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Abstract
We prove that, for an undirected graph with n vertices and m edges, each labeled with
a linear function of a parameter λ, the number of different minimum spanning trees
obtained as the parameter varies can be �(m log n).

Keywords Parametric optimization · Minimum spanning tree · Parametric minimum
spanning tree · Lower bounds

1 Introduction

In the parametric minimum spanning tree problem [19], the input is a graph G whose
edges are labeled with linear functions of a parameter λ. For any value of λ, one can
obtain a spanning tree �λ as the minimum spanning tree of the weight functions,
evaluated at λ. Varying λ continuously from−∞ to∞ produces in this way a discrete
sequence of trees, each of which is minimum within some range of values of λ. How
many different spanning trees can belong to this sequence, for a worst case graph, and
how can we construct them all efficiently? This problem was introduced by Gusfield
in 1979, who proved that a graph with n vertices and m edges can have at most
O(m

√
n) different parametric spanning trees [19]; Gusfield’s bound was improved to

O(mn1/3) in 1997 by Dey [7]. The only nontrivial lower bound known until now dates
from 1995: there exist instances of the parametric minimum spanning tree problem for
which the number of trees is �

(
mα(n)

)
, where α is the inverse Ackermann function

[9]. It is a special case of a parametric matroid problem that also includes the k-set
problem from discrete geometry; for parametric matroids, O(mn1/3) is a tight bound,
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but the instances proving this do not come from the parametric minimum spanning
tree problem [9]. In this paper we improve the 25-year-old lower bound on the number
of parametric minimum spanning trees from �

(
mα(n)

)
to �(m log n).

One motivation for understanding the combinatorial complexity of the parametric
minimum spanning tree problem comes from its applications in bicriterion optimiza-
tion,where each edge of a graph has two realweights of different types (say, investment
cost and eventual profit) and one wishes to find a tree optimizing a nonlinear combina-
tion of the sums of these twoweights (such as the ratio of total profit to total investment
cost, the return on the investment). Each spanning tree of G may be represented by
a planar point whose Cartesian coordinates are the sums of its two kinds of weights,
giving an exponentially large cloud of points, one per tree. The convex hull of this
point cloud has as its vertices the parametric minimum spanning trees and maximum
spanning trees for linear weight functions obtained from the pair of weight values on
each edge by using these values as coefficients. This construction of weight functions
from pairs of weights can be understood as a form of projective duality transforming
points into lines, under which the equivalence between the convex hull of the points
representing trees into the lower envelope of lines representing their total weight is
a standard reflection of that projective duality. Any bicriterion optimization problem
that can be expressed as maximizing a quasiconvex function, or minimizing a qua-
siconcave function, of the two kinds of total weight automatically has its optimum
at a convex hull vertex. It can be solved by constructing the sequence of paramet-
ric minimum spanning trees and evaluating the combination of weights for each one
[22, 24]. Beyond spanning trees, other combinatorial optimization problems that have
been considered from the same parametric and bicriterion point of view include short-
est paths [3–5, 11], optimal subtrees of rooted trees [2], minimum-weight bases of
matroids [9, 20], maximum flows and minimum cuts [15, 17], minimum-weight clo-
sures of directed graphs [10], sequence alignment [18], and the knapsack problem [8,
16, 21].

The algorithmic problem of constructing the sequence of all parametric minimum
spanning trees, used in these bicriterion optimization applications, can be solved in
time O(mn log n) [13] or in time O(n2/3 logO(1) n) per tree [1].The question of which
of these two solutions is asymptotically better remains open, because we do not know
whether the O(mn1/3) combinatorial bound on the number of trees is tight. Although
our new lower bound does not resolve this question, it slightly reduces the large gap
between the upper and lower bounds for this problem, and makes more significant
progress in separating the combinatorial complexity of this problem from the trivial
linear lower bound. Faster algorithms are also known for parametric minimum span-
ning trees in planar graphs [1] or for related optimization problems that construct only
a single tree in the parametric sequence [6, 12, 25].

Themain idea behind our new lower bound is a recursive construction of a family of
graphs, formed by repeated replacement of edges by triangles (Fig. 1). The resulting
graphs are planar, and more specifically, 2-trees. We also determine the parametric
weight functions of these graphs by a separate recursive construction (Fig. 3). The
number of parametric spanning trees produced by this construction can be analyzed
via a standard divide-and-conquer recurrence, producing an �(n log n) lower bound.
The graphs constructed in this way are necessarily sparse, with O(n) edges. To obtain
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our full �(m log n) lower bound we use an additional packing argument, in which we
find a dense graph containing many copies of our sparse lower bound construction,
each contributing its own subsequence of parametric minimum spanning trees to the
total.

2 Background and Preliminaries

The minimum spanning tree of a connected undirected graph with real-valued edge
weights is a tree formed as a subgraph of the given graph, having theminimumpossible
total edge weight. As outlined by Tarjan [28], standard methods for constructing
minimum spanning trees are based on two rules, stated most simply for the case when
all edge weights are distinct:

• The cut rule concerns cuts in the graph, partitions of the vertices into two subsets; an
edge spans a cut when its two endpoints are in different subsets. The cut rule states
that (for distinct edge weights) the minimum-weight edge spanning any given cut
in a graph belongs to its unique minimum spanning tree. Algorithmically, this can
be used to identify edges that belong to the tree, and add them one by one to a
forest until the result is a tree.

• The cycle rule, on the other hand, states that (again for distinct edge weights) the
maximum-weight edge in any cycle of the graph does not belong to its unique
spanning tree. This is used, for instance, in the linear-time randomized minimum-
spanning tree algorithm of Karger, Klein, and Tarjan [23], to remove edges from
dense graphs in order to make them more sparse.

As well as their algorithmic application, these rules are a frequent component of
proofs involving minimum spanning trees, and we will use them for that purpuse. One
consequence of these rules is that the minimum spanning tree depends only on the
sorted ordering of the edge weights, rather than on more detailed properties of their
numeric values.

Definition 1 The parametricminimum spanning tree problem is a computational prob-
lemwhose input consists of an undirected connected graphwith edges labeled by linear
functions of a parameter λ (rather thanwith real numbers). For any value of λ, plugging
λ into these functions produces a system of real weights for the edges, and therefore a
minimum spanning tree�λ. Different values of λmay produce different trees, and the
task is to obtain a complete description of which tree is minimum for each possible
value of λ. The output should be an ordered list of intervals of λ within which a given
tree is minimum, and the tree that is minimum within that interval. The combinatorial
complexity of a parametric minimum spanning tree instance is the number of intervals
in this output.

If we plot the graphs of the linear functions of a parametric minimum spanning
tree instance, as lines in the (λ,weight) plane, then the geometric properties of this
arrangement of lines are closely related to the combinatorial properties of the para-
metric minimum spanning tree problem. In particular, we have:
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Observation 2 Every parametricminimumspanning tree instance has afinite sequence
of output intervals, whose endpoints are λ-coordinates of the crossing points of the
arrangement of lines described above.

Proof As λ varies continuously, the sorted ordering of the weights will remain
unchanged except when λ passes through one of these crossing points, where the
set of lines involved in any crossing will reverse their weight order. The result follows
from the well-known fact that, among the spanning trees of any fixed graph, the choice
of which one is the minimum spanning tree for a system of edge weights on the graph
depends only on the sorted ordering of the weights. ��

In particular, m lines have O(m2) crossings and there can be only O(m2) distinct
trees in the sequence of parametric minimum spanning trees. However, a stronger
bound, O(mn1/3), is known [7].

Observation 3 The worst-case instances of the parametric minimum spanning tree
problem, the ones with the most trees for their numbers of edges and vertices, can be
assumed to have distinct edge weight functions whose arrangement of lines has only
simple crossings, crossings of exactly two lines.

Proof In any other instance, perturbing the edge weight functions by a small amount
will preserve the ordering of weights away from the crossings of its lines, and therefore
will preserve its sequence of trees away from these crossings, while only possibly
increasing the number of breakpoints near perturbed crossings of multiple lines, which
become multiple simple crossings. ��

Therefore, in constructing lower bound examples for the parametricminimumspan-
ning tree problem, we will only need to consider instances in which each weight
function corresponds to a distinct line, and in which the lines have only simple cross-
ings.

Observation 4 For a parametric minimum spanning tree instance whose arrangement
of lines has only simple crossings, the only possible change to the minimum spanning
tree at a breakpoint is a swap, a change to the tree in which one edge (corresponding
to one of the two crossing lines at a simple crossing) is removed, and the other edge
(corresponding to the other of the two crossing lines) is added in its place.

Proof The sorted ordering of other pairs of edges does not change between parameter
values before the crossing and after it. Every edge of the minimum spanning tree
before the crossing, other than one of the two edges whose lines cross, can only be
the shortest edge across the cut between the two subtrees formed by removing it from
the tree, by the cut rule and the fact that it is the only tree edge that crosses this cut.
For parameter values after the crossing, its status as shortest across the same cut does
not change, so it is still part of the minimum spanning tree. A symmetric argument
shows that every tree edge after the crossing, other than the two edges involved in the
crossing, must be part of the tree prior to the crossing as well. Therefore, the only
edges that can change from being part of the tree to being out of it are the two involved
in the crossing. ��
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Formore details on this correspondence between the geometry of line arrangements
and the sequence of parametric minimum spanning trees, and generalizations of this
correspondence to other matroids than the matroid of spanning trees, see our previous
paper on this topic [9].

3 Replacing Edges by Triangles

A 2-tree is a graph obtained from the two-vertex one-edge graph K2 by repeatedly
adding new degree-two vertices, adjacent to pairs of adjacent earlier vertices. Equiv-
alently, they are obtained by repeatedly replacing edges by triangles. These graphs
are planar and include the maximal outerplanar graphs [26]; their subgraphs are the
partial 2-trees, graphs of treewidth ≤ 2 [30]. The graphs we use in our lower bound
are a special case of this construction where we apply this edge replacement process
simultaneously to all edges in a smaller graph of the same type.

Definition 5 Wedefine the first graph�0 in our sequence of graphs to be the graph K2,
and then for all i > 0 we define �i to be the graph obtained by replacing each edge
of �i−1 by a triangle, consisting of the replaced edge and a two-edge path through a
new vertex.

It seems natural to call these complete 2-trees, by analogy to complete trees (whose
leaves are repeatedly replaced by stars for a given number of levels) but we have been
unable to find this usage in the literature. The graphs �i for i ≤ 3 are depicted in
Fig. 1.

Observation 6 �i has 3i edges and (3i + 3)/2 vertices.

Proof The bound on the number of edges follows by induction from the fact that each
replacement of edges by triangles triples the number of edges. Similarly, the bound on
the number of vertices follows by induction on i , using the observations that each edge
of�i−1 leads to a newly added vertex in�i and that (3i−1+3)/2+3i−1 = (3i +3)/2.

��
What happens when we perform the same sort of replacement, of an edge by a

triangle, in a spanning tree problem? For a non-parametric minimum spanning tree,
the answer is given by the following lemma.

Fig. 1 Recursively constructing a family of 2-trees �i (here, i = 0, 1, 2, 3 in left-to-right order) by repeat-
edly replacing every edge of �i−1 by a triangle, according to Definition 5
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Fig. 2 A parametric spanning tree problem on a single triangle pqr , and the graph of the bottleneck edge
weight on the path from p to q in the parametric spanning tree, as a function of the parameter λ

Definition 7 Let G be a connected graph or subgraph with distinct edge weights, and
let p and q be any two vertices in it. We define the bottleneck edge from p to q in G
to be the maximum-weight edge e in the path from p to q in the minimum spanning
tree of G.

Lemma 8 Let graph G contain edge pq, and replace this edge by a triangle pqr to
form a larger graph G+. Suppose that the edges in G+ have distinct edge weights, and
use these weights to assign weights to the edges in G, with the following exception: in
G, give edge pq the weight of the bottleneck edge from p to q in the subgraph formed
by triangle pqr instead of the weight of pq. Then, the minimum spanning tree of G+
has the same set of edge weights as the minimum spanning tree of G, together with
the minimum weight of a non-bottleneck edge in triangle pqr.

Proof If pq is the heaviest edge in pqr then the path from p to q in the minimum
spanning tree of pqr passes through r , the bottleneck edge is the heavier of the two
edges on this path, and the minimum non-bottleneck edge is the lighter of its two
edges. Otherwise, pq is the bottleneck edge and again the minimum non-bottleneck
edge is the lighter of the two remaining edges incident to r . Applying the cut rule to
the cut separating r from the rest of the graph shows that the minimum non-bottleneck
edge is an edge of the minimum spanning tree of G+. Since we did not include its
edge weight in the weights for G, its weight is not included in the set of edge weights
of the minimum spanning tree for G.

Contracting this minimum non-bottleneck edge in G+ produces a multigraph with
two copies of edge pq, the lighter of which is the bottleneck edge. Therefore, if we
keep only the lighter of the two edges, we obtain the weighting onG as a contraction of
a minimum spanning tree edge in G+. This contraction preserves the set of remaining
minimum spanning tree weights, as the lemma states. ��

It follows that in the parametric case, replacing an edge pq by a triangle pqr
through a new vertex r , with linear parametric weights on each triangle edge, causes
that edge to behave as if it has a nonlinear piecewise linear weight function attached
to it, the function mapping the parameter λ to the bottleneck edge weight from p to q
in triangle pqr . Figure 2 shows an example of three parametric weights on a triangle
pqr and this bottleneck weight function, with the weights chosen so that the function
has three breakpoints. This example function will be important for our construction;
note that if we perturb these three weight functions within small neighborhoods of
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their coefficients, we will obtain a qualitatively similar bottleneck weight function,
with three breakpoints at nearby points.

4 Weighted 2-Trees

We now describe how to assign parametric weights to the edges of �i to obtain our
�(n log n) lower bound. As a base case, we may use any linear function as the weight
of the single edge of �0; it can have only one spanning tree, regardless of this choice.
For �i , with i > 0, we perform the following steps to assign its weights:

• Construct the weight functions for the edges of �i−1, recursively.
• Apply a linear transformation to the parameter of these weight functions (the same
transformation for each edge) so that, in the arrangement of lines representing
the graphs of these weight functions, all crossings occur in the interval [0, 1] of
λ-coordinates. Additionally, scale these weight functions by a sufficiently small
factor ε so that, within this interval, they are close enough to the λ-axis, for a
meaning of “close enough” to be specified below.

• Construct �i by replacing each edge pq in �i−1 by a triangle pqr , with a new
vertex for each triangle. Color the three edges of each triangle red, blue, and green,
as in Fig. 2(left), with pq colored green and the other two edges colored red and
blue (choosing arbitrarily which one to color red and which one to color blue).

• Give each edge of�i a transformed copy of the weight function of the correspond-
ing edge of �i−1, transformed as follows:

– For a green edge pq, corresponding to an edge of �i−1 with weight function
f (λ), give pq the weight function f (λ − 4.5) + 3. The addition of 3 lifts the
green lines (the graphs of the weight functions of green edges) to be close to
the green line of Fig. 2(center), and offsetting λ by 4.5 shifts the range of values
of λ within which these green lines cross each other to [4.5, 5.5], a subinterval
of the λ-extent [4,∞) of the right green segment of Fig. 2(right).

– For a red edge pr , corresponding to an edge pq of �i−1 with weight function
f (λ), give pr the weight function f (3.75 − λ) + λ − 1. This transformation
causes the red lines to lie close to the red line of Fig. 2(center). The range of
values of λ where they cross is shifted to [2.75, 3.75], which lies within the λ-
extent [2.5, 4] of the red segment of Fig. 2(right). Because the transformation
negates λ in the argument to f , it reverses the ordering of the crossings within
that range.

– For a blue edge qr , corresponding to an edge pq of�i−1 with weight function
f (λ), give qr the weight function f (λ − 1.25) + 4 − λ. This transformation
causes the blue lines to lie close to the blue line of Fig. 2(center). The range
of values of λ where they cross is shifted to [1.25, 2.25], which lies within the
λ-extent [1, 2.5] of the red segment of Fig. 2(right).

• Perturb all of the weight functions, if necessary, so that all crossings of two weight
functions have different λ-coordinates, without changing the left-to-right ordering
of the crossings between any one weight function and the rest of them.
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Fig. 3 Recursive construction for the parametric weight functions of the graphs �i , shown here as an
arrangement of lines in a planewhose horizontal coordinate is the parameter λ andwhose vertical coordinate
is the edge weight at that parameter value. The reversed text in the central recursive construction indicates
that the construction is reversed left-to-right relative to the other two copies

This construction is depicted schematically, in the (λ,weight) plane, in Fig. 3. We
are now ready to definewhat itmeans for theweight scaling factor ε to be small enough,
so that the scaled weight functions are “close enough” to the λ axis. Intuitively, what
we mean by this is that, with this choice, the left-to-right ordering of crossing points,
according to their λ-coordinates, is the same as in the figure. That is:

1. All crossings of bluewith green lines are first, to the left of other types of crossings.
2. All crossings of two blue lines, in one copy of the recursively constructed blue

subarrangement of lines, are next.
3. All crossings of blue with red lines are third.
4. All crossings of two red lines, in a second (reversed) copy of the recursively

constructed subarrangement, are fourth.
5. All crossings of red with green lines are fifth.
6. All crossings of two green lines, in the third copy of the recursively constructed

subarrangement, are last, to the right of all other types of crossings.

Lemma 9 For sufficiently small choices of ε, the crossings in our construction will
have the ordering described above.

Proof Our construction automatically places all monochromatic crossings into dis-
joint unit-length intervals with these orderings, in the same order that they had in the
recursive construction. The bichromatic crossings of Fig. 2 are separated from these
unit-length intervals by a horizontal distance of at least 0.25, and sufficiently small
values of ε will cause the bichromatic crossings of �i to be arbitrarily close to the
positions of the crossings with the same color in Fig. 2. ��

Figure 4 depicts this construction for �2, with the crossing ordering described
above.

Lemma 10 Let �i be weighted by the recursive construction above, with a small-
enough choice of ε to satisfy Lemma 9. Then, within each of the unit-length intervals
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Fig. 4 �2 (upper right) as parametrically weighted in our construction, with the graphs of each weight
function shown as lines in the (λ, w) plane (upper right), and the resulting sequence of 12 parametric
minimum spanning trees (bottom). The marked crossings of pairs of lines correspond to breakpoints in the
sequence of trees (Color figure online)

containing a copy of the recursive construction, the changes in the sequence of
parametric minimum spanning trees within these intervals exactly correspond to the
changes in the trees of �i−1 from the recursive construction.

Proof Consider any one of these intervals, for the copy of the recursive construction
with color c, and any triangle pqr of the construction of �i . By Lemma 9, the three
weight functions of pqr form a graph qualitatively similar to that of Fig. 2, with the
interval contained within a segment of that graph within which the bottleneck edge has
color c. Therefore, by Lemma 8, for each value of λ within this interval, the minimum
spanning tree of �i corresponds to the minimum spanning tree of �i−i according to
the weight of this c-colored edge, together with the minimum non-bottleneck edge in
each triangle. The changes to the minimum spanning tree of�i are exactly those from
the recursive construction. Because of the crossing order described above, the choice
of which edge in each triangle is the minimum non-bottleneck edge does not change
within this interval, so the only breakpoints in the interval are those coming from the
recursive construction. ��

Lemma 11 For weights constructed as above, the number of distinct parametric min-
imum spanning trees for �i is at least as large as

N (i) = i3i

2
+ 3i + 3

4
.
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Proof We prove by induction on i that the number of trees is at least as large as the
solution to the recurrence

N (i) = 3N (i − 1) + 3i − 3

2
.

To prove this, it is easier to count the number of breakpoints, values of λ at which
the tree structure changes; the number of trees is the number of breakpoints plus
one. In each copy of the recursive construction, this number of breakpoints is exactly
N (i − 1) − 1, so by Lemma 10 the total number of breakpoints appearing in these
three copies is 3N (i − 1) − 3.

Additional breakpoints happen within the ranges of values for λ at which (in the
(λ,weight) plane) pairs of lines of two different colors cross. Because of the reversal
of the red copy of the recursive construction, theminimum spanning trees immediately
to the left and right of these regions of bichromatic crossings correspond to the same
trees in �i−1: the bottleneck edges that are included in these minimum spanning trees
come from the same triangles, but with different colors. In the regions where the green
lines cross lines of other colors, the minimum non-bottleneck edge in each triangle
does not change, so each green bottleneck edge in the minimum spanning tree must
be exchanged for a red or blue one. Each change to a tree within this crossing region
removes a single edge from the minimum spanning tree and replaces it with another
single edge, the two edges whose two lines cross at the λ-coordinate of that change.
Therefore, no matter what sequence of changes is performed, to exchange all green
bottleneck edges for all red or blue ones requires a number of crossings equal to the
number of edges in the minimum spanning tree of �i−1, which is (3i−1 + 1)/2 by
Lemma 6. We get this number of breakpoints at the region where the green and blue
lines cross, and the same number at the region where the red and green lines cross.

The analysis of the number of breakpoints at the region where the blue and red
lines cross is similar, but slightly different. Immediately to the left and right of this
region, the the bottleneck edge in each triangle and the minimum non-bottleneck edge
in the triangle are red and blue, but in a different order to the left and to the right.
Therefore, in triangles where the bottleneck edge is part of the minimum spanning
tree (as is always the minimum non-bottleneck edge), nothing changes. However, in
triangles where the bottleneck edge is not part of the minimum spanning tree, there
is a change, to the minimum non-bottleneck edge, from before this crossing region
to after it. These triangles correspond to edges of �i−1 which do not belong to the
minimum spanning tree (for the parameter values in this range), of which there are
(3i−1 − 1)/2 by Lemma 6. By the same argument as before, the crossing region must
contain at least this many breakpoints.

Adding together the 3N (i−1)−3 breakpoints from the recursive copies, the (3i−1+
1)/2 breakpoints for the green–red and green–blue crossing regions, the (3i−1 − 1)/2
breakpoints for the red–blue crossing region, and+1 to convert numbers of breakpoints
to numbers of distinct trees, and simplifying, gives the right hand side of the recurrence.
A straightforward induction shows that the solution to the recurrence is the formula
given in the statement of the lemma. ��
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For i = 0, 1, 2, . . . the number of trees given by this formula is

1, 3, 12, 48, 183, 669, 2370, 8202, 27885, 93495 . . .

For instance, �1 has three trees with the weighting given in Fig. 2: the bottleneck
function shown in the figure has four linear pieces, but the red and blue pieces both
correspond to the same tree, with a different edge on the path pqr as the bottleneck
edge. Figure 4 shows the 12 trees for �2.

5 Packing into Dense Graphs

The lower bound obtained from Lemma 11 applies only to sparse graphs, where the
numbers of vertices and edges are within constant factors of each other. However, we
want a bound that appliesmore generally, for graphswith significantlymore edges than
vertices. The other direction, for graphs with significantly fewer edges than vertices,
is less interesting. To achieve many fewer edges than vertices, it is necessary to allow
disconnected graphs, and consider minimum spanning forests instead of minimum
spanning trees; but with these modifications one can obtain a lower bound simply by
including isolated vertices in the counting argument of Lemma 11.

To achieve many more edges than vertices, we use the following construction for
packing many instances of a sparse lower bound graph into a single denser graph. It
does not require any detailed knowledge of the structure of the sparse graph.

Lemma 12 Let G be a parametrically weighted graph with N vertices and M edges,
whose sequence of parametric minimum spanning trees has length T , and let k be a
positive integer satisfying k ≤ M. Then there is a parametrically weighted graph H
with N + 3M vertices and (2k + 2)M edges whose sequence of parametric minimum
spanning trees has length at least 2kT .

Proof We construct H from G in the following steps, illustrated in Fig. 5.

e1

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

e2 e3 e4

Fig. 5 The construction of Lemma 12, applied to a graph G with four vertices and four edges (left), with
the parameter k = 3. The central graph is a subdivision of each edge of this graph into a four-edge path,
with vertices labeled as shown, and the graph on the right is the final construction H , with the colors and
textures of edges indicating the partition of its edges into four subgraphs H0 (thin black edges), H1 (thick
yellow edges), H2 (dotted blue edges), and H3 (dashed red edges) (Color figure online)
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H0

H1 (a–b)

H1 (b–c) H3 (a–b)

H3 (b–c)

H2 (a–b) H2 (b–c)

Fig. 6 An arrangement of lines for the weight functions of Lemma 12 with k = 3. The small rectangles
indicate transformed neighborhoods of the unit λ-interval, containing all crossings of the bundle of lines
associated with each subgraph

• Number the edges of G as e0, e2, . . . eM−1 arbitrarily.
• Subdivide each edge ei of G, connecting two vertices u and v, into a four-edge
path u–ai–bi–ci–v. (It is arbitrary which vertex of this path we call ai and which
we call ci .)

• Add additional edges from bi to a j and c j , for each i and each j = i + 1, i +
2, . . . i + k − 1 mod M .

Given this construction, we define subgraphs Hj as follows:

• H0 consists of all edges connecting vertices of G to new vertices ai or ci .
• Hj consists of all edges from bi to ai+ j−1 or ci+ j−1, for all i , with indexes taken
modulo m.

Then, for i = 1, 2, . . . k, the graph H0 ∪ Hi is isomorphic to a subdivision of G, with
H0 ∪ H1 being the subdivision we used to construct H and the others obtained in the
same way but with permuted connections.

As in Lemma 11, we flatten the arrangement of lines for the weighting of G so
that its crossings all lie within a small neighborhood of the unit interval of the λ-axis,
without changing its sequence of parametric minimum spanning trees. We then apply
linear transformations to the system of weights for the edges in each copy Hj with
j > 0, as detailed below, while using small-enough weights for all edges in H0 so
that these edges belong to all minimum spanning trees for parameters in the range
covered by the transformed unit intervals shown in Fig. 6. More specifically, for each
j > 0 we use one transformed copy of the weights in G for the a–b edges in Hj ,
and a second transformed copy for the b–c edges, arranged so that the transformed
unit intervals containing the crossings within each copy project to disjoint intervals
of the λ-axis, and so that all crossings of the a–b edges appear above all lines for the
b–c edges and vice versa. Therefore, in the graph H0 ∪ Hj , the parametric trees in
the parameter range where the a–b edges cross each other consist of all b–c edges
(because those have smaller weight than the a–b edges in each path) together with a
subset of the a–b edges corresponding to a spanning tree of G. Because we copied
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and transformed the weights of G for the a–b edges in this parameter range, we obtain
T distinct trees of this type. To arrange the a–b and b–c parameter weights for Hi in
this fashion, we transform them so that the a–b weights lie near the line w = 3 − λ,
with crossings in the range λ ∈ [1, 2], and so that the b–c weights lie near the line
w = λ − 3, with crossings in the range λ ∈ [4, 5]. Then, we transform and flatten
these combined weights of Hi , so that they again lie near the λ-axis with all crossings
of edges of either type in the range [0, 1].

We arrange the sets of lines associated with H1, H2, etc., so that the lines from
each Hj pass above the crossings for each other H ′

j , j 
= j ′, and so that the range of
parameters within which Hj has the lowest lines contains the two subranges where its
a–b lines cross and where its b–c lines cross, again as shown in the figure. We may
do this by finding a convex-downward polygonal chain with k sides (for instance the
upper part of a regular 2k-gon), in which all sides project to a range of λ-coordinates
of more than unit length, and by transforming the weights of each Hi so that the unit
interval of the λ-axis, near which all crossings of these weights occur, is transformed
to the interior of one of the sides of this polygonal chain. Figure 6 shows the weights
for three subgraphs H1, H2, and H3, transformed in this way so that they are near
the upper three sides of a hexagon. The weights for H0 can be chosen to be near a
horizontal line, below all crossings of the other weight functions, as also shown in the
figure.

Therefore, within these subranges, the parametric minimum spanning trees for all
of H will be the same as the trees for H0 ∪ Hj , because H0 ∪ Hj spans H and has
lower edge weights than any of the remaining edges. With this arrangement, we get
2kT distinct parametric minimum spanning trees, 2T for each Hj with j > 0, as well
as additional trees that are not counted in the lemma. ��

With this, we are ready to prove our main result:

Theorem 1 There exists a constant C such that the following is true. Let n and m
be integers with n > 0 and 2n − 3 ≤ m ≤ (n

2

)
. Then there exists a parametri-

cally weighted graph with n vertices and m edges, with at least Cm log n parametric
minimum spanning trees.

Proof LetG = �i , N = (3i +3)/2, and M = 3i , with i chosen as large as possible so
that N +3M ≤ n and 4M ≤ m, and choose k as large as possible so that (2k+2)M ≤
m; then N = �(n) and M = �(m/n). Apply Lemma 11 to give weights to G so
that it has �(n log n) parametric minimum spanning trees, and apply Lemma 12 to
construct a parametrically weighted graph H with N + 3M vertices and (2k + 2)M
edges that has �(m log n) parametric minimum spanning trees. If necessary, add leaf
vertices to H to increase its number of vertices to n, and then add high-weight edges
to increase its number of edges to m without affecting this sequence of parametric
spanning trees. ��

6 Conclusions and Open Problems

We have shown that instances of parametric minimum spanning tree problem with m
vertices and n edges can have�(m log n) different trees for different parameter values
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in the worst case, improving a 25-year-old �
(
mα(n)

)
lower bound. Because of the

structure of the graphs used in our lower bound construction, the new lower bound
applies as well to the special cases of planar graphs and of bounded-treewidth graphs,
both of which can have�(n log n) parametric minimum spanning trees. However, our
new lower bound is still far from the O(mn1/3) upper bound, so there is plenty of
room for additional improvement.

The parametric minimum spanning tree problem is a special case of parametric
matroid optimization, on graphic matroids. The k-set problem in discrete geometry
can be interpreted as a parametric matroid optimization problem on a different class
of matroids, the uniform matroids. The best known upper bound for it has the same
form as for parametric minimum spanning trees, O(nk1/3), with the same proof [7],
but the best known lower bound is stronger than our new parametric spanning tree
lower bound, and takes the form nc

√
log k for a constant c [29]. Bounds of this form

make a natural target for the next improvement in the parametric minimum spanning
tree problem.

Another related open problem concerns the parametric bottleneck shortest path
problem, a parametric version of the problem of finding a path between two specified
vertices that minimizes the maximum edge weight on the path. In the non-parametric
version of the problem, a minimum spanning tree path is an optimal path, although
faster algorithms are possible and the problem is also of interest in the case of directed
graphs [14]. The same problem is also known in the equivalent maximin form as the
widest path problem, where one possible optimal solution can be found as the path
in a maximum spanning tree [27]. The parametric versions of minimum spanning
trees and bottleneck shortest paths differ somewhat: a breakpoint in the piecewise lin-
ear parametric minimum spanning tree function (the function mapping the parameter
value λ to the weight of its minimum spanning tree) might not be a breakpoint in the
bottleneck shortest path problem (the maximum weight of an edge on the bottleneck
shortest path problem) or vice versa. However, the bottleneck breakpoints that look
locally like the minimum of two linear functions do correspond to breakpoints of the
minimum spanning tree problem. For this reason, any asymptotic lower bound on the
parametric bottleneck shortest path problem would also be a lower bound for para-
metric minimum spanning trees, and any asymptotic upper bound on the parametric
minimum spanning tree problem is also an upper bound on parametric bottleneck
shortest paths. Therefore, the known O(mn1/3) upper bound on parametric minimum
spanning trees applies as well to parametric bottleneck shortest paths. Additionally,
our previous �

(
mα(n)

)
lower bound also applies to parametric bottleneck shortest

paths, but our new �(m log n) bound does not. Can we strengthen the �
(
mα(n)

)

bound for this problem?
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