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Abstract
We introduce a natural temporal analogue of Eulerian circuits and prove that, in con-
trast to the static case, it is NP-hard to determine whether a given temporal graph
is temporally Eulerian even if strong restrictions are placed on the structure of the
underlying graph and each edge is active at only three times. However, we do obtain
an FPT-algorithm with respect to a new parameter called interval-membership-width
which restricts the times assigned to different edges; we believe that this parameter
will be of independent interest for other temporal graph problems. Our techniques also
allow us to resolve two open questions of Akrida, Mertzios and Spirakis [CIAC 2019]
concerning a related problem of exploring temporal stars.

Keywords Temporal graphs · Dynamic networks · Parameterized complexity · Width
measures

1 Introduction

Many real-world problems can be formulated and modeled in the language of graph
theory. However, real-world networks are often not static. They change over time and
their edges may appear or disappear (for instance friendships may change over time in
a social network). Such networks are called dynamic or evolving or temporal and their

An extended abstract of the present paper appeared in the proceedings of IWOCA ’21 [1], containing
statements of most of the results in Sections 3-5. This paper provides full proofs of these results, as well as
some additional material in Section 6.
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structural and algorithmic properties have been the subject of active study in recent
years [2–6]. Some of themost natural andmost studied topics in the theory of temporal
graphs are temporal walks and paths (in which consecutive edges appear at increasing
times), and the corresponding notions of temporal reachability [7–14]. Related to
these notions is the study of explorability of a temporal graph which asks whether it
is possible to visit all vertices or edges of a temporal graph via some temporal walk.

Temporal vertex-exploration problems (such as temporal variants of the Travelling
Salesman problem) have already been thoroughly studied [15–17]. In contrast, here
we focus on temporal edge-exploration and specifically we study temporally Eulerian
graphs. Informally, these are temporal graphs admitting a temporal circuit (again in
which edges appear at increasing times on a traversal of the circuit) that visits every
edge at exactly one time (i.e. a temporal circuit that yields an Euler circuit in the
underlying static graph). We also consider a closely-related problem in which every
edge must be visited exactly twice.

Deciding whether a static graph is Eulerian is a prototypical example of a poly-
nomial time solvable problem. In fact this follows from Euler’s characterization of
Eulerian graphs dating back to the 18th century [18]. In contrast, here we show that,
unless P = NP, a characterization of this kind cannot exist for temporal graphs. In
particular, we show that deciding whether a temporal graph is temporally Eulerian
is NP-complete even if strong restrictions are placed on the structure of the under-
lying graph and each edge is active at only three times. This complements a result
obtained simutaneously and independently by Marino and Silva [19], which shows
that this problem is NP-complete even when each edges is active at only two times,
but without the same restrictions on the structure of the underlying graph.1

The existence of problems that are tractable on static graphs, but NP-complete on
temporal graphs is well-known [3, 6, 15, 20]. In fact, there are examples of problems
whose temporal analogues remain hard even on trees [15, 20]. Since many of the most
studied graph parameters (such as treewidth and feedback vertex/edge number) are
bounded on trees, it is clear that requiring boundedness of these parameters on the
underlying input graphs for such problems will not be enough to give tractability.
This motivates the development of parameters that take into account the temporal
structure of the input, as well as the structure of the underlying graph. Some measures
of this kind (such as temporal variants of feedback vertex number [10] and tree-
width [21]) have already been studied. Unfortunately we find that these parameters
are of no use to us since the problems we consider here remain NP-complete even
when these measures are bounded by constants on the underlying static graph. To
overcome these difficulties, we introduce a new purely-temporal parameter called
interval-membership-width. Parameterizing by this measure we find that the problem
of determining whether a temporal graph is temporally Eulerian is in FPT.

To understand the intuition behind this new parameter, consider the problem of
determining whether a temporal graph in which every edge appears at exactly one
time is temporally Eulerian. If two edges are active at the same time, the answer is
clearly no; otherwise there is only one possible order in which we could traverse the

1 Marino and Silva also studied other analogues of Euler circuits in temporal graphs, with different restric-
tions on the re-use of edges. Our notion of temporally Eulerian graphs corresponds, in their terminology,
to graphs admitting an Eulerian trail.
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edges in increasing order of times, so it suffices to check whether this gives rise to an
Eulerian circuit in the underlying graph. More generally, the same argument shows
that it is easy to decide whether a temporal graph is temporally Eulerian whenever
each edge e is assigned a “private” interval of times, that is to say that no other edge
is active at any time between the first and last appearance of e: again, this gives a
single candidate order in which the edges can be traversed. The parameter interval-
membership-width generalises this notion further, by quantifying the extent to which
the set of intervals defined by the first and last appearance of each edge can overlap. The
value of the parameter therefore does not depend on the structure of the underlying
static graph (other than its number of edges), but is instead influenced only by the
temporal structure. We believe that interval-membership-width will be a parameter
of independent interest for other temporal graph problems: a dynamic programming
approach similar to the one we use in Sect. 4 will lead to fixed-parameter-tractability
whenever the crucial information we need to store about a partial solution at time t
relates only to those edges that are active either at, or both before and after time t .

It turns out that our study of temporally Eulerian graphs is closely related to a
temporal variant of the Travelling Salesman Problem concerning the exploration of
temporal stars via a temporal circuit which starts at the center of the star and which
visits all leaves (equivalently, each edge must be traversed exactly twice in the circuit).
Akrida,Mertzios andSpirakis introduced this problemandproved it to beNP-complete
even when the input is restricted to temporal stars in which every edge has at most
k appearances for all k ≥ 6 [15]. Although they also showed that the problem is
polynomial-time solvable whenever each edge of the input temporal star has at most
3 appearances, they left open the question of determining the hardness of the problem
when each edge has at most 4 or 5 appearances. We resolve this open problem in
the course of proving our results about temporally Eulerian graphs. Combined with
Akrida,Mertzios and Spirakis’ results, this gives a complete dichotomy: their temporal
star-exploration problem is in P if each edge has at most 3 appearances and is NP-
complete otherwise.

As a potential “island of tractability”, Akrida, Mertzios and Spirakis proposed
to restrict the input to their temporal star-exploration problem by requiring that
there exists some k such that, for each edge in the input graph, consecutive pairs
in the set of times at which it is active differ by exactly k. Using our new notion of
interval-membership-width we are able to show that this restriction does indeed yield
tractability parameterized by the maximum number of temporal appearances of any
edge (thus partially resolving their open problem). Furthermore, applying this same
line of thought (i.e. studying inputs with evenly spaced edge-times) to the problem of
determining whether a temporal graph is temporally Eulerian allows us to achieve a
similar result.

Given the success of parameterizations by interval-membership-width when it
comes to temporal edge-exploration problems, we also explore the applicability of this
parameter to the related questions of vertex exploration and reachablity. It turns out that
the parameter interval-membership-width is not so well-suited to problems in which
we need to knowwhich vertices (rather thanwhich edges) have been used or reached at
a particular time in the evolution of the temporal graph.We illustrate this intuition with
a concrete example of a vertex-reachability problem (MinReachDelete) that remains
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NP-hard even on classes of bounded interval-membership-width. This motivates us
to introduce a “vertex-variant” of our measure called vertex-interval-membership-
width. This new measure – which is lower-bounded by interval-membership-width
– is more algorithmically powerful: for a vertex-reachability problem that remains
hard even on temporal graphs with unit interval-membership-width, parameterizing
by the vertex-variant of our measure allows us to achieve membership in FPT. Indeed,
we show that MinReachDelete is in FPT when parameterized by vertex-interval-
membership-width. Moreover, since the dissemination of a preliminary version of this
paper, vertex-interval-membership-width has also been used to give FPT-algorithms
for both a temporal version of the Firefighter problem [22] and the problem of
counting paths in temporal graphs [23].

Outline. We fix notation and provide background definitions in Sect. 2. We prove
our hardness results in Sect. 3. Sect. 4 contains the definition of interval-membership-
width as well as our FPT algorithms parameterized by this measure. In Sect. 5 we
show that Akrida, Mertzios and Spirakis’ temporal star-exploration problem is in
FPT parameterized by the maximum number of appearances of any edge in the input
whenever the input temporal star has evenly spaced times on all edges. We also show
a similar result for our temporally Eulerian problem. In Sect. 6 we introduce a vertex-
variant of interval-membership-width and we discuss its algorithmic applications to
vertex-exploration and reachability problems. Finally we provide concluding remarks
and open problems in Sect. 7.

2 Background and Notation

For any graph-theoretic notation not defined here, we refer the reader to Diestel’s
textbook [24]; similarly, for any terminology in parameterized complexity, we refer
the reader to the textbook by Cygan et al. [25].

The formalism for the notion of dynamic or time-evolving graphs to which we
adhere originated from the work of Kempe, Kleinberg, and Kumar [12] (building
on an earlier work of Berman [26]). Formally, if τ is a function τ : E(G) → 2N

mapping edges of a graph G = (V (G), E(G)) to sets of integers, then we call the pair
G := (G, τ ) a temporal graph (this is a widely used generalization of the formulation
in [12] which only allows one time to be assigned to each edge). We shall assume all
temporal graphs to be finite and simple in this paper.

For any edge e in G, we call the set τ(e) the time-set of e. For any time t ∈ τ(e)
we say that e is active at time t and we call the pair (e, t) a time-edge. The set of
all edges active at any given time t is denoted Et (G, τ ) := {e ∈ E(G) : t ∈ τ(e)}.
The greatest time � appearing in the time-set of any edge is said to be the lifetime of
the graph, that is, � := maxe∈E(G) max τ(e)). While it is possible to define temporal
graphs with infinite lifetime, here we only consider temporal graphs whose lifetime is
finite.

In a temporal graph there are two natural notions of walk: one is the familiar notion
of a walk in static graphs and the other is a truly temporal notion where we require
consecutive edges in walks to appear at non-decreasing times. Formally, given vertices
x and y in a temporal graph G, a strict temporal (x, y)-walk is a sequenceW = (e1 =
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xx ′, t1), . . . , (en = y′y, tn) of time-edges such that e1, . . . , en is a walk in G starting
at x and ending at y and such that t1 < t2 < . . . < tn (hereafter, since we will assume
all temporal walks to be strict, we will simply refer to them as “temporal walks”). If
n > 1, we denote by W − (en, tn) the temporal walk (e1, t1), . . . , (en−1, tn−1). We
call a temporal (x, y)-walk closed if x = y.

Recall that an Euler circuit in a static graph G is a circuit e1 . . . , em which traverses
every edge of G exactly once. In this paper we are interested in a natural temporal
analogue of this notion (called an Eulerian Trail by Marino and Silva [19]).

Definition 1 A temporal Eulerian circuit in a temporal graph (G, τ ) is a closed tempo-
ral walk (e1, t1), . . . , (em, tm) such that e1 . . . , em is an Euler circuit in the underlying
static graph G. If there exists a temporal Eulerian circuit in (G, τ ), then we call (G, τ )

temporally Eulerian.

Recall from the discussion in the introduction that, if (G, τ ) is a temporal graph in
which every edge appears at exactly one time (as considered in the original model of
[12]), then we can determine whether (G, τ ) is temporally Eulerian in time linear in
|E(G)|. This observation suggests that the number of times per edge is relevant to the
complexity of the associated decision problem, which we state as follows.

TEMPEULER(k)
Input: A temporal graph (G, τ ) where |τ(e)| ≤ k for every edge e in the graph
G.
Question: Is (G, τ ) temporally Eulerian?

As we mentioned in Sect. 1, here we show that TempEuler(k) is related to an
analogue of the Travelling Salesman problem on temporal stars [15]. This problem
(denoted as StarExp(k)) was introduced by Akrida, Mertzios and Spirakis [15]. It
asks whether a given temporal star (Sn, τ ) (where Sn denotes the n-leaf star) with at
most k times on each edge admits a closed temporal walk starting at the center of the
star and which visits every leaf of Sn . We call such a walk an exploration of (Sn, τ ).
A temporal star that admits an exploration is called explorable. Formally we have the
following decision problem.

STAREXP(k)
Input: A temporal star (Sn, τ ) where |τ(e)| ≤ k for every edge e in the star Sn .
Question: Is (Sn, τ ) explorable?

No temporal star (be it explorable or not) can be temporally Eulerian (since the
underlying static graph isn’t). However, since any temporal star is explorable if and
only if it admits a temporal circuit which visits every edge of the star exactly twice,
the two notions are obviously rather closely related.
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3 Hardness of Temporal Edge Exploration

This section is devoted to showing thatTempEuler(k) isNP-complete for all k at least
3 (Corollary 4) and that StarExp(k) is NP-complete for all k at least 4 (Corollary 2).
This last result resolves an open problem of Akrida, Mertzios and Spirakis which
asked to determine the complexity of StarExp(4) and StarExp(5) [15].

To show that StarExp(4) isNP-hard, we provide a reduction from the 3-Coloring
problem (see, for instance, Garey and Johnson [27] for a proof of NP-completeness
of 3-Coloring) which asks whether an input graph G is 3-colorable.

3-COLORING

Input: A finite simple graph G.
Question:DoesG admit a proper 3-coloring (i.e. a coloring c : V (G) → {1, 2, 3}
such that c(u) �= c(v) for all uv ∈ E(G))?

Throughout, for an edge e of a temporal star (Sn, τ ), we call any pair of times
(t1, t2) ∈ τ(e)2 with t1 < t2 a potential visit of e. We say that e is visited at (t1, t2) in
a temporal walk if the walk proceeds from the center of the star along e at time t1 and
then back to the center at time t2. We say that two potential visits (t1, t2) and (t ′1, t ′2) of
two edges e and e′ are in conflict with one another (or that “there is a conflict between
them”) if there exists some time t such that

t1 ≤ t ≤ t2 and t ′1 ≤ t ≤ t ′2.

Note that a complete set of potential visits (one visit for each edge of the star) which
has no pairwise conflicts is in fact an exploration.

Theorem 1 StarExp(4) is NP-hard.

Proof Take any 3-Coloring instance G with vertices {x1, . . . , xn}. We will construct
a StarExp(4) instance (Sp, τ ) (where p = n + 3m) from G.

Defining Sp. The star Sp is defined as follows: for each vertex xi in G, we make
one leaf node in Ap which is connected to the center by an edge ei while, for each
edge xi x j with i < j in G, we make three leaf nodes in Sp which are connected to
the center by edges e0i j , e

1
i j and e2i j respectively.

Defining τ . For i ∈ [n] and any integer ξ ≥ 0, let tξi be the integer

tξi := 2in2 + 2ξ(n + 1) (1)

and take any edge x j xk in G with j < k. Using the times defined in Eq. (1), we then

define τ(ei ) and τ(eξ
jk) as

τ(ei ) := {
t0i , t1i , t2i , t3i

}
and (2)

τ(eξ
jk) := {

tξj + 2k − 1, tξj + 2k, tξk + 2 j − 1, tξk + 2 j
}
. (3)
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x1

x2 x3

c

e1 e01,2 e11,2 e21,2

e2 e02,3 e12,3 e22,3e3e01,3e11,3e21,3

t01 t11 t21 t31 t02 t12 t22 t32

r1 r2 r3 r4

g1 g2 g3 g4

b1 b2 b3 b4

τ(e1): τ(e2):

τ(e012):

τ(e112):

τ(e212):

Fig. 1 Top left: K 3; we assume the coloring xi �→ i − 1. Top right: star constructed from K 3. Bottom:
times (and corresponding intervals) associated with the edges e1, e2 and e01,2, e

1
1,2, e

2
1,2 (time progresses

left-to-right and intervals are not drawn to scale). We write r1, r2, r3, r4 as shorthand for the entries of
τ(e01,2) (similarly, for i ∈ [4], we write gi and bi with respect to τ(e11,2) and τ(e21,2)). The red and thick

intervals correspond to visits defined by the coloring of the K 3 (Color figure online)

Note that the elements of these sets are written in increasing order (see Fig. 1).
Intuitively, the times associated to each edge ei ∈ E(Sp) corresponding to a vertex

xi ∈ V (G) (Eq. (2)) encode the possible colorings of xi via the three possible starting
times of a potential visit of ei . The three edges e0i j , e

1
i j and e

2
i j corresponding to some

xi x j ∈ E(G) are instead used to force the colorings to be proper in G. That is to

say that, for a color ξ ∈ {0, 1, 2}, the times associated with the edge eξ
i j (Eq. (3))

will prohibit us from entering ei at its ξ -th appearance and also entering e j at its ξ -th
appearance (i.e. coloring xi and x j the same color).

Observe that the first two times in τ(eξ
jk) lie within an interval given by consecutive

times in τ(e j ) and that the same holds for the last two times in τ(eξ
jk) with respect to

τ(ek) (see Fig. 1). As a consequence it is immediate that for 1 ≤ j < k and ξ ≥ 0,
we have:

tξj < tξj + 2k − 1 < tξj + 2k < tξ+1
j (4)

Given this set-up, we now show that G is a yes instance if and only if (Sp, τ ) is.
Suppose (Sp, τ ) is explorable. Note first that, if ei is visited at (t, t ′), then we

must have t ∈ {t0i , t1i , t2i } (as there is no possible visit entering ei at time t3i ). We can
therefore define a coloring (to be shown proper)

c : V (G) → {0, 1, 2}
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taking each vertex xi to the color ξ whenever ei is entered at time tξi within the
exploration of (Sp, τ ). We claim that c is a proper coloring. To see this, suppose on the
contrary that there is a monochromatic edge x j xk with j < k of color ξ in G. Then,

this means that e j was entered at time tξj and exited at time at least tξ+1
j and similarly

ek was entered at time tξk and exited at time at least tξ+1
k . But then, since every time

in τ(eξ
jk) is contained either in the open interval (tξj , t

ξ+1
j ) ⊆ R or the open interval

(tξk , tξ+1
k ) ⊆ R we know that eξ

jk cannot be explored (by (4)). This contradicts the
assumption that (Sp, τ ) is explorable, hence c must be a proper coloring.

Conversely, suppose G admits a proper 3-coloring c : V (G) → {0, 1, 2}. We
define the following exploration of (Sp, τ ) (see Fig. 1):

• for every vertex xi in G, if c(xi ) = ξ , then visit ei at (t
ξ
i , tξ+1

i )

• for every edge x j xk in G with j < k and every color ξ ∈ {0, 1, 2}, define the visit
of eξ

jk as follows: if c(x j ) �= ξ , then visit eξ
jk at (t

ξ
j + 2k − 1, tξj + 2k); otherwise

visit eξ
jk at (t

ξ
k + 2 j − 1, tξk + 2 j).

Our aim now is to show that there are no conflicts between the visits we have just
defined in terms of the coloring c (and thus that they witness the explorability of
(Sp, τ )).

Take any i < j and any ξ ∈ {0, 1, 2}. By our definition of τ(ei ) and τ(e j ), we must
have max τ(ei ) = t3i < 2 jn2 = min τ(e j ) whenever i < j . Thus, we note that there
are no conflicts between the visit of ei and the visit of e j .

Note that, for all (ξ, ω) ∈ {0, 1, 2}2 and all pairs of edges xi x j and xkx� in G

with i < j and k < �, the visit (vi, j , vi, j + 1) of eξ
i j is in conflict with the visit

(vk,�, vk,� + 1) of eω
k� only if xi x j = xkx�. To see this, recall that the first time in any

potential visit of any edge eξ
i j was defined to be either

tξi + 2 j − 1 = 2in2 + 2ξ(n + 1) + 2k − 1 or

tξj + 2i − 1 = 2 jn2 + 2ξ(n + 1) + 2i − 1

and both of these are odd (a property that does not depend on i and j). Thus, the visits
of eξ

i j and eω
k� both consist of two consecutive times where, as we just observed, the

first time is odd. This means that we would only have a conflict if vi, j = vk,� which,
as can be easily checked, happens only if i = k and j = �.

Finally we claim that there are no conflicts between the visit of eξ
i j and the visits

of either ei or e j . To show this, we will only argue for the lack of conflicts between

the visits of ei and eξ
i j since the same ideas suffice for the e j -case as well. Suppose

c(xi ) = ξ , then we visit eξ
i j at (t

ξ
j + 2i − 1, tξj + 2i) and then

tξj + 2i − 1 > tξj > t3i = max τ(ei )

since i < j and since c is a proper coloring. Similarly, if c(xi ) �= ξ , then we visit eξ
i j at

(tξi + 2 j − 1, tξi + 2 j). As we observed in Inequality (4), we have tξi < tξi + 2 j − 1 <
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tξi + 2 j < tξ+1
i . Thus, if (u1, u2) is the visit of ei , then either u2 < tξi or tξ+1

i < u1.
In other words, no conflicts arise.

This concludes the proof since we have shown that the visits we assigned to the
edges of Sp constitute an exploration of (Sp, τ ). 
�

Observe that increasing the maximum number of times per edge cannot make the
problem easier: we can easily extend the hardness result to any k′ > 4 by simply
adding a new edge with k′ times all prior to the times that are already in the star (recall
that the parameter k in StarExp(k) is the maximum number of appearances of any
edge). This, together with the fact that Akrida, Mertzios and Spirakis [15] showed that
StarExp(k) is in NP for all k ≥ 0, allows us to conclude the following corollary.

Corollary 2 For all k at least 4, StarExp(k) is NP-complete.

Next we shall reduce StarExp(k) to TempEuler(k−1). We point out that, for our
purposes within this section, only the first point of the statement of Lemma 3 is needed.
However, later (in the proof of Corollary 9) we shall make use of the properties stated
in the second point of Lemma 3 (this is also why we allow any k times per edge rather
than just considering the case k = 4); specifically, this second point captures the fact
that the reduction only changes the interval-membership-width (the new parameter
we define in Sect. 4) by a constant factor. Thus, we include full details here.

Lemma 3 For all k ≥ 2 there is a polynomial-time-computable mapping taking every
StarExp(k) instance (Sn, τ ) to a TempEuler(k − 1) instance (Dn, σ ) such that

1. (Sn, τ ) is a yes instance for StarExp(k) if and only if (Dn, σ ) is a yes instance for
TempEuler(k − 1) and

2. Dn is a graph obtained by identifying n-copies {K 3
1 , . . . , K

3
n } of a 3-cycle along

one center vertex (see Fig. 2) and such that

max
t∈N |{e ∈ E(Dn) : min(σ (e)) ≤ t ≤ max(σ (e))}|
≤ 3max

t∈N |{e ∈ E(Sn) : min(τ (e)) ≤ t ≤ max(τ (e))}|.

Proof Note that we can assume without loss of generality that all times of every edge
in Sn are even (if not, then just double every time; this cannot change explorability) and
that every time has at least two appearances (otherwisewe trivially have a no-instance).

Nowwe show how to construct aTempEuler(k−1)-instance (Dn, σ ) from (Sn, τ )

such that (Dn, σ ) is temporally Eulerian if and only if (Sn, τ ) is explorable (see Fig. 2).
The idea is to construct Dn by adding a triangle Ce for each edge e ∈ E(Sn) in such a
way that visiting e in an exploration of (Sn, τ ) corresponds towalking along the triangle
Ce (imagine “stretching” every leaf of the star into an edge and then “spreading” the
times of the edge appropriately along this new cycle). To state this precisely, denote the
vertices of the i-th 3-cycle C3

i of Dn by {c, xi,1, xi,2} and let its edges be fi,1 = cxi,1,
fi,2 = xi,1xi,2 and fi,3 = xi,2c. For every i ∈ [n] and � ∈ [k]with τ(ei ) = {t1, . . . , t�}
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cs

x1

x2 x3

{t1,1, t1,2, t1,3, t1,4}
c

x1,1 x1,2

x2,1x2,2 x1,3 x3,2

{t1,1, t1,2, t1,3} {t1,2, t1,3, t1,4}

{t1,1 + 1, t1,2 + 1, t1,3 + 1}

Fig. 2 Building (D3, σ ) from (S3, τ ). The times along edges are drawn only for the edge cs x1 in S3 and
for its corresponding 3-cycle cx1,1x1,2 in D3. Since t1,1, t1,2, t1,3 and t1,4 are all multiples of 2, we know
that t1, j < t1, j+1 < t1, j+1 for all j ∈ [3]. Thus, the reduction associates the visit (ts , te) of cs x1 in the
star to exploration (ts , ts + 1, te) of the 3-cycle corresponding to cs x1 in D3

where t1 < t2 < · · · < t�, define the map σ : E(Dn) → 2N as:

σ( fi,1) := {t1, . . . , t�−1},
σ ( fi,2) := {t1 + 1, . . . , t�−1 + 1},
σ ( fi,3) := {t2, . . . , t�}.

Note that σ( fi,1), σ( fi,2) and σ( fi,3) all have size at most k−1. Now suppose (Sn, τ )

is a yes-instance witnessed by the sequence V of visits V := (x1, y1), . . . , (xn, yn) of
the edges e1, . . . , en of Sn and observe that yi < xi+1 for all i ∈ [n − 1]. We claim
that the sequence of time-edges

( f1,1, x1), ( f1,2, x1 + 1), ( f1,3, y1), . . . , ( fn,1, xn), ( fn,2, xn + 1), ( fn,3, yn)

is a temporal Eulerian circuit in G. To see this, recall that y j < x j+1 (for j ∈ [n− 1])
and note that:

1. by definition f1,1, f1,2, f1,3, . . . , fn,1, fn,2, fn,3 is an Eulerian circuit in the under-
lying static graph Dn (i.e. we walk along each 3-cycle in turn) and

2. xi < xi + 1 < yi for all i ∈ [n] since we assumed that xi , yi ∈ 2N.

Conversely, suppose (Dn, σ ) is a yes-instance and let this fact be witnessed by the
temporal Eulerian circuitK. Recall that a temporal Eulerian circuit induces an Eulerian
circuit in the underlying static graph. Thus, since every Eulerian circuit in Dn must
run through each 3-cycle, we know thatKmust consist – up to relabelling of the edges
– of a sequence of time-edges of the form

K :=( f1,1, x1,1), ( f1,2, x1,2), ( f1,3, y1,3), ( f2,1, x2,1), ( f2,2, x2,2), ( f2,3, y2,3),

. . . , ( fn,1, xn,1), ( fn,2, xn,2), ( fn,3, yn,3).

It follows immediately from the definition of (Dn, σ ) that visiting each edge e j in Sn
at (x j,1, y j,3) constitutes an exploration of (Sn, τ ), as desired. 
�
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Since TempEuler(k) is clearly in NP (where the circuit acts as a certificate), our
desired NP-completeness result follows immediately from Lemma 3 and Corollary 2.

Corollary 4 TempEuler(k) is NP-complete for all k at least 3.

Aswe noted earlier,TempEuler(1) is trivially solvable in time linear in the number
of edges of the underlying static graph. Although our proof leaves open the k = 2 case,
we note that this was resolved by Marino and Silva [19] since the dissemination of an
earlier version of this paper: they demonstrated that TempEuler(k) is NP-complete
for all k ≥ 2.

Observe that the reduction in Lemma 3 rules out FPT algorithms with respect to
many standardparameters describing the structure of the underlyinggraph (for instance
the path-width is 2 and feedback vertex number2 is 1). In fact we can strengthen
these intractability results even further by showing that TempEuler(k) is hard even
for instances whose underlying static graph has vertex-cover number3 2 (Theorem 5
below). This motivates our search in Sect. 4 for parameters that describe the structure
of the times assigned to edges rather than just the underlying static structure.

Theorem 5 For all k ≥ 4, the TempEuler(k) problem is NP-complete even on tem-
poral graphs whose underlying static graph has vertex-cover number 2.

Proof Take any StarExp(k) instance (Sn, τ ) and assume that n is even (if not, then
simply add a dummy edge with all appearances strictly after the lifetime of the graph).
Denoting by c the center of Sn and by x1, . . . , xn its leaves, let Sc1,c2n be the double
star constructed from Sn by splitting c into two twin centers; stating this formally, we
define Sc1,c2n as

Sc1,c2n = ({c1, c2, x1, . . . , xn}, {ci x j : i ∈ [2] and j ∈ [n]}).

Notice that, since n is even, Sc1,c2n is Eulerian and notice that the set {c1, c2} is a vertex
cover of Sc1,c2n .

Defining σ : E(Sc1,c2n ) → 2N for all i ∈ [2] and j ∈ [n] as σ(ci x j ) = τ(cx j ), we
claim that the temporal graph (Sc1,c2n , σ ) is temporally Eulerian if and only if (Sn, τ )

is explorable.
Suppose that (Sn, τ ) is explorable and let this be witnessed by the sequence of

visits (s1, t1), . . . , (sn, tn). Then it follows immediately by the definition of σ that the
following sequence of time-edges is a temporal circuit in (Sc1,c2n , σ ):

(c1x1, s1), (x1c2, t1), (c2x2, s2)(x2c1, t2), (c1x3, s3), (x3c2, t3),

. . . , (c2xn, sn)(xnc1, tn).

2 Recall that a feedback vertex set in a graph (resp. directed graph)G is a vertex subset S ⊆ V (G) such that
G − S is a forest (resp. directed acyclic graph). The feedback vertex number of a graph G is the minimum
number of vertices needed to form a feedback vertex set in G.
3 Recall that a vertex-cover in a graph G is a vertex-subset S ⊆ V (G) such that every edge in G is incident
with at least one vertex in S. The vertex-cover number of a graph G is the minimum number of vertices
needed to form a vertex-cover of G.
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To see this, note that this clearly induces an Eulerian circuit in the underlying static
graph Sc1,c2n ; furthermore, since (s1, t1), . . . , (sn, tn) is an exploration in (Sn, τ ), it
follows that s1 < t1 < s2 < t2 < . . . < sn < tn , as desired.

Suppose now that (Sc1,c2n , σ ) is temporally Eulerian and that this fact is witnessed
(without loss of generality – up to relabeling of vertices) by the temporal Eulerian
circuit

(c1x1, s1), (x1c2, t1), (c2x2, s2)(x2c1, t2), (c1x3, s3), (x3c2, t3),

. . . , (c2xn, sn)(xnc1, tn).

Then, by the definition of σ in terms of τ and by similar arguments to the previous
case, we have that (s1, t1), . . . , (sn, tn) is an exploration of (Sn, τ ). 
�

Notice that the reduction in the proof of Theorem 5 is from StarExp(k) (rather
than from StarExp(k + 1) as in Lemma 3) to TempEuler(k), so, in contrast to the
reduction in Lemma 3, the proof of Theorem 5 cannot be used to show hardness of
TempEuler(3).

4 Interval-Membership-Width

As we saw in the previous section, both TempEuler(k) and StarExp(k + 1) are
NP-complete for all k ≥ 3 even on instances whose underlying static graphs are both
sparse and highly structured (for instance even on graphs with vertex cover number
2). This suggests that any useful parameterization must take into account the temporal
structure of the input. Aswe discussed previously, other authors have already proposed
measures of this kind such as the temporal feedback vertex number [10] or temporal
analogues of tree-width [21]. However these measures are all bounded on temporal
graphs for which the underlying static graph has bounded feedback vertex number and
tree-width respectively.Our reductions therefore show thatTempEuler(k) is para-NP-
completewith respect to these parameters. Thus,we do indeed need some newmeasure
of temporal structure. To that end, here we introduce a parameter called interval-
membership-widthwhich depends only on temporal structure and not on any structural
properties of the underlying graph other than the number of edges.4 Parameterizing
by this measure, we show that both TempEuler(k) and StarExp(k) lie in FPT.

We begin by reiterating the intuition behind our width measure. Recall from the
discussion in the introduction that TempEuler(1) can be solved in time linear in
|E(G)|. Moreover, the same is true for any TempEuler(k)-instance (G, τ ) in which
every edge is assigned a “private” interval of times: that is to say that, for all distinct
edges e and f in G, either max τ( f ) < min τ(e) or max τ(e) < min τ( f ). This holds
because, on instances of this kind, there is only one possible relative ordering of edges
available for an edge-exploration. It is thus natural to expect that, for graphs whose
edges have intervals that are “almost private” (defined formally below), we should be
able to deduce similar tractability results.

4 If (G1, τ1) and (G2, τ2) are two temporal graphs and there is a bijection π : E(G1) → E(G2) such that
τ1(e) = τ2(π(e)) for all e ∈ E(G1), then (G1, τ1) and (G2, τ2) have the same interval-membership-width.
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Fig. 3 A temporal star (S4, τ )

with interval-membership
sequence: F1 = F2 = {cw},
F3 = {cw, cx},
F4 = F5 = {cw, cx, cy},
F6 = {cw, cy} and
F7 = F8 = F9 = {cw, cz}

c

w x

z y

1, 9 3, 5

4, 67, 8, 9

(S4, τ)

Towards a formalizationof this intuition, consider a temporal graph (G, τ ) as before,
except that two of its edges e and f have |τ(e)| = |τ( f )| = 2 such that there is a time t
withmin τ(e) ≤ t ≤ max τ(e) andmin τ( f ) ≤ t ≤ max τ( f ). It is easy to see that the
TempEuler(k) problem is still tractable on graphs such as (G, τ ) since there are only
two possible relative edge-orderings for an edge exploration of (G, τ ) (depending on
whether we choose to explore e before f or f before e). These observations lead to the
following definition of interval-membership-width of a temporal graph (see Fig. 3).

Definition 2 The interval-membership sequence of a temporal graph (G, τ ) is the
sequence (Ft )t∈[�] of edge-subsets of G where Ft := {e ∈ E(G) : min τ(e) ≤ t ≤
max τ(e)} and � is the lifetime of (G, τ ). The interval-membership-width of (G, τ )

is the integer imw(G, τ ) := maxt∈N|Ft |.
Note that a temporal graph has unit interval-membership-width if and only if every

edge is active at times spanning a “private interval”. Furthermore, we point out that
the interval-membership sequence of a temporal graph is not the same as the sequence
(Et (G, τ ))t∈N. In fact, although maxt∈N|Et (G, τ )| ≤ imw(G, τ ), there exist classes
C of temporal graphs with unbounded interval-membership-width but such that every
temporal graph in C satisfies the property that at most one edge is active at any given
time. To see this consider any graph H with edges e1, . . . , em and let (H , ν) be the
temporal graph defined by ν(ei ) := {i,m + i}. Clearly maxi∈N|Ei (H , ν)| = 1, but
we have imw(H , ν) = m.

Before continuing, we first note how to compute the interval-membership sequence
of a temporal graph (G, τ ) with lifetime � in O(

imw(G, τ )�)
)
time. We point out

now that, since this running time is linear in �, all of the running times in all of
the following algorithmic results parameterized by interval-membership-width also
include the time needed to compute the interval-membership sequence.

Lemma 6 There is an algorithm that, given a temporal graph (G, τ ) with every edge
active at-least once and with lifetime �, computes the interval-membership sequence
of (G, τ ) in time O(w�) where w = imw(G, τ ).

Proof Supposing E(G) = {e1, . . . em}, consider the following algorithm:

• initialize a list (Ft )t∈[�] with Ft = ∅ for all t ,
• for each edge e ∈ E(G),

S1 compute me = min τ(e) and Me = max τ(e)

123



Algorithmica (2023) 85:688–716 701

S2 add e to every set Fi with me ≤ i ≤ Me.

For each edge e, Step S1 takes O(|τ(e)|) time while Step S2 takes O(|{t : e ∈ Ft }|)
time. Thus, since τ(e) ⊆ {t : e ∈ Ft }, steps S1 and S2 together take time O(|{t : e ∈
Ft }|). Summing over all edges of G, we have that, since every edge is active at-least
once, the whole algorithm runs in time

O
( ∑

e∈E(G)

|{t : e ∈ Ft }|
)

= O
( ∑

t∈[�]
|Ft |

)
= O(w�).


�
Armed with the notion of interval-membership-width, we now show that both

TempEuler(k) and StarExp(k) are in FPT when parameterized by this measure.
We do so first for TempEuler(k) (Theorem 7) and then we leverage the reduction of
Lemma 3 to deduce the fixed-parameter-tractability of StarExp(k) as well (Corol-
lary 9).

Theorem 7 There is an algorithm that, given any temporal graph (G, τ ) with lifetime
�, decides whether (G, τ ) is a yes-instance of TempEuler(k) in time O(w32w�)

where w = imw(G, τ ) is the interval-membership-width of (G, τ ).

Proof Let (Ft )t∈[�] be the interval-membership sequence of (G, τ ) and suppose with-
out loss of generality that F1 is not empty.

We now describe an algorithm that proceeds by dynamic programming over the
sequence (Fi )i∈[�] to determine whether (G, τ ) is temporally Eulerian. For each set
Fi we compute a set Li ⊆ F {0,1}

i × V (G) × V (G) consisting of triples of the form
( f , s, x) where s and x are vertices in G and f is a function mapping each edge in
Fi to an element of {0, 1}. Intuitively each entry ( f , s, x) of Li corresponds to the
existence of a temporal walk starting at s and ending at x at time at most i and such
that, for any edge e ∈ Fi , we will have f (e) = 1 if and only if e was traversed during
this walk.

We now define the entries Li recursively starting from the dummy set L0 :=
{(0, x, x) : ∃e ∈ F1 incident with x} where 0 : e ∈ F1 �→ 0 is the function mapping
every element in F1 to 0 (here, in a slight abuse of notation, we are adopting the
convention that there is always, at any time a zero-edge temporal walk from any
vertex x to itself). Take any ( f , s, y) in F {0,1}

i × V (G) × V (G). For ( f , s, y) to be in
Li we require there to be an entry (g, s, x) of Li−1 such that

g(e) = 1 for all e ∈ Fi−1 \ Fi (5)

and such that one of the following holds:

C1 y = x and f (e) = 1 if and only if e ∈ Fi−1 ∩ Fi and g(e) = 1,
or

C2 there exists an edge xy in G such that:

C2.P1 xy ∈ Ei (G, τ ) \ {e ∈ Fi : g(e) = 1} and
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C2.P2 f (e) = 1 if and only if g(e) = 1 or e = xy.

The Cases C1 and C2 correspond to the the two available choices we have when
extending a temporal (s, x)-walk at time i : either we stay put at x (Case C1) or we
find some new edge xy active at time i (Case C2) which has never been used before
(Property C2.P1) and add it to the walk (Property C2.P2). Equation (5) ensures that
we filter out partial solutions that we already know cannot be extended to a Eulerian
circuit. To see this, note that, if an edge e will never appear again after time i − 1 and
we have g(e) = 0, then there is no way of extending the temporal walk represented
by the triple (g, s, x) to an Eulerian circuit in (G, τ ) because one edge will always be
left out (namely the edge e).

We claim that the input (G, τ ) is temporally Eulerian if and only if L� contains an
entry (1, s, x) with s = x and such that 1 : y ∈ F� �→ 1 is the constant all-1 function.
To show this, we prove the following stronger claim.

Claim 8 For all i ∈ [�], Li contains an entry ( f , s, x) if and only if there exists a
temporal walk (e1, t1) . . . (ep, tp) starting at s and ending at x with tp ≤ i and in
which no edge is repeated and such that:

IH1 (F1 ∪ · · · ∪ Fi−1) \ Fi ⊆ {e1, . . . , ep−1} (i.e. every edge whose last appearance
is before time i is traversed by the walk) and

IH2 for all e ∈ Fi , we have f (e) = 1 if e ∈ {e1, . . . , ep} and f (e) = 0 otherwise
(i.e. f correctly records which edges in Fi have been used in a walk).

Proof of Claim 8 We show this by induction on i . The Claim holds trivially for i = 0,
so suppose now that we are at some time i > 0 and hypothesise that the Claim holds
for time i − 1. Furthermore denote by Wi ( f , s, x) the set of all temporal (s, x)-walks
(e1, t1) . . . (ep, tp) with tp ≤ i which satisfy Properties IH1 and IH2.

(�⇒) First we show that if ( f , s, y) is in Li , then Wi ( f , s, x) is non-empty. By
the construction of Li , we know that, for ( f , s, y) to be in Li , there must have been an
element (g, s, x) of Li−1 satisfying Eq. (5) from which we built ( f , s, y) according
to either Case C1 or Case C2.

Suppose we applied Case C1 to add ( f , s, y) to Li (i.e. we “extended” some walk
inWi−1(g, s, y) by deciding not to move). Then we know that f (e) = 1 if and only if
g(e) = 1.Notice that anywalk corresponding to ( f , s, y) cannot fail to visit some edge
in Ei−1(G, τ ) thatwill never again be active after time i−1 sinceweknow that (g, s, y)
satisfies Eq. (5). In particular, there is a walk W in Wi−1( f , s, y) ⊆ Wi ( f , s, y)
satisfying Properties IH1. Furthermore, f satisfies Property IH2 since g satisfies it
by induction and f = g. Thus, we have shown that, if we applied Case C1 to add
( f , s, y) to Li , then Wi ( f , s, y) �= ∅.

Suppose instead that we applied Case C2 to add ( f , s, y) to Li . In other words
suppose we found an edge xy active at time i with which we wish to extend some
walkW := (e1, t1), . . . , (ep, tp) inWi−1(g, s, x)which starts at s and ends at x . Note
that we can infer that W ′ := (e1, t1) . . . (ep, tp)(xy, i) is a valid temporal (s, y)-walk
with no repeated edges since:

• W has no repeated edges (by the induction hypothesis),
• xy was not traversed by W (by Property C2.P1) and
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• tp ≤ i − 1 (since W ∈ Wi−1(g, s, x)).

Thus, the fact that g satisfies equation (5) combined with the induction hypothesis
implies that every edge whose last appearance is before time i is traversed by W ′ (i.e.
W ′ satisfies Property IH1). Furthermore f satisfies Property IH2 since g does and
since f (e) = 1 if and only if g(e) = 1 or e = xy (by Property C2.P2). Thus, we have
shown that, if ( f , s, y) ∈ Li , then Wi ( f , s, y) �= ∅.

(⇐�) Conversely, we now show that, ifWi ( f , s, y) is non-empty, then ( f , s, y) ∈
Li . LetW ′ be an element ofWi ( f , s, y) and let (xy, j) be the last time-edge traversed
by W ′ (note j ≤ i).

If j < i then, by the induction hypothesis, we get that ( f , s, y) ∈ Li−1 with
W ′ ∈ Wi−1( f , s, y). But then by the construction of Li from Li−1 we have that
( f , s, y) ∈ Li as desired.

Thus, suppose j = i . Then W ′ − (xy, j) is a temporal (s, x)-walk ending at time
at most i −1 satisfying Property IH1. Furthermore, by the induction hypothesis, there
must be a (g, s, x) ∈ Li−1 which satisfies Eq. (5) and such that W ′ − (xy, j) ∈
Wi−1(g, s, x). Now note that, since ( f , s, y) satisfies Properties IH1 and IH2, we
have that Properties C2.P1 and C2.P2 hold as well: thus, ( f , s, y) ∈ Li . 
�

Finally we consider the running time of the algorithm. First of all notice that we
can compute Li+1 from Li in time at most

(|Ei+1(G, τ )| + 1) · |Li | ≤ (|Fi+1| + 1) · |Li | ≤ (w + 1) · |Li |

(where the last inequality follows since |Fi | ≤ imw(G, τ ) = w for any i). To see this,
note that we construct the elements of Li+1 by iterating through the elements of Li and
considering for each one the |Ei+1(G, τ )|+1 ways of taking a next step in a temporal
walk at time i . Since we perform this computation� times (once for each time i ∈ [�]
where � is the lifetime), the whole algorithm runs in timeO(w�maxi∈�|Li |). Thus,
all that remains to be shown to complete the proof is that |Li | is O(w22w) for all i .
Note that, from its definition, we already know that Li has cardinality at mostO(2wn2)
since Li ⊆ F {0,1}

i ×V (G)×V (G). To improve this bound, we show that the following
two statements hold:

RT1 there exists a time t such that every temporal Eulerian circuit in (G, τ )must start
with a vertex incident with an edge in the bag Ft of the interval-membership
sequence of (G, τ );

RT2 there exists a constant γ such that, for all i , let Xi ⊆ V (G) be the set of vertices
of G defined as

Xi := {x ∈ V (G) : ( f , s, x) ∈ Li }; (6)

then Xi has cardinality at most γw, where w = imw(G, τ ).

To see why it suffices to prove claims RT1 and RT2, notice that they imply that we
not only have Li ⊆ F {0,1}

i × V (G)× V (G) (which was how we defined Li in the first
place) but in fact there must always exist a t ∈ [�] and a subset Xi ⊆ V (G) (for all
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i) such that Li is always of the form

Li ⊆ F {0,1}
i × V (Ft ) × Xi

where both |V (Ft )| and |Xi | are O(w). This would clearly then imply that |Li | is
O(w22w) for all i , as desired.

Proof of Claim RT1 Choose t ∈ N be greatest possible such that
⋃

j∈[t] Fj ⊆ Ft .
Suppose by way of contradiction that there exists a temporal Eulerian circuit that
starts at a vertex s with s not incident with any edge in Ft . Let t ′ be the earliest time
such that the bag Ft ′ contains an edge which which s is incident.

Notice that, since t was chosen greatest possible such that
⋃

j∈[t] Fj ⊆ Ft and
since s is not incident with any edge in Ft , it follows that t ′ > t and that there exists
an edge e ∈ Ft \ Ft ′ . But then we have a contradiction since max(τ (e)) ≤ t < t ′ and,
by time t ′, e has not yet been visited by the temporal Eulerian circuit starting at s (i.e.
any such circuit never visits the edge e). 
�
Proof of Claim RT2 We show that Xi has cardinality at most 6w. Seeking a contradic-
tion, suppose |Xi | ≥ 6w + 1. Since |Fi | ≤ w, the set

X/∈i = {x ∈ Xi : ∀e ∈ Fi , e not incident with z}

of elements of Xi that are not incident with any edge in Fi consists of at least 4w + 1
vertices.

Let ξ : X/∈i → E(G) be the map associating to each vertex z in X/∈i an edge ξ(z)
such that: (1) ξ(z) is incident with z, (2) min τ(ξ(z)) ≤ i and (3) the last appearance
of ξ(z) is latest possible. To see that ξ is well-defined, notice that by the definition
of Xi (Eq. (6)) and since X/∈i ⊆ Xi we must have that, for every z ∈ X/∈i , there is a
temporal walk ending at z at some time at most i which implies that the set

{e ∈ E(G) : e incident with z and min τ(e) ≤ i}

must be non-empty. Furthermore, notice that max τ(ξ(z)) < i since otherwise, by
the definition of Xi , we would have that ξ(z) ∈ Fi (which contradicts the fact that
z ∈ X/∈i ).

Pick a vertex z ∈ X/∈i such that max τ(ξ(z)) ≤ max τ(ξ(z′)) for any other z′ ∈ X/∈i .
Since X/∈i contained at least 4w + 1 elements, then ξ(X/∈i ) consists of at least 2w + 1
edges. This, together with the fact that |Fmax τ(ξ(z)) ∪ Fi | ≤ 2w, implies that there
must an edge ξ(y) with

ξ(y) ∈ ξ(X/∈i ) \ (Fmax τ(ξ(z)) ∪ Fi )

which implies that

max τ(ξ(z)) < min τ(ξ(y)) < max τ(ξ(y)) < i .
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By the definition of Xi and since z ∈ Xi , there is some ( f , s, z) ∈ Li and, by the
previous Claim, there is a walkW ∈ Wi ( f , s, z) satisfying IH1 and IH2. Notice that,
since W ends at the vertex z, it must be that the last time we “took a step” on W was
at a time at most max τ(ξ(z)); in particular, this means that we did not move from z
at time i . But then, since max τ(ξ(y)) < i , y never appears again after time i − 1 and
hence W never traverses ξ(y): this contradicts Property IH1. 
�

As a corollary of Theorem 7, we can leverage the reduction of Lemma 3 to deduce
that StarExp(k) is in FPT parameterized by the interval-membership-width.

Corollary 9 There is an algorithm that, given a StarExp(k) instance (Sn, τ ), decides
whether (Sn, τ ) is explorable in time O(w323w�) where w = imw(Sn, τ ) and � is
the lifetime of the input.

Proof By Lemma 3, we know that there is a polynomial-time reduction that maps any
StarExp(k) instance (Sn, τ ) to a TempEuler(k − 1)-instance (Dn, σ ) such that

max
t

|{e ∈ E(Dn) : min(σ (e)) ≤ t ≤ max(σ (e))}|
≤ 3max

t
|{e ∈ E(Sn) : min(τ (e)) ≤ t ≤ max(τ (e))}|.

In particular, this implies that imw(Dn, σ ) ≤ 3w. Thus, we can decidewhether (Sn, τ )

is explorable in timeO(w323w�) by applying the algorithm of Theorem 7 to (Dn, σ ).

�

5 Win-Win Approach to Regularly Spaced Times

In this section we find necessary conditions for edge-explorability of temporal graphs
with respect to their interval-membership-width. This allows us to conclude that either
we are given a no-instance or that the interval-membership-width is small (in which
case we can employ our algorithmic results from the previous section).

We will apply this bidimensional approach to variants of TempEuler(k) and
StarExp(k) in which we are given upper and lower bounds (u and � respectively)
on the difference between any two consecutive times at any edge (meaning that for
any edge e active at times t1 < t2 < · · · < t|τ(e)|, we have � ≤ ti+1 − ti ≤ u for all
1 ≤ i < |τ(e)|). Specifically we show that StarExp(k) is in FPT parameterized by
k, � and u (Theorem 12) and that TempEuler(k) is in FPT parameterized by k and u
(Theorem 13). In other words, these results allow us to trade in the dependences on
the interval-membership-width of Corollary 9 and Theorem 7 for dependences on k,
�, u and k, u respectively.

We note that, for StarExp instances, the closer � and u get, the more restricted
the structure becomes to the point that the dependence on � and u in the running time
of our algorithm vanishes when � = u. In particular, this shows that the problem of
determining the explorability of StarExp(k)-instances for which consecutive times
at each edge are exactly λ time-steps apart (for some λ ∈ N) is in FPT parameterized
solely by k (Corollary 14). This partially resolves an open problem ofAkrida,Mertzios
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and Spirakis [15] which asked to determine the complexity of exploring StarExp(k)-
instances with evenly spaced times.

Towards these results, we first provide sufficient conditions for non-explorability
of any StarExp(k) instance (Lemma 10). These conditions depend only on: (1)
knowledge of the maximum and minimum differences between any two successive
appearances of any edge, (2) the interval-membership-width and (3) the maximum
number of appearances k of any edge.

Lemma 10 Let (Sn, τ ) be a temporal star with at most k times at any edge and such
that every two consecutive times at any edge differ at least by � and at most by u. If
(Sn, τ ) is explorable, then imw(Sn, τ ) ≤ (2(k − 1)u + 1)/(� + 1).

Proof Let � be the lifetime of (Sn, τ ), let (Ft )t∈[�] be the interval-membership
sequence of (Sn, τ ) and choose any n ∈ [�] such that |Fn| = imw(Sn, τ ). Let m and
M be respectively the earliest and latest times at which there are edges in Fn which
are active and choose representatives em and eM in Fn such that m = min τ(em) and
M = max τ(eM ).

Recall that visiting any edge e in Sn requires us to pick two appearances (which
differ by at least � + 1 time-steps) of e: one appearance is used to go along e from the
center of Sn to the leaf and another appearance is used to return to the center of the
star. Thus, whenever we specify how to visit an edge e of Fn , we remove at least �+ 1
time-steps from the available time-set {m, . . . , M} at which any other edge in Fn can
be visited. Furthermore, since any exploration of (Sn, τ ) must explore all of the edges
in Fn , for (Sn, τ ) to be explorable, we must have |Fn|(� + 1) ≤ 1+ M −m. Thus, by
the choice of Fn , we find that

imw(Sn, τ )(� + 1) = |Fn|(� + 1)

≤ 1 + M − m

≤ 1 + |max τ(eM ) − min τ(eM )| + |max τ(em) − min τ(em)|
(since, ∀e ∈ Fn,min τ(e) ≤ n ≤ max τ(e))

≤ 2(k − 1)u + 1

as desired. 
�
Notice that nearly-identical arguments yield the following slightly weaker result

with respect to the TempEuler(k) problem.

Lemma 11 Let (G, τ ) be a TempEuler(k) instance such that every two consecu-
tive times at any edge differ at most by u. If (G, τ ) is temporally Eulerian, then
imw(G, τ ) ≤ 2(k − 1)u + 1.

The reason that we can only bound imw(G, τ ) above by 2(k−1)u+1 (rather than
(2(k − 1)u + 1)/(� + 1) as in the StarExp(k) case of Lemma 10) is that temporal
Euler circuits only visit each edge once (so exploring each edge only removes exactly
one available time).

Lemma 10 allows us to employ a “win-win” approach for StarExp(k) when we
know the maximum difference between consecutive times at any edge: either the
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considered instance does not satisfy the conditions of Lemma 10 (in which case we
have a no-instance) or the interval-membership-width is small enough for us to usefully
apply Corollary 9. These ideas allow us to conclude the following result.

Theorem 12 Let (Sn, τ ) be a temporal star with at most k times at any edge and such
that every two consecutive times at any edge differ at least by � and at most by u. There
is an algorithm that decides whether (Sn, τ ) is explorable in time 2O(ku/�)� where �

is the lifetime of the input.

Proof Determine imw(Sn, τ ) (using the algorithm of Lemma 16); if imw(Sn, τ ) >

(2(k − 1)u + 1)/(� + 1), then (Sn, τ ) is not explorable by Lemma 10. Otherwise run
the algorithm given in Corollary 9. In this case, since w := imw(Sn, τ ) ≤ (2(k −
1)u + 1)/(� + 1), we know that the algorithm of Corollary 9 will run on (Sn, τ ) in
time 2O(ku/�)�. 
�

Once again arguing by bidimensionality (this time using Lemma 11 and Theorem 7)
we can deduce the following fixed-parameter tractability result for TempEuler.

Theorem 13 Let (G, τ ) be a TempEuler(k) instance such that every two consecutive
times at any edge differ at most by u. There is an algorithm that decides whether (G, τ )

is temporally Eulerian in time 2O(ku)� where � is the lifetime of the input.

As a special case of Theorem 12 (i.e. the case where � = u) we partially resolve
an open problem of Akrida, Mertzios and Spirakis [15] which asked to determine the
complexity of exploring StarExp(k)-instances with evenly spaced times. In partic-
ular, we show that the problem of deciding the explorability of such evenly spaced
StarExp(k)-instances is in FPT when parameterized by k.

Corollary 14 There is an algorithm that, given any StarExp(k) instance (Sn, τ ) with
lifetime� such that every two pairs of consecutive times assigned to any edge in (Sn, τ )

differ by the same amount, decides whether (Sn, τ ) is explorable in time 2O(k)�.

6 A Vertex Version of Interval-Membership-Width

It is natural to ask whether the parameter interval-membership-width also allows the
design of FPT algorithms for problems involving vertex exploration or reachablity.
Unfortunately, it seems that this parameter is not so well-suited to problems in which
we need to keep track of the set of vertices that have been reached or visited at a
particular time in the evolution of the temporal graph. To illustrate this, we consider
a problem MinReachDelete (defined formally below), which remains intractable
even on graphs with interval-membership-width one. This motivates the introduction
of a vertex variant of our parameter.

A vertex u is said to be temporally reachable from v in the temporal graph (G, τ )

if there exists a temporal path from v to u; every vertex is assumed to be temporally
reachable from itself. The temporal reachability set of vertex v in (G, τ ), written
reachG,τ (v), is then defined to be the set of vertices which are temporally reachable
from v; the temporal reachability set of a set S ⊆ V (G), written reachG,τ (S), is
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defined in the natural way to be
⋃

v∈S reachG,τ (v). The temporal reachability of a set
of vertices S ⊆ V (G) is |reachG,τ (S)| (for a vertex v in (G, τ )wewrite |reachG,τ (v)|
rather than |reachG,τ ({v})|). We consider the following problem, introduced in [28].

MINREACHDELETE

Input: A temporal graph (G, τ ), a set of source vertices S, and k, h ∈ N.
Question: Is there a set E ′ of time-edges, with |E ′| ≤ k, such that the temporal
reachability of S in (G, τ ) \ E ′ is at most h?

Note that this is a generalisation of the problem TR- EdgeDeletion introduced in
[29], where the set S of sources is always taken to be equal to V (G). This problem
was originally motivated by a practical application related to the design of optimal
interventions to restrict the spread of an infectious disease through a contact net-
work [29]. Here we adapt one of the arguments used to demonstrate intractability of
TR Edge Deletion [29, Theorem 3.1] to show thatMinReachDelete is para-NP-
hard with respect to the interval-membership-width of the input graph.

Theorem 15 MinReachDelete is NP-hard, even if the input temporal graph has
interval-membership-width one.

Proof Weprove that the problem remainsNP-hard evenwhen the input temporal graph
satisfies the following two properties:

1. every edge is active at exactly one time, and
2. no two edges are active simultaneously.

These two conditions together immediately imply that the graph has interval-
membership-width one. Hardness of TR Edge Deletion, and hence
MinReachDelete, when every edge appears exactly once, was already demonstrated
in [29]; however, in this construction, an unbounded number of edges is active at the
same time (giving unbounded interval-membership-width). Here we adapt the con-
struction so that no two edges are active at the same time. Note that, as each edge is
active at exactly one time in our construction, we can use the terms edge and time-edge
interchangeably in the proof.

As in [29, Theorem 3.1], the reduction is from the NP-hard problem Clique.
Let (G, r) be an instance of Clique, where V (G) = {v1, . . . , vn} and E(G) =
{e1, . . . , em}. We will construct an instance ((H , τ ), k, h) of MinReachDelete

which is a yes-instance if and only if (G, r) is a yes-instance for Clique. As in the
proof of [29, Theorem 3.1], we assume without loss of generality that m > r + (r

2

)
.

We begin by defining H . The vertex set of H is V (H) = {s} ∪ V (G)∪ E(G)∪W ,
where W := {wi, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, vi ∈ e j }. The edge set is

E(H) ={svi : 1 ≤ i ≤ n}
∪ {viwi, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, vi ∈ e j }
∪ {wi, j e j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, vi ∈ e j }
∪ {swi, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, vi ∈ e j }.
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We complete the construction of the temporal graph (H , τ ) by setting

τ(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i if e = svi for some 1 ≤ i ≤ n

n + 2 j − 1 if e = viwi, j for some 1 ≤ i ≤ n and 1 ≤ j ≤ m

n + 2 j if e = wi, j e j for some 1 ≤ i ≤ n and 1 ≤ j ≤ m

n + 2m + j if e = swi, j for some 1 ≤ i ≤ n and 1 ≤ j ≤ n.

It is immediate from the construction of (H , τ ) that each edge is active at exactly one
time, and that no two edges are active at the same time. Finally, we set S = {s}, k = r
and h = 1 + (n − r) + 2m + (m − (r

2

)
).

Suppose first that U ⊆ V (G) is a clique of size r in G. Set E ′ := {sv : v ∈ U }
and write (H ′, τ ′) for the temporal graph obtained from (H , τ ) by deleting all edges
in E ′. We argue that the temporal reachability of s in (H ′, τ ′) is at most h, implying
that ((H , τ ), {s}, k, h) is a yes-instance for MinReachDelete. Note that s reaches
every vertex in W along one-edge paths, but that no further vertices can be reached
along paths starting with these edges as each such edge is active strictly later than any
other edge incident with the endpoint in W . It follows that every vertex reached by s
that does not belong to W must be reached via a an element of V (G) \ U . Thus, we
deduce that

reachH ′,τ ′(s) ⊆ {s} ∪ W ∪ V (G) \U ∪
⋃

v∈V (G)\U
{e ∈ E(G) : v ∈ e}.

In particular, we see that s does not reach any vertex inU , or any element of E(G)with
both endpoints inU . SinceU induces a clique in G, we see that s fails to reach at least
r+(r

2

)
vertices in (H ′, τ ′) and hence |reachH ′,τ ′(s)| ≤ 1+n+m+2m−r −(r

2

) = h,
as required.

Conversely, suppose that there exists a set E ′ ⊆ E(H) with |E ′| = r such that, if
(H ′, τ ′) is the graph obtained from (H , τ ) by deleting all edges in E ′, we have that
the reach of s is (H ′, τ ′) is at most |reachH ′,τ ′(s)| ≤ h.

Suppose first that E ′ ∩ {sw : w ∈ W } = ∅; we argue that in this case s reaches at
least |V (H)| − |E ′| − (|E ′|

2

)
vertices in (H ′, τ ′) and that this lower bound can only be

achieved if G contains a clique on r vertices.
We begin by arguing that we may assume without loss of generality that every

element of E ′ is incident with s. Suppose first that viwi, j ∈ E ′ for some 1 ≤ i ≤ n
and 1 ≤ j ≤ m. The only vertices which are reached from s along a temporal path
using this edge are e j and elements of W which are necessarily in the reachability set
of s since we are assuming we do not delete any edge of the form sw with w ∈ W .
We can therefore replace viwi, j with svi in E ′ without increasing the number of
vertices that are temporally reachable from s, since deleting E ′ will still destroy the
temporal path from s to e j via viwi, j . Suppose now that wi, j e j ∈ E ′ for some
1 ≤ i ≤ n and 1 ≤ j ≤ m. Again, the only vertex outside W that is reachable from
s along a temporal path that includes this edge is e j , and as before we can destroy
this temporal path by instead deleting svi . We therefore conclude that, provided that
E ′ ∩ {sw : w ∈ W } = ∅, it is possible to delete a subset of {svi : 1 ≤ i ≤ n} of
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size |E ′| such that the reachability set of s is a subset of reachH ′,τ ′(s). We therefore
assume from now on that E ′ ⊆ {svi : 1 ≤ i ≤ n}.

Set U ⊆ V (G) to be the set of vertices in V (G) that are incident with an edge
in E ′. We claim that U induces a clique in G. To see this, note that s reaches all of
V (G) \ U , all of W , and every vertex in E(G) that does not have both endpoints in
U . By assumption, we therefore have

h ≥ |reachH ′,τ ′(v)| = 1 + |V (G) \U | + |W | +
∣∣∣∣∣∣

⋃

v∈V (G)\U
{e ∈ E(G) : v ∈ e}

∣∣∣∣∣∣

= 1 + (n − r) + 2m + m − {xy ∈ E(G) : x, y ∈ U }.

By definition of h, it follows that |{xy ∈ E(G) : x, y ∈ U }| ≥ (r
2

)
; this holds if and

only if U induces a clique in G, in which case we have equality. It therefore follows,
as claimed, that s reaches at least |V (H)| − |E ′| − (|E ′|

2

)
vertices in (H ′, τ ′), and that

this lower bound can only be achieved if G contains a clique on r vertices.
To complete the proof, we argue that the remaining case E ′ ∩ {sw : w ∈ W } �= ∅

cannot occur. Suppose that |E ′ ∩ {sw : w ∈ W }| = t > 0. Note that the deletion of an
edge sw with w ∈ W can at most remove w from the reachability set of s, since the
edge sw is active strictly later than any other edge incident with w and so cannot be
part of a longer temporal path starting at s. If we set E ′′ = E ′ \ {sw : w ∈ W }, this
observation combined with the reasoning above tells us that

|reachH ′,τ ′(s)| ≥ |V (H)| − |E ′′| −
(|E ′′|

2

)
− t

= |V (H)| − (r − t) −
(|E ′′|

2

)
− t

> |V (H)| − r −
(
r

2

)
= h,

contradicting our choice of E ′. 
�
Wenow introduce the vertex version of interval-membership-width, which captures

the maximum number of vertices incident both to an edge active before time t and to
an edge active after time t , taken over all times t in the lifetime of the graph.

Definition 3 Let (G, τ ) be a temporal graph with lifetime �. The vertex interval-
membership sequenceof (G, τ ) is the sequence (Ft )t∈[�] of vertex-subsets ofG (called
bags) where each Ft is defined as follows

Ft := {v ∈ V (G) : ∃i ≤ t ≤ j and u, w∈NG(v) such that i ∈ τ(uv) and j ∈τ(wv)}

(note that u and w need not be distinct). The vertex-interval-membership-width of
(G, τ ) – denoted vimw(G, τ ) – is the maximum cardinality attained by any bag in the
vertex interval-membership sequence of (G, τ ) (i.e. vimw(G, τ ) := maxt∈[�]|Ft |).
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Fig. 4 A temporal graph of unit
interval-membership-width, but
which has vertex-interval-
membership-width at least k;
this graph consists of a disjoint
union of two-edge paths
P1, . . . , Pk , where the edges
�i mi and miri of Pi are active at
times i and i + k respectively

P1 : 1 m1 r1

P2 : 2 m2 r2

Pk : k mk rk

τ( 1m1)={1} τ(m1r1)={1+k}

τ( 2m2)={2} τ(m2r2)={2+k}

τ( kmk)={k} τ(mkrk)={2k}

It is clear that, for any temporal graph (G, τ ), vimw(G, τ ) ≥ 2imw(G, τ ): if an
edge e is active at times before and after t , and so belongs to the set for time t in the
interval-membership sequence, it follows that both endpoints of e must belong to the
set for time t in the vertex interval-membership sequence. However, the difference
between the two parameters can be arbitrarily large. Consider, for example, the rem-
poral graph in Fig. 4 consisting of a disjoint union of two-edge paths P1, . . . , Pk ; in
this temporal graph, since every edge appears at a single unique time, the interval-
membership-width is only one, but the midpoint of every path is incident with an edge
appearing at a time at most k and a time strictly greater than k, giving vertex-interval-
membership-width at least k.

Lemma 16 If (G, τ ) is a temporal graph where each edge is active at-least once,
then one can compute the vertex-interval-membership sequence of (G, τ ) in time
O(vimw(G, τ )�).

Proof Initialize a sequence (Wt )t∈[�] of empty bags; then proceed as follows:

V1 For each edge e of G, find the pair (ae, Ae) = (min τ(e),max τ(e));
V2 for each vertex x of G,

(a) let (bx , Bx ) = (mine�x ae,maxe�x Ae)

(b) for all times t with bx ≤ t ≤ Bx , add x to the bag Wt .

Correctness follows trivially from the definition of the vertex-interval-membership
sequence, so now we consider the running time. Denoting the interval-membership
sequence of (G, τ ) by (Ft )t∈[�], then, since 2imw(G, τ ) ≤ vimw(G, τ ) (as we
observed earlier), Step V1 takes time

O
( ∑

e∈E(G)

|τ(e)|
)

= O
( ∑

t∈[�]
|Ft |

)
= O(imw(G, τ )�) = O(vimw(G, τ )�).

Step V2 takes time

O
( ∑

x∈V (G)

(dG(x) + |{t ∈ [�] : x ∈ Wt }|)
)

=

= O(|E(G)|) + O
( ∑

x∈V (G)

|{t : x ∈ Wt }|)
)

= O
( ∑

t∈[�]
|Ft |)

)
+ O

( ∑

x∈V (G)

|{t : x ∈ Wt }|)
)

(∀e ∈ E(G), |τ(e)| ≥ 1)
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= O
( ∑

t∈[�]
|Ft |)

)
+ O

( ∑

t∈[�]
|Wt |)

)

= O(imw(G, τ )�) + O(vimw(G, τ )�)

= O(vimw(G, τ )�) (imw(G, τ ) ≤ vimw(G, τ )).

Thus, the whole algorithm runs in O(vimw(G, τ )�) time, as desired. 
�
We now illustrate the greater algorithmic power of vertex-interval-membership-

width by showing that MinReachDelete admits an FPT algorithm with respect to
this larger parameter.

Theorem 17 There is an algorithm that decides whether any temporal graph (G, τ )

with lifetime � is a yes-instance of MinReachDelete in time O(w2h2w2
�), where

w = vimw(G, τ ) is the vertex-interval-membership-width of (G, τ ).

Proof We proceed by a dynamic programming argument similar to that of Theorem 7.
Let ((G, τ ), S, k, h) be an instance of MinReachDelete, let (Ft )t∈[�] be the vertex
interval-membership sequence of (G, τ ) and assume without loss of generality that
F1 is non-empty.

For each i ∈ [�], we compute a set Li ⊆ {0, . . . , h} × F {0,1}
i consisting of pairs

of the form (r , f ) where r is an integer between 0 and h and f is a function from Fi
to {0, 1}. We define Li to be the set of such pairs (r , f ) such that there exists a set E ′

i
of time-edges with the following properties:

• |E ′
i | ≤ k, and

• if R denotes the set of vertices reachable from S in (G, τ ) \ Ei no later than time
i , then

– |R| ≤ r , and
– for every v ∈ Fi , v ∈ R if and only if f (v) = 1.

We say that such a set E ′
i of time-edgeswitnesses the element (r , f ) for Li .Note thatwe

may assumewithout loss of generality that every time-edge in E ′
i appears at a time less

than or equal to i . For each (r , f ) ∈ Li , we set the cost of (r , f ), written costi (r , f ),
to be the minimum cardinality of any set of time-edges witnessing (r , f ) for Li . It is
clear from these definitions that we have a yes-instance forMinReachDelete if and
only if L� �= ∅, and that in this case the minimum number of edges we need to delete
is equal to min(r , f )∈L�

cost�(r , f ).
It therefore remains to demonstrate that we can compute all sets Li within the stated

time; in fact, we shall also compute the cost function for each Li as we will make use
of this in computing Li+1. Note first that, for all i ∈ [�], |Li | ≤ h2w. Moreover, recall
from the definition of the vertex interval-membership sequence that both endpoints of
every edge active at time i belong to Fi , and so the number of edges active at time i
is at most

(|Fi |
2

) ≤ |Fi |2.
We begin by considering L1, and let E1 be the set of time-edges appearing at time

one. Since |E1| ≤ |F1|2 ≤ w2, we can consider all 2w2
possibilities for a subset

E ′
1 ⊆ E1 to delete; for each such subset of cardinality at most k, it is clear that we can
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compute in time O(|E1|) = O(w2) the corresponding pair (r , f ) and record |E ′
1| as

an upper bound for cost1(r , f ), since every vertex outside S that is reachable from S
by time 1 must belong to F1. We can therefore compute L1 in time O(w22w2

).
Nowsupposing thatwehave computed Li and the function costi : Li → {0, . . . , k},

we explain how to compute Li+1 and the function costi+1 : Li+1 → {0, . . . , k}.
Observe that every vertex reached from S by time i + 1 that was not already reached
by time i must belong to Fi+1: such a vertex must be reached along an edge appearing
at time i + 1 and so is incident with such an edge. Moreover, any such vertex v is
reached via an element of Fi ∪ S: either v is reached directly from S via an edge active
at time i + 1, or v is reached from another vertex u, which was reached by time i ;
since u is therefore incident with an edge appearing at a time at most i and an edge
active at time i + 1, we conclude that u ∈ Fi ∩ Fi+1.

It follows that the set of vertices reachable from S by time i + 1 can be computed
from the set of vertices in Fi ∩ Fi+1 reachable from S by time i together with the set
of edges active at time i + 1. Writing Ei+1 for the number of edges active at time
i + 1, we have |Ei+1| ≤ (

w
2

)
, and so we can consider each of the 2(

w
2) possibilities

for which edges in this set to delete. For each subset E ′
i+1 ⊆ Ei+1 and for every state

(r , f ) ∈ Li , set

R f ,E ′
i+1

:={v ∈ Fi+1 : ∃s ∈ S with sv ∈ Ei+1 \ E ′
i+1}

∪ {v ∈ Fi+1 : ∃u ∈ Fi with f (u) = 1 and uv ∈ Ei+1 \ E ′
i+1}.

By the previous reasoning, it is clear that R f ,E ′
i+1

is precisely the set of vertices reached
at time exactly i + 1 under the assumptions that

1. f −1(1) is the set of vertices in Fi reachable by time i , and
2. E ′

i+1 is the set of time-edges deleted at time i + 1.

For each subset E ′
i+1 ⊆ Ei+1 and for every state (r , f ) ∈ Li such that

1. costi (r , f ) + |E ′
i+1| ≤ k, and

2. r + |R f ,E ′
i+1

| ≤ h,

we therefore add to Li+1 the state (r ′, f ′), where r ′ = r + |R f ,E ′
i+1

| and, for all
v ∈ Fi+1,

f ′(v) =
{
1 if v ∈ R f ,E ′

i+1

0 otherwise.

We also record costi (r , f ) + |E ′
i+1| as an upper bound for costi+1(r ′, f ′). After

iterating through all possibilities for E ′
i+1 and (r , f ), the true value of costi+1(r ′, f ′)

is the least upper bound we have recorded for this state in Li+1.
It remains only to bound the time needed to compute Li+1 and the associated cost

function as described. To do this, we consider each pair consisting of a subset E ′
i+1 of

time-edges to delete, for which there are O(2(
w
2)) possibilities, together with a state

(r , f ) ∈ Li , for which there are O(h2w). The total number of pairs we consider is
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therefore O(h2w2
). For each such pair, we can compute the corresponding state in

Li+1 and the upper bound on the associated cost by examining each of the edges in
Ei+1 \ E ′

i+1, of which there areO(w2). We therefore compute Li+1 and the function

costi+1 in time O(w2h2w2
).

Summing over all sets Li for 1 ≤ i ≤ � we see that the time needed to compute
all states and associated cost functions is O(w2h2w2

�), as required. 
�

7 Discussion

In this paper we introduced a natural temporal analogue of Eulerian circuits and proved
that, in contrast to the static case, TempEuler(k) is NP-complete for all k ≥ 2
(where the k = 2 case was proven by Marino and Silva [19]). In fact we showed
that the problem remains hard even when the underlying static graph has path-width
2, feedback vertex number 1 or vertex cover number 2 (Sect. 3). Along the way, we
resolved an open problem of Akrida, Mertzios and Spirakis [15] by showing that
StarExp(k) is NP-complete for all k ≥ 4. This result yields a complete complexity
dichotomy with respect to k when combined with Akrida, Mertzios and Spirakis’
results [15].

Our hardness results rule out FPT algorithms for TempEuler(k) and StarExp(k)
with respect to many standard parameters describing the structure of the underlying
graph (such as path-width, feedback vertex number and vertex-cover number). Moti-
vated by these results, we introduced a new width measure which captures structural
information that is purely temporal; we call this the interval-membership-width. In
contrast to our hardness results, we showed that TempEuler(k) and StarExp(k) can
be solved in times O(w32w�) and O(w323w�) respectively where w is our new
parameter and � is the lifetime of the input.

Our fixed-parameter-tractability results parameterized by interval-membership-
width can also be leveraged via a win-win approach to obtain tractability results for
both TempEuler(k) and StarExp(k) parameterized solely by k and the minimum
andmaximum differences between any two successive times in a time-set of any edge.
These results allow us to partially resolve another open problem of Akrida, Mertzios
and Spirakis concerning the complexity of StarExp(k): we showed that it can be
solved in time 2O(k)� when the input has evenly spaced appearances of each edge
and lifetime �. We note, however, that it remains an open problem to determine the
complexity of the evenly spaced StarExp(k) problem when k is unbounded.

Given the success of parameterizations by interval-membership-width when it
comes to temporal edge-exploration problems, it is natural to ask whether such param-
eterizations can also yieldFPT algorithms for problems involving vertex exploration or
reachablity. It turns out that, for certain problems of this kind, amore powerful parame-
ter is needed to give fixed-parameter-tractability: we show that the vertex-reachability
problemMinReachDelete remains intractable even on temporal graphs which have
unit interval-membership-width. This motivated us to introduce a “vertex-variant”
of our measure called vertex-interval-membership-width. This parameter is bounded
below by interval-membership-width, but the difference between the two can be arbi-
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trarily large. Parameterizing by this larger parameter putsMinReachDelete in FPT
and demonstrates the greater algorithmic power of vertex-interval-membership-width.

Finally we point out that all of our hardness reductions hold also for the case of
non-strict temporal walks and, with slightly more work, even our tractability results
can be seen to hold for the non-strict case.
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