some edge {u1, u2} from Av , and add edges {v1, u1}
and {u2, v2}. Finally, we take two copies Ax and A′

x of K4,4, remove an edge {u1, u2}
from Ax and an edge {u′

1, u
′
2} from A′

x , add edges {x1, u1}, {u2, u′
1}, {u′

2, x2}. The
special edge is given by {u, z} with u := u2, and z := u′

1. Clearly, H is bipartite and
4-regular, so it remains to prove claims (i) and (ii).

For claim (i), assume that H ′ has a Hamilton cycle C ′. Then we obtain a Hamilton
cycle C in H using the edge {u, z} in the following fashion: We start at the vertex u,
and traverse all the vertices of Ax in such an order that we can proceed to go to x1
afterwards. Now we follow the edges of the cycle C ′, switching alternatingly between
H ′
1 and H ′

2 after each edge. Precisely, whenever we follow an edge of C ′ to encounter
a new vertex v1 in H ′

1 (v2 in H ′
2, respectively), we traverse all the vertices of Av and

go to v2 (v1, respectively) and then follow the next edge of C ′. Because the graph H ′
has an even number of vertices (it is bipartite and 3-regular), we will end up at x2. We
then complete the tour by traversing all vertices of A′

x and going along the edge {u, z}
at the end. This describes a Hamilton cycle of H which uses the edge {u, z}.

For claim (ii), we prove the contrapositive. Assume that H has a Hamilton path
P = (w1, . . . , wn) starting at vertex u, we have to prove that H ′ has a Hamilton cycle.
Consider the second vertex w2 on the path P . Note that if w2 = z, then wn is in Ax .
On the other hand, if w2 is in Ax , then wn is in A′

x . We first assume that w2 ∈ Ax

and wn ∈ A′
x . We claim that the Hamilton path P necessarily switches between H ′

1
and H ′

2 after every of its edges in H ′
1 or H

′
2. Indeed, let v 
= x be a vertex of H ′ and
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Fig. 5 Sketch of the
N- TreePack instance (G, w)

obtained from the 4-regular
bipartite graph H

assume without loss of generality that from the two vertices v1 and v2 the path P first
encounters v1. If the path does not immediately switch to v2, then it will at a later stage
need to visit v2. But in this case, it has to visit Av after visiting v2, in contradiction
to the fact that the path has to return to A′

x . This proves that P switches between H ′
1

and H ′
2 after every egde in H ′

1 or H
′
2. Then looking at the edges of P which lie in H ′

1
or H ′

2, we see that H
′ has a Hamilton cycle. Finally, an analogous statement holds in

the case w2 = z. So we have proven the claim. �

Now let H be a 4-regular bipartite graph as described in Lemma 2. Let U =

{u1, . . . , uk} and Z = {z1, . . . , zk} denote the two parts in the bipartition of H , and
let {uk, zk} be its special edge. We create an instance (G, w) of N- TreePack from
H . An informal sketch of this instance (G, w) is depicted in Fig. 5. Formally, it is
described the following way: The graph G has the vertex set

V (G) = {x, y} ∪U ∪ Z ∪
k⋃

i=1

{vi1, . . . , vi4} ∪
k⋃

i=1

{v′
i1, v

′
i2}.

Furthermore, the graph G has the following edges and edge weights:

– Between the vertex sets U and Z , the graph G has exactly the same edges as
the graph H . For every such edge e, we set w(e) = 2, if e 
= {uk, zk} and
w({uk, zk}) = 1.

– For every i = 1, . . . , k, the induced subgraph Li = G[{x, ui , vi1, vi2, vi3, vi4}]
is called the i-th gadget of type L and has edges and edge weights as depicted in
Fig. 6.

– For every i = 1, . . . , k, the induced subgraph Ri = G[{x, zi , v′
i1, v

′
i2}] is called

the i-th gadget of type R and has edges and edge weights as depicted in Fig. 6.
– Finally, the two edges {x, y} and {y, zk} have w({x, y}) = w({y, zk}) = 4. The
induced subgraph G[{x, y, zk}] is called the gadget C .
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Fig. 6 Gadget of type L (on the left) and gadget of type R (on the right)

Now assume that (G, w) allows some schedule σ of objective value 7. During any
time slot [t − 1, t] with 1 ≤ t ≤ 7, the i-th gadget of type L will consist of either
one or two connected components under schedule σ . If there is a single connected
component, we say that Li is fully-connected during the t-th time slot. If there are
two connected components (one containing x , and one containing ui ), we say that Li

is semi-connected during the t-th time slot. In the same manner, during the t-th time
slot, gadget Ri is either fully-connected or semi-connected with x and zi in different
components. Likewise, the gadgetC is either fully-connected, or semi-connected with
x and zk in different components.

Lemma 3 Let (G, w) be the instance described above. Every schedule of objective
value 7 for (G, w) satisfies the following.

(i) A gadget of type R is fully-connected during time slots 2 and 6, and semi-connected
during each of the remaining five time slots.

(ii) For each i = 1, . . . , k, there are t1, t2 ∈ {1, 2, 4, 6, 7} with t1 
= t2, such that
the gadget Li is fully-connected during time slots 3, 5, t1, t2, and semi-connected
during each of the remaining three time slots.

(iii) The gadget C is fully-connected during time slot 4, and semi-connected during
each of the remaining six time slots.

Proof Note that the sum of all edgeweights inG is 8k−1+32k+16k+8 = 56k+7 =
7(8k + 1) = 7(|V (G)| − 1). This implies that each of the graphs G1, . . . ,G7 is a tree
(in particular, it is acyclic) and that the activity interval of each edge is contained in
[0, β]. For the proof of (i), consider the vertex v′

i1 in the gadget Ri . There is exactly
one time slot [t −1, t] during which both edges incident to v′

i1 are active, and we have
t = 2 or t = 6. Analogously, there is exactly one time slot [t ′ − 1, t ′] during which
both edges incident to the vertex v′

i2 are active, and we have t ′ = 2 or t ′ = 6. As
t = t ′ yields the contradiction that Gt has a cycle, we conclude {t, t ′} = {2, 6} and (i)
follows. Claims (ii) and (iii) can be proven in the same manner. �

Lemma 4 Let the graph H and the special edge {u, z} be as described in Lemma 2,
and let (G, w) be the correspondingN- TreePack instance. If H contains a Hamilton
cycle which uses the special edge, then ntp(G, w) ≥ 7.
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Table 1 Description of the
schedule σ from Lemma 4

time slot
1 2 3 4 5 6 7

R R

L L L L

C

M1 M1 − {e0}
M2 M2

M3 M3

M4 M4

Proof Let e0 = {u, z} = {uk, zk} be the special edge. There is a Hamilton cycle W
using e0. Then the graph H − E(W ) is 2-regular, hence there exist pairwise disjoint
matchings M1, . . . , M4 such that M1 ∪̇ M2 = E(W ) and M3 ∪̇ M4 = E(H) − E(W )

and e0 ∈ M1. We describe a schedule σ with objective value 7:

– All gadgets of type R are fully-connected during time slots 2 and 6, and semi-
connected otherwise.

– All gadgets of type L are fully-connected during time slots 1, 3, 5, and 7, and
semi-connected otherwise.

– The gadgetC is fully-connected during time slot 4, and semi-connected otherwise.
– All edges e ∈ M1 − {e0} have activity interval [2, 4]. The edge e0 has activity
interval [2, 3].

– All edges e ∈ M2 have activity interval [3, 5].
– All edges e ∈ M3 have activity interval [0, 2].
– All edges e ∈ M4 have activity interval [5, 7].

It is easy to see that a schedule σ with these properties does indeed exist. Table 1
provides a schematic description of the schedule, by indicating for each number t ,
which edges are scheduled and which gadgets are fully connected during the the t-th
time slot [t − 1, t]. Notice that the active edges in H form a matching of H during
the time slots 1,2,3,5,6, and 7, and form a Hamilton path of H during the time slot 4.
By checking each of the cases t = 1, . . . , 7, it is easily seen that each of the graphs
Gσ

1 , . . . ,Gσ
7 is connected. We therefore conclude that ntp(σ ) = 7.

�

Lemma 5 Let the graph H and the special edge {u, z} be as described in Lemma 2,
and let (G, w) be the corresponding N- TreePack instance. If ntp(G, w) ≥ 7, then
H contains a Hamilton path starting at vertex u.

Proof So assume there exists a schedule σ of objective value 7. For a vertex v ∈ U∪Z ,
and t ∈ {1, . . . , 7}, let dt (v) = |δ(v) ∩ E(H) ∩ Et | denote the number of incident
edges of v, which are both in E(H) and active during the t-th time slot. The strategy
of the proof will be to repeatedly deduce some conditions for dt (v). Let e0 = {u, z} =
{uk, zk} be the special edge.

First, recall Lemma 3. Consider vertex zi for some i ∈ {1, . . . , k}. We know that
for each t ∈ {1, 3, 5, 7} in the t-th time slot both the gadget Ri and the gadget C are
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semi-connected. But of course at least one edge incident to zi must be active during
the t-th time slot. Hence d1(zi ), d3(zi ), d5(zi ), d7(zi ) ≥ 1. Note that the four edges
in δ(zi ) ∩ E(H) each have weight at most 2 (in the case i 
= k we have four times
weight 2, and for i = k we have three times weight 2, and w(e0) = 1). For the sake
of contradiction, assume d1(zi ) > 1. Then from the four edges in δ(zi ) ∩ E(H) at
least two are scheduled at time 0. This is a contradiction to d3(zi ), d5(zi ), d7(zi ) ≥ 1.
Hence d1(zi ) = 1. By the same argument, d7(zi ) = 1. A similar argument shows that
e0 /∈ E4.

Next, consider the graph G1 of active edges in the first time slot. We know that
d1(zi ) = 1 for all i = 1, . . . , k. Hence the induced subgraphG1[U ∪ Z ] on 2k vertices
is acyclic, has k edges, and therefore has k connected components. But because G1 is
connected, and because all the gadgets of type R and the gadgetC are semi-connected
during time slot 1, this implies that every single gadget of type L is actually fully-
connected during time slot 1. The same argument holds for time slot 7. In total, together
with Lemma 3, we have that a gadget of type L is fully-connected during the t-th time
slot, if and only if t ∈ {1, 3, 5, 7}. This in turn implies that for all i = 1, . . . , k, one has
d2(ui ), d4(ui ), d6(ui ) ≥ 1. The two facts d2(ui ) ≥ 1 and d6(ui ) ≥ 1 together imply
d4(ui ) ≤ 2. Likewise, for all i = 1, . . . , k, the two facts d1(zi ) = 1 and d7(zi ) = 1
together imply d4(zi ) ≤ 2.

Finally, we claim d4(uk) = 1. In fact, d4(uk) = 0 is impossible, because gadgets
of type L are semi-connected during time slot 4. For the sake of contradiction, assume
d4(uk) > 1.We know that d2(uk) ≥ 1, d6(uk) ≥ 1 and e0 /∈ E4 andw(e0) = 1. So our
assumption d4(uk) > 1 is only possible if e0 ∈ E2 or e0 ∈ E6. But for the vertex zk , we
also know d1(zk), d3(zk), d5(zk), d7(zk) ≥ 1. This is a contradiction to e0 ∈ E2 ∪ E6,
hence our assumption was wrong and d4(uk) = 1. In summary, during time slot 4,
all gadgets of type L and R are semi-connected. We also have for all i = 1, . . . , k
that d4(ui ) ≤ 2 and d4(zi ) ≤ 2. Furthermore, we have d4(uk) = 1. However, G4
is connected. These facts together imply that the induced subgraph G4[U ∪ Z ] is a
Hamilton path in H starting at uk = u. �


By combining Lemmas 2, 4 and 5 we get the following summarizing theorem.

Theorem 3 For N- TreePack it is strongly NP-hard to decide whether there exists a
schedule of objective value at least 7. �


All edge weights in the above reduction are in the set {1, . . . , 7}. A minor modifi-
cation yields the following corollary.

Corollary 1 Problem N- TreePack is strongly NP-hard, even if all edge weights are
in {1, . . . , 6}.
Proof Edges of weight 7 only show up in the gadget of type L . Figure 7 shows a
modified version of this gadget that emulates the edges of weight 7 by edges with
weights in {1, . . . , 6}. One easily verifies that the functionality of the gadget remains
the same and that in particular Lemma 3 still holds true. �


As it is NP-hard to distinguish betweenN- TreePack instanceswith optimal objec-
tive value 6 and N- TreePack instances with optimal objective value 7, we also get
the following in approximability result.
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Fig. 7 The modified version of
the type L gadget without edges
of weight 7

Corollary 2 Unless P=NP, there is no polynomial time approximation algorithm for
N- TreePack with worst case guarantee better than 7/6. �


5 A Positive Result for Objective Value Three

In Sect. 4, we have established the NP-hardness of deciding whether there exists a
schedule of objective value at least 7. As a complementary result, we now show that
it can be decided in polynomial time whether there is a schedule of objective value at
least 3.

Theorem 4 For an instance of N- TreePack on a graph with m edges, it can be
decided in O(m3) time whether ntp(G, w) ≥ 3.

Proof Let G = (V , E). We partition the edge set E into set W1 (edges of weight 1),
set W2 (edges of weight 2), and set W≥3 (edges of weight at least 3). In a schedule of
objective value 3, we may activate all edges in W≥3 at time 0. We interpret an edge
in W2 as a pair of two edges of weight 1: one of these two edges is scheduled during
the middle time slot [1, 2]; the other edge can either be scheduled during slot [0, 1]
or during slot [2, 3]. Edges in W1 are scheduled during one of the three slots [0, 1],
[1, 2], [2, 3].

By Lemma 1, we may assume that in a feasible schedule of length 3 the graphs
(V , Et ) with t = 1, 2, 3 are trees. Let H3 be the graph that results from G after
contracting the edge set W≥3, and let H23 be the graph that results from G after
contracting the edge set W2 ∪ W≥3. We introduce three matroids:

– The matroid F1 has the ground set W1 ∪ W2. A set F ⊆ W1 ∪ W2 is independent
in F1, if and only if F is acyclic in graph H3.

– The matroid F2 has the ground setW1. A set F ⊆ W1 is independent inF2, if and
only if F is acyclic in graph H23.

– The matroid F3 has ground set W1 ∪ W2, and coincides with F1.

Recall that a base of a matroid is a maximal independent set. By construction, the
bases of F1,F2 and F3 have the following properties. (A small technicality we have
to consider is that W2 and W≥3 may contain cycles.)
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– If a set F ⊆ W1 ∪ W2 is independent in the matroid F1, then F is a base of F1
if and only if F induces a spanning tree of H3 if and only if F ∪ W≥3 contains a
spanning tree of G.

– If a set F ⊆ W1 is independent in the matroid F2, then F is a base of F2 if and
only if F induces a spanning tree of H23 if and only if F ∪ W2 ∪ W≥3 contains a
spanning tree of G.

– If a set F ⊆ W1 ∪ W2 is independent in the matroid F3, then F is a base of F3
if and only if F induces a spanning tree of H3 if and only if F ∪ W≥3 contains a
spanning tree of G.

Now observe that scheduling an edge of weight 1 is equivalent to choosing in which
of the three time slots 1,2 or 3 it is scheduled. Scheduling an edge 2 is equivalent to
always schedule it in time slot 2 and choose whether it is scheduled in time slot 1 or
3. From these facts together with Lemma 1, we can deduce that we can connect the
graph during time slots 1,2 and 3 (that is ntp(G, w) ≥ 3 holds), if and only if there
exist three pairwise disjoint subsets S1, S2, S3 ofW1∪W2, such that St forms a base of
the matroidFt for t = 1, 2, 3. This can be checked inO(m3) time by using Edmond’s
matroid partitioning algorithm [10]. �


By a similar (but simpler) argument we can also decide in polynomial time whether
ntp(G, w) ≥ 2.Decidingwhether ntp(G, w) ≥ 1 is trivial. The complexity of deciding
whether ntp(G, w) ≥ β remains open for β ∈ {4, 5, 6}.

6 The Greedy Algorithm

We introduce a greedy algorithm that maintains connectivity by always activating
edges of the largest possible weight. Formally, we let Ft ⊆ Et denote the set of edges
whose activity intervals end at time t . By Ut = E − (E1 ∪ E2 ∪ · · · ∪ Et ) we denote
the set of edges that have not been used and activated before time t .

Now the Greedy algorithm starts its work by initializing E0 := ∅, F0 := ∅, and
U0 := E . For t ≥ 0, the set Et+1 for time slot [t, t + 1] is computed as follows. If the
graph (V , Et − Ft ) is a tree, we set Et+1 := Et . If the graph (V , Et − Ft ) is a forest
with c components, we turn it into a tree by adding a maximum weight subset A ⊆ Ut

of cardinality c − 1; then we set Et+1 := (Et − Ft ) ∪ A. In case no such set A exists,
theGreedy algorithm terminates. (The set A can be computed for instance by applying
Kruskal’s algorithm for maximum spanning trees; ties are broken arbitrarily.)

Theorem 5 For every graph G = (V , E) on n vertices and for every w : E → N0,
the Greedy algorithm computes a schedule of length at least ntp(G, w)/(n − 1).
Furthermore, there exist instances on which the schedule computed by the Greedy
algorithm is a factor �n/2� below the optimal objective value.

Proof For the positive result, we consider the time slot [T , T + 1] at which Greedy
terminates. Then the graph (V , (ET − FT ) ∪ UT ) is not connected. We consider the
vertex set C ⊆ V of one of the components of that graph, and the corresponding edge
cut δ(C). Then the weight w(δ(C)) = ∑

e∈δ(C) w(e) yields a trivial upper bound for
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the optimal objective value:

ntp(G, w) ≤ w(δ(C)) (1)

Since every edge set E j with 1 ≤ j ≤ T induces a tree, we have |E j | = n − 1 and
hence |E j ∩ δ(C)| ≤ n − 1. As all edges in the cut δ(C) have been activated and run
to completion before the time slot [T , T + 1], we conclude T ≥ w(δ(C))/(n − 1),
which together with (1) yields the desired approximation guarantee.

For the negative result, we consider the complete graph Kn = (V , E) on n vertices
with weights w(e) = 1 for all e ∈ E . A folklore result (see for instance Palmer [17])
says that the maximum number of edge-disjoint spanning trees that can be packed
into Kn is �n/2�. This implies ntp(Kn, w) = �n/2�. On the other hand, if the Greedy
algorithm at time 0 activates the n − 1 edges in the edge cut δ(v) for some v ∈ V , the
objective value of the resulting schedule equals 1. �

Theorem 6 For every connected graph G = (V , E), the following two statements are
equivalent.

(i) G is a cactus graph.
(ii) For every choice w : E → N0 of edge weights, the Greedy algorithm solves the

N- TreePack instance (G, w) to optimality.

Proof We first show that (i) implies (ii). Since cut-vertices split an N- TreePack
instance into smaller instances that do not interact with each other, it is sufficient to
prove the statement for two-connected cactus graphs. Hence we will assume that G
is a cycle on n vertices, and we let e1, . . . , en denote the edges in the cycle ordered
by increasing weight so that w(e1) ≤ w(e2) ≤ · · · ≤ w(en). It is easily seen that the
optimal objective value for (G, w) equals min{w(e1)+w(e2), w(e3)}. As the Greedy
algorithm activates the n − 1 edges e2, . . . , en at time 0 and activates the final edge e1
at time w(e2), it yields the optimal objective value.

In order to show that (ii) implies (i),wefirst consider the graph H on the four vertices
v1, v2, v3, v4 and the edge weights wH depicted in Fig. 8. As the Greedy algorithm at
time0 activates the three edges {v1, v2}, {v1, v4}, {v3, v4} (that carry theweights 3, 2, 2,
respectively), at time 2 there remains no further possibility of connecting vertex v4 to
the rest of the graph; hence Greedy generates a schedule of value 2. On the other hand,
the optimal schedule results by activating the three edges {v1, v2}, {v1, v3}, {v3, v4} at

Fig. 8 An instance (H , wH ) on
which the Greedy algorithm
fails
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time 0, by activating edge {v1, v4} at time 1, and by activating edge {v2, v3} at time 2;
the corresponding optimal objective value is ntp(H , wH ) = 3. Hence Greedy fails to
solve this instance (H , wH ) to optimality.

Now let G = (V , E) be an arbitrary connected graph that is not a cactus. This
implies that G does contain a subdivision (V ′, E ′) of the four-vertex graph H =
(VH , EH ) in Fig. 8. Let E ′′ ⊆ E be a subset of cardinality |V − V ′|, so that the
graph (V , E ′ ∪ E ′′) is connected. We construct edge weights w : E → N0 as follows.
For every edge e /∈ E ′ ∪ E ′′ we set w(e) = 0, and for every edge e ∈ E ′′ we set
w(e) = 3. Finally, we fix the weightsw(e) of the edges e ∈ E ′ so that they emulate the
weights wH : EH → N0 in the four-vertex graph H ; if an edge e ∈ E ′ belongs to the
subdivision of some edge f ∈ EH , we define w(e) = wH ( f ). It is easily verified that
the resulting instance (G, w) satisfies ntp(G, w) = 3, whereas the Greedy algorithm
only yields an objective value of 2. �


7 Parameterized Complexity

In this section, we show that problem N- TreePack is fixed parameter tractable
with respect to various parameters. As the problem is already NP-hard even for
highly restricted graphs, we can only hope for positive parameterized complexity
results for quite restricitive graph parameters, or when additionally the edge weights
are restricted. Note that Theorems 1 and 3 imply the NP-hardness of problem N-
TreePack, even if either the treewidth or the edge weights are bounded by a constant.

Theorem 7 ProblemN- TreePack is fixed parameter tractablewith respect towmax+
t , where wmax is the maximum edge weight and t the treewidth of the input graph.

Proof As the graph G = (V , E) has treewidth t , there is a vertex v ∈ V of degree at
most t (here we use the property that G is a simple graph, that is, it has no parallel
edges.).As every edge incident to v hasweight atmostwmax,we conclude ntp(G, w) ≤
w2
max. For every T = 1, . . . , w2

max, we construct a formula �T in monadic second-
order graph logic MSO2, so that �T is satisfiable if and only if there exists a schedule
of objective value at least T . We introduce Boolean variables xe,t for every e ∈ E
and every t ∈ {1, . . . , T } to denote whether e ∈ Et . The following statement can be
formulated in MSO2 by routine methods (see for example [9, chapter 7.4]):

∃σ : E → {0, . . . ,T } ∀e ∈ E ∀t ∈ {1, . . . , T } :
xe,t ⇐⇒ (σ (e) < t ≤ σ(e) + w(e))

∧ ∀t ∈ {1, . . . , T } : {e ∈ E | xe,t } is a spanning tree.

Now Courcelle’s theorem [7] implies that the satisfiability of �T can be checked in
linear time for every T = 1, . . . , w2

max. �

Theorem 8 On input graphs G = (V , E), problemN- TreePack is solvable in expo-
nential time O(|E |2 · |E |!).
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Proof By Lemma 1, we may assume that in an optimal schedule σ of length T all
graphs Gσ

1 , . . . ,Gσ
T are trees. As these trees are uniquely determined by the ordering

in which σ activates the edges, we only need to check and evaluate |E |! cases. Each
case is easily checked and evaluated in O(|E |2) time. �

Theorem 9 Problem N- TreePack is fixed parameter tractable with respect to the
size k of a feedback edge set. There is a kernel with O(k) vertices and edges.

Proof Note that the input graph G = (V , E) satisfies |E | ≤ |V | − 1 + k. We first
prove an auxiliary observation on the largest edge weightwmax in the graph: We claim
that |V | ≥ k + 2 implies ntp(G, w) ≤ wmax. Consider an optimal schedule as in
Lemma 1, so that |E1| = |V | − 1. As every edge in E1 is certainly inactive from time
wmax onwards, there remain at most |E |− |E1| = |E |− |V | + 1 ≤ k edges that could
become active during the next time slot [wmax, wmax +1]. As a spanning tree needs at
least |V | − 1 ≥ k + 1 edges, this proves the auxiliary observation. As a consequence
we get that in an optimal schedule an edge with weightwmax without loss of generality
may be activated at time 0.

Now the kernelization procedure is clear: As long as |V | ≥ k+2 holds, we contract
an edge with largest edge weight. Note that the contraction maintains the inequality
|E | ≤ |V | − 1 + k. The resulting kernel satisfies |V | ≤ k + 1 and |E | ≤ 2k. �


The last theorem of this section shows that problem N- TreePack is tractable on
instances that in a certain sense are close to the preemptive tree packing problem of
Nash-Williams.

Theorem 10 Let (G, w) be an instance of N- TreePack on m edges, so that m − k
edges have weight 1 and the remaining k edges have weight at most k. Then an optimal
solution can be found in O(k2km3) time.

Proof Let E ′ = {e ∈ E : w(e) 
= 1}. For a schedule σ of objective value T , we
denote by Dσ = {t : Eσ

t ∩ E ′ 
= ∅} the set of time slots [t − 1, t] during which at
least one edge of E ′ is active. For every t ≤ T with t /∈ Dσ , graph Gt = (V , Et ) is
a connected graph in which all edges have weight 1. For each such t with t /∈ Dσ ,
we introduce another schedule π , where the edge set Et is scheduled in the last time
slot [T − 1, T ] instead of the t-th time slot, and all edges activated during [t, T ] are
activated one time unit earlier instead. Formally, schedule π is such that

(Gπ
1 , . . . ,Gπ

T ) = (Gσ
1 , . . .Gσ

t−1,G
σ
t+1, . . . ,G

σ
T ,Gσ

t ).

Observe that π is also a schedule of objective value T . By repeating this procedure
often enough, we conclude that there always exists an optimal schedule σ so that Dσ ⊆
{1, . . . , k2}. Due to Lemma 1, we can additionally require that each of G1, . . . ,GT is
acyclic.

Therefore, the following is an algorithm to solve problem N- TreePack: Iterate
over all possible k2k choices of (σ (e))e∈E ′ ∈ {1, . . . , k2}k . For each fixed choice, the
only edges left to schedule are edges of weight one. This can be done optimally the
following way: For t = 1, . . . , k2, let Wt = {e ∈ E ′ : σ(e) < t ≤ σ(e) + w(e)}
be the set of edges in E ′, which are active during the t-th time slot. If some Wt has
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a cycle, we immediately skip to the next choice of (σ (e))e∈E ′ . Otherwise, consider
the matroid Ft = {F ⊆ E(G) − E ′ : Wt ∪ F is acyclic}. We extend the definition
of Ft to t > k2 by setting Wt = ∅ in this case. The matroid Ft is isomorphic to the
graphic matroid of G after contracting each connected component of Wt to a single
vertex. Now we run Edmond’s Matroid Partitioning algorithm [10] to determine the
maximal T ′ ∈ N0 such that E(G) − E ′ contains disjoint sets F1, . . . , FT ′ such that
Ft is a base of Ft for all t ∈ {1, . . . , T ′} (that is, we solve the problem of packing as
many bases as possible into a matroid). As Edmond’s Matroid Partitioning algorithm
runs in O(m3) time, the claimed time complexity follows. �


8 Conclusion

We have analyzed the computational complexity and the algorithmic behavior of non-
preemptive tree packing. The problem is strongly NP-hard even on highly structured
and extremely simple graph classes, and we only have a handful of positive results.

There remain many open questions. (Q1) We have shown that N- TreePack can
be approximated in polynomial time within a factor of n − 1, and that no approxima-
tion factor better than 7/6 is possible (unless P=NP). Where is the true approximation
threshold? In particular, we would like to know whether our problem allows a polyno-
mial time approximation algorithm with some constant worst case guarantee. A major
step towards an answer might be the analysis of the gap between the non-preemptive
optimum and the polynomially computable preemptive optimum. (Q2) If all edge
weights are equal to 1, problemN- TreePack coincides with the preemptive problem
version and hence is polynomially solvable. On the other hand the problem is NP-hard,
if all edge weights are in {1, . . . , 6}. What is the complexity of N- TreePack, if all
edge weights are in {1, 2}? (Q3) The problem of deciding whether ntp(G, w) ≥ β

is polynomially solvable for every β ≤ 3 and NP-hard for every β ≥ 7. What is the
complexity of this question for β ∈ {4, 5, 6}?
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