
Algorithmica (2022) 84:3686–3728
https://doi.org/10.1007/s00453-022-01013-y

Distinct Fringe Subtrees in Random Trees

Louisa Seelbach Benkner1 · Stephan Wagner2,3

Received: 6 May 2021 / Accepted: 16 July 2022 / Published online: 1 August 2022
© The Author(s) 2022

Abstract
A fringe subtree of a rooted tree is a subtree induced by one of the vertices and all
its descendants. We consider the problem of estimating the number of distinct fringe
subtrees in random trees under a generalized notion of distinctness, which allows for
many different interpretations of what “distinct” trees are. The random tree models
considered are simply generated trees and families of increasing trees (recursive trees,
d-ary increasing trees and generalized plane-oriented recursive trees). We prove that
the order of magnitude of the number of distinct fringe subtrees (under rather mild
assumptions on what ‘distinct’ means) in random trees with n vertices is n/

√
log n for

simply generated trees and n/ log n for increasing trees.

Keywords Fringe Subtrees · Simply Generated Trees · Increasing Trees · Tree
Compression

1 Introduction

A subtree of a rooted tree that consists of a vertex and all its descendants is called a
fringe subtree. Fringe subtrees are a natural object of study in the context of random
trees, and there are numerous results for various random tree models, see for example
[3, 13, 15, 17].

A short version of this paper appeared in the Proceedings of LATIN 2020 [46].
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Fringe subtrees are of particular interest in computer science: One of the most
important andwidely used lossless compressionmethods for rooted trees is to represent
a rooted tree as a directed acyclic graph, which is obtained by merging vertices that
are roots of identical fringe subtrees. This compressed representation of the tree is
often shortly referred to as minimal DAG and its size (number of vertices) is the
number of distinct fringe subtrees occurring in the tree. Compression by minimal
DAGs has found numerous applications in various areas of computer science, as for
example in compiler construction [2, Chapter 6.1 and 8.5], unification [41], symbolic
model checking (binary decision diagrams) [10], information theory [26, 47] andXML
compression and querying [11, 24].

In this work, we investigate the number of fringe subtrees in random rooted trees (all
trees considered in this work are rooted). So far, this problem has mainly been studied
with respect to the number of distinct fringe subtrees, where two fringe subtrees are
considered as distinct if they are distinct as members of the particular family of trees.
In [23], Flajolet, Sipala and Steyaert proved that, under very general assumptions,
the expected number of distinct fringe subtrees in a tree of size n drawn uniformly at
random from some given family of trees is asymptotically equal to c ·n/

√
log n, where

the constant c depends on the particular family of trees. In particular, their result covers
uniformly random plane trees (where the constant c evaluates to c = √

(log 4)/π ) and
uniformly random binary trees (with c = 2

√
(log 4)/π ). The result of Flajolet et

al. was extended to uniformly random Σ-labelled unranked trees in [9] (where Σ-
labelled means that each vertex of a tree is assigned a label from a finite alphabet Σ

and unranked means that the label of a vertex does not depend on its degree or vice
versa) and reproved with a different proof technique in [43] in the context of simply
generated families of trees (again, under the particular interpretation of distinctness
that two trees are considered as distinct if they are distinct as members of the particular
family of trees).

Another probabilistic tree model with respect to which the number of distinct fringe
subtrees has been studied is the binary search tree model: a random binary search tree
of size n is a binary search tree built by inserting the keys {1, . . . , n} according to a
uniformly chosen random permutation on {1, . . . , n}. Random binary search trees are
of particular interest in computer science, as they naturally arise for example in the
analysis of the Quicksort algorithm, see [16]. In [20], Flajolet, Gourdon and Martinez
proved that the expected number of distinct fringe subtrees in a random binary search
tree of size n is O(n/ log n). This result was improved in [14] by Devroye, who
showed that the asymptoticsΘ(n/ log n) holds. In a recent paper by Bodini, Genitrini,
Gittenberger, Larcher and Naima [6], the result of Flajolet, Gourdon andMartinez was
reproved, and it was shown that the average number of distinct fringe subtrees in a
random recursive tree of size n is O(n/ log n) as well. Moreover, the result of Devroye
was generalized from random binary search trees to a broader class of random ordered
binary trees in [45], where the problem of estimating the expected number of distinct
fringe subtrees in random binary trees was considered in the context of leaf-centric
binary tree sources, which were introduced in [33, 47] as a general framework for
modelling probability distributions on the set of binary trees of size n.
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In thiswork,we consider two types of random trees: Random simply generated trees
(as a general concept to model uniform probability distributions on various families of
trees) and specific families of increasing trees (recursive trees, d-ary increasing trees
and generalized plane-oriented recursive trees), which in particular incorporate the
binary search tree model (for the precise definitions see Sects. 2.1 and 2.2).

Specifically, we investigate the number of distinct fringe subtrees with respect to
these random tree models under a generalized notion of distinctness, which allows for
many different interpretations of what “distinct” trees are. To give a concrete example
of different notions of distinctness, consider the family of d-ary treeswhere each vertex
has d possible positions to which children can be attached (for instance, if d = 3, a
left, a middle and a right position). The following three possibilities lead to different
interpretations of when two trees are regarded the same:

(i) the order and the positions of branches matter,
(ii) the order of branches matters, but not the positions to which they are attached,
(iii) neither the order nor the positions matter.

See Fig. 1 and Fig. 2 for an illustration: In Fig. 2, we consider a binary tree (on
the left) and its distinct fringe subtrees (on the right) under the three different inter-
pretations (i) – (iii) of distinctness. In case (i) (the order and the position of branches
matter), we count distinct binary fringe subtrees, in case (ii) (only the order of branches
matters) we count distinct plane fringe subtrees, and in the last case (iii) (neither order
nor positions matter), we count distinct unordered fringe subtrees of the binary tree.

In order to cover all these cases, we only assume that the trees of order k within
the given family F of trees are partitioned into a set Ik of isomorphism classes for
every k. The quantity of interest is the total number of isomorphism classes that occur
among the fringe subtrees of a random tree with n vertices. The following rather mild
assumptions turn out to be sufficient for our purposes:

(C1) We have lim supk→∞
log |Ik |

k = C1 < ∞.
(C2) There exist subsets Jk ⊆ Ik of isomorphism classes and a positive constant C2

such that

(C2a) a random tree in the family F with k vertices belongs to a class in Jk with
probability 1 − o(1) as k → ∞, and

(C2b) the probability that a random tree in F with k vertices lies in a fixed isomor-
phism class I ∈ Jk is never greater than e−C2k+o(k).

Note that (C2a) and (C2b) imply that |Ik | ≥ |Jk | ≥ eC2k−o(k), thus we have
C1 ≥ C2 > 0. Under the conditions (C1) and (C2), we prove the following general
statement (for the definitions of offspring distributions and Galton–Watson processes,
see Sect. 2.1):

Theorem 1 Let F be a simply generated family of trees with a partition into iso-
morphism classes that satisfies (C1) and (C2), and let ξ be the offspring distribution
of the Galton–Watson process corresponding to F , which satisfies E(ξ) = 1 and
V(ξ) = σ 2 < ∞. Let An denote the total number of different isomorphism classes
represented by the fringe subtrees of a random tree Tn of size n drawn randomly from
the specific family F . Set κ = √

2/(πσ 2). We have
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Fig. 1 Four distinct binary trees (left), and the two distinct plane trees associated to them (right), which are
in turn identical as unordered trees

Fig. 2 A binary tree (left) and (i) the six distinct binary trees, (ii) the five distinct plane trees and (iii) the
four distinct unordered trees represented by its fringe subtrees (right)

(i)
κ
√
C2n√
log n

(1 + o(1)) ≤ E(An) ≤ κ
√
C1n√
log n

(1 + o(1)),

(ii)
κ
√
C2n√
log n

(1+ o(1)) ≤ An ≤ κ
√
C1n√
log n

(1+ o(1)) w.h.p. (with high probability, i.e.,

with probability tending to 1 as n → ∞).

The same also applies to families of increasing trees, of which binary search trees
and recursive trees are special cases: we obtain essentially the same statement, with
the order of magnitude being n

log n rather than n√
log n

.

Theorem 2 Let F be one of the “very simple families” of increasing trees, namely
recursive trees, d-ary increasing trees, or gports (generalized plane-oriented recursive
trees), see Sect. 2.2. Let a partition into isomorphism classes be given that satisfies
(C1) and (C2), and let An denote the total number of different isomorphism classes
represented by the fringe subtrees of a random tree Tn of size n drawn from F . Set
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κ = 1
1+α

, where α = 0 in the case of recursive trees, α = 1/r for some constant
r > 0 in the case of gports, and α = −1/d for d-ary increasing trees. We have

(i)
κC2n

log n
(1 + o(1)) ≤ E(An) ≤ κC1n

log n
(1 + o(1)),

(ii)
κC2n

log n
(1 + o(1)) ≤ An ≤ κC1n

log n
(1 + o(1)) w.h.p.

As our main application of these theorems, we investigate the number of distinct
unordered trees represented by the fringe subtrees of a random tree. This question
arises quite naturally for example in the context ofXMLcompression:Here, one distin-
guishes between document-centricXML, forwhich the correspondingXMLdocument
trees are ordered, and data-centric XML, for which the corresponding XML document
trees are unordered. Understanding the interplay between ordered and unordered struc-
tures has thus received considerable attention in the context of XML (see for example
[1, 8, 48]). In particular, in [36], it was investigated whether tree compression can ben-
efit from unorderedness. For this reason, unordered minimal DAGs were considered.
An unordered minimal DAG of a tree is a directed acyclic graph obtained by merging
vertices that are roots of fringe subtrees which are identical as unordered trees. From
such an unordered minimal DAG, an unordered representation of the original tree can
be uniquely retrieved. The size of this compressed representation is the number of
distinct unordered trees represented by the fringe subtrees occurring in the tree. So
far, only some worst-case estimates comparing the size of a minimal DAG to the size
of its corresponding unordered minimal DAG are known: among other things, it was
shown in [36] that the size of an unordered minimal DAG of a binary tree can be
exponentially smaller than the size of the corresponding (ordered) minimal DAG.

However, no average-case estimates comparing the size of the minimal DAG of a
tree to the size of the corresponding unordered minimal DAG are known so far. In
particular, in [36] it is stated as an open problem to estimate the expected number of dis-
tinct unordered trees represented by the fringe subtrees of a uniformly random binary
tree of size n and conjectured that this number asymptotically grows asΘ(n/

√
log n).

In this work, as one of our main theorems, we settle this open conjecture by proving
upper and lower bounds of order n/

√
log n for the number of distinct unordered trees

represented by the fringe subtrees of a tree of size n drawn randomly from a simply
generated family of trees, which hold both in expectation and w.h.p. For uniformly
random binary trees, our result reads as follows.

Theorem 3 Let Kn denote the number of distinct unordered trees represented by
the fringe subtrees of a uniformly random binary tree of size n. Then for c1 ≈
1.0591261434 and c2 ≈ 1.0761505454, we have

(i) c1
n√
log n

(1 + o(1)) ≤ E(Kn) ≤ c2
n√
log n

(1 + o(1)),

(ii) c1
n√
log n

(1 + o(1)) ≤ Kn ≤ c2
n√
log n

(1 + o(1)) w.h.p.

Our approach can also be used to obtain analogous results for random recursive
trees, d-ary increasing trees and gports, though the order of magnitude changes to
Θ(n/ log n). Again, we have upper and lower bounds in expectation and w.h.p. For
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binary increasing trees, which are equivalent to binary search trees, our result reads
as follows:

Theorem 4 Let Kn be the total number of distinct unordered trees represented by the
fringe subtrees of a random binary search tree of size n. For two constants c3 ≈
1.5470025923 and c4 ≈ 1.8191392203, the following holds:

(i) c3
n

log n
(1 + o(1)) ≤ E(Kn) ≤ c4

n

log n
(1 + o(1)),

(ii) c3
n

log n
(1 + o(1)) ≤ Kn ≤ c4

n

log n
(1 + o(1)) w.h.p.

Both Theorem 3 and Theorem 4 were already given in the conference version [46]
of this paper.1 Additionally, we improve several existing results on the number of
fringe subtrees in random trees. We show that the estimate from [23, Theorem 4]
and [43, Theorem 3.1] on the number of distinct fringe subtrees (as members of the
particular family) in simply generated trees does not only hold in expectation, but also
w.h.p. (see Theorem 8). Furthermore, we improve the lower bound on the number of
distinct binary trees represented by the fringe subtrees of a random binary search tree:

Theorem 5 Let Hn be the total number of distinct fringe subtrees in a random binary
search tree of size n. For two constants c5 ≈ 2.4071298335 and c6 ≈ 2.7725887222,
the following holds:

(i) c5
n

log n
(1 + o(1)) ≤ E(Hn) ≤ c6

n

log n
(1 + o(1)),

(ii) c5
n

log n
(1 + o(1)) ≤ Hn ≤ c6

n

log n
(1 + o(1)) w.h.p.

The upper bound in part (i) can already be found in [20] and [14]. Moreover, a lower
boundof the formE(Hn) ≥ cn/ log(n)(1+o(1))was already shown in [14] for the con-
stant c = (log 3)/2 ≈ 0.5493061443 and in [45] for the constant c ≈ 0.6017824584.
So our new contributions in this special case are part (ii) and the improvement of the
lower bound onE(Hn). Again, Theorem 5was already given in the conference version
[46] of this paper.

Finally, we solve an open problem from [6], by proving that the number of distinct
fringe subtrees in a random recursive tree of size n is Θ(n/ log n) in expectation and
w.h.p. (see Theorem 16), thus showing a matching lower bound to the upper bound
proved in [6].

2 Preliminaries

Let t be a rooted tree (all trees considered in this work are rooted). We define the size
|t | of t as its number of vertices. Moreover, for a vertex v of t , we denote with deg(v)

1 In the conference version [46], we consider full binary trees, i.e., ordered trees such that each vertex has
exactly two or zero descendants, whereas in this version, we allow binary trees to have (left- and right-)
unary vertices. The respective probabilistic models are equivalent, see Sect. 4.3.
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the (out-)degree of v, i.e., its number of children, and with dk(t)we denote the number
of vertices of degree k of t . A fringe subtree of a rooted tree t is a subtree consisting
of a vertex and all its descendants. For a rooted tree t and a given vertex v, let t(v)

denote the fringe subtree of t rooted at v. For a family of trees F , we will denote the
subset of trees of size k belonging to F by Fk . Some important families of trees we
will consider below are the following (for more details, see e.g. [16]):

– Plane Trees: We write T for the family of plane trees, i.e., ordered rooted trees
where each vertex has an arbitrary number of descendants, which are ordered from
left to right. Moreover, we let Tk denote the set of plane trees of size k.

– Binary Trees: The family of binary trees is the family of rooted ordered trees, such
that each vertex has either (i) no children, (ii) a single left child, (iii) a single right
child, or (iv) both a left and a right child. In other words, every vertex has two
possible positions to which children can be attached.

– d-ary Trees:Binary trees naturally generalize to d-ary trees, for d ≥ 2: a d-ary tree
is an ordered tree where every vertex has d possible positions to which children
can be attached. Thus, the degree of a vertex v of a d-ary tree is bounded above
by d and there are

(d
k

)
types of vertices of degree k for 0 ≤ k ≤ d. For example,

if d = 3, a vertex of degree k = 2 can have a left and a middle child, a left and a
right child, or a right and a middle child.

– Unordered Trees: An unordered tree is a rooted tree without an ordering on the
descendants of the vertices.

– Labelled Trees:A labelled tree of size n is an unordered rooted tree whose vertices
are labelled with the numbers 1, 2, . . . , n. Note that the labelling on the vertices
of a labelled tree implicitly yields an ordering on the children of a vertex, e.g., if
we sort them in ascending order according to their labels.

2.1 Simply Generated Families of Trees and Galton–Watson Trees

Ageneral concept to model various families of trees is the concept of simply generated
families of trees: It was introduced by Meir and Moon in [37] (see also [16, 30]).
The main idea is to assign a weight to every plane tree t ∈ T which depends on
d0(t), . . . , d|t |(t), that is, on the numbers of vertices of degree k for 0 ≤ k ≤ |t |. Let
(φm)m≥0 denote a sequence of non-negative real numbers (called theweight sequence),
and let

Φ(x) =
∑

m≥0

φmx
m .

We define the weight w(t) of a plane tree t as

w(t) =
∏

v∈t
φdeg(v) =

∏

m≥0

φdm (t)
m .
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Moreover, let

yn =
∑

t∈Tn
w(t)

denote the sumof allweights of plane trees of sizen. It iswell known that the generating
function Y (x) = ∑

n≥1 ynx
n satisfies

Y (x) = xΦ(Y (x)).

A weight sequence (φm)m≥0 induces a probability mass function PΦ : Tn → [0, 1]
on the set of plane trees of size n by

PΦ(t) = w(t)

yn

for every n ≥ 0 with yn > 0. We will tacitly assume that yn > 0 holds whenever we
consider random plane trees of size n.

Example 1 The family of plane trees is a simply generated family of trees with weight
sequence (φk)k≥0 defined by φk = 1 for every k ≥ 0: Thus, every plane tree t is
assigned the weightw(t) = 1, the numbers yn count the number of distinct plane trees
of size n, and the probability mass function PΦ : Tn → [0, 1] specifies the uniform
probability distribution on Tn .

Example 2 The family of d-ary trees is obtained as the simply generated family of
trees whose weight sequence (φk)k≥0 satisfies φm = (d

m

)
for every m ≥ 0. This takes

into account that there are
(d
m

)
many types of vertices of degree m in d-ary trees.

Example 3 The family of Motzkin trees is the family of ordered rooted trees such that
each vertex has either zero, one or two children. In particular, we do not distinguish
between left-unary and right-unary vertices as in the case of binary trees, i.e., there is
only one type of unary vertices. The weight sequence (φk)k≥0 with φ0 = φ1 = φ2 = 1
and φk = 0 for k ≥ 3 corresponds to the simply generated family of Motzkin trees.

Example 4 The family of (unordered) labelled trees is obtained as the simply generated
family of trees whose weight sequence (φk)k≥0 satisfies φk = 1/k! for every k ≥ 0
(see [16, 30]).

Closely related to the concept of simply generated families of trees is the concept
of Galton–Watson processes: Let ξ be a non-negative integer-valued random vari-
able (called an offspring distribution). A Galton–Watson branching process (see for
example [30]) with offspring distribution ξ assigns a probability ν(t) to a tree t ∈ T
by

ν(t) =
∏

v∈t
P(ξ = deg(v)) =

∏

k≥0

P(ξ = k)dk (t).
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A random plane tree T generated by a Galton–Watson process is called an uncon-
ditioned Galton–Watson tree. Conditioning the Galton–Watson tree on the event that
|T | = n, we obtain a probability mass function Pξ on the set Tn of plane trees of size
n defined by

Pξ (t) = ν(t)
∑

t ′∈Tn ν(t ′)
.

A random variable which takes values in Tn according to the probability mass function
Pξ is called a conditioned Galton–Watson tree of size n. A Galton–Watson process
with offspring distribution ξ that satisfies E(ξ) = 1 is called critical.

LetF be a simply generated family of trees with weights (φm)m≥0. Inmany cases, it
is possible to view a random tree of size n drawn from Tn according to the probability
mass function PΦ as a conditioned Galton–Watson tree (see for example [30]): let
R > 0 denote the radius of convergence of the series Φ(x) = ∑

k≥0 φk xk , and
assume that there is τ ∈ (0, R] with τΦ ′(τ ) = Φ(τ). Define an offspring distribution
ξ by

P(ξ = m) = φmτmΦ(τ)−1 (1)

for every m ≥ 0. Then ξ is an offspring distribution of a critical Galton–Watson
process. In particular, ξ defined as in (1) induces the same probability mass function
on Tn as the weight sequence (φm)m≥0, since we have Pξ (t) = PΦ(t). Regarding the
variance of ξ of a Galton–Watson process corresponding to a simply generated family
of trees F with weight sequence (φk)k≥0, we find

V(ξ) = τ 2Φ ′′(τ )

Φ(τ)
. (2)

Note that if τ < R, thenV(ξ) < ∞, but if τ = R,V(ξ)might be infinite. However, we
will only consider weight sequences (φk)k≥0 for which the corresponding offspring
distribution ξ satisfies V(ξ) < ∞.

Example 1 (continued) The offspring distribution ξ of the Galton–Watson process
corresponding to the family of plane trees is given by P(ξ = m) = 2−m−1 for every
m ≥ 0 (a geometric distribution).

Example 2 (continued) The offspring distribution ξ of the Galton–Watson process
corresponding to the family of d-ary trees is a binomial distribution with P(ξ = m) =(d
m

)
d−d(d − 1)d−m for 0 ≤ m ≤ d.

Example 3 (continued) The Galton–Watson process with offspring distribution ξ

defined by P(ξ = m) = 1/3 if 0 ≤ m ≤ 2 and P(ξ = m) = 0 otherwise corre-
sponds to the family of Motzkin trees.

Example 4 (continued) The Galton–Watson process corresponding to the family of
labelled trees is defined by the offspring distribution ξ with P(ξ = m) = (em!)−1 for
every m ≥ 0 (i.e., ξ is a Poisson distribution).
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The first lemma needed for the proof of our main result is the following:

Lemma 1 Let Zn,k be the number of fringe subtrees of size k in a conditioned Galton–
Watson tree of size n whose offspring distribution ξ satisfies E(ξ) = 1 and V(ξ) =
σ 2 < ∞. Then we have

E(Zn,k) = n√
2πσ 2k3/2

(1 + o(1)), (3)

and V(Zn,k) = O(n/k3/2) uniformly in k for k ≤ √
n as k, n → ∞. Moreover, for

all k ≤ n, we have

E(Zn,k) = O
( n3/2

k3/2(n − k + 1)1/2

)
. (4)

Proof We make extensive use of the results in Janson’s paper [31]. Let Sn be the sum
of n independent copies of the offspring distribution: Sn = ∑n

i=1 ξi . By [31, Lemma
5.1], we have

E(Zn,k) = P(Sn−k = n − k)

P(Sn = n − 1)
qkn,

where qk is the probability that an unconditioned Galton–Watson tree with offspring
distribution ξ has final size k. Moreover, by [31, Lemma 5.2], we have

P(Sn−k = n − k)

P(Sn = n − 1)
= 1 + O

( k
n

)
+ o(n−1/2)

uniformly for all k with 1 ≤ k ≤ n
2 as n → ∞, and by [31, Eq. (4.13)] (see also

Kolchin [35]),

qk ∼ 1√
2πσ 2

k−3/2 (5)

as k → ∞. Combining the two, we obtain the desired asymptotic formula (3) for
E(Zn,k) if k ≤ √

n and both k and n tend to infinity. For arbitrary k, [31, Lemma 5.2]
states that

P(Sn−k = n − k)

P(Sn = n − 1)
= O

( n1/2

(n − k + 1)1/2

)
.

The estimate (4) follows.
For the variance, we can similarly employ [31, Lemma 6.1], which gives us

V(Zn,k) = P(Sn−k = n − k)

P(Sn = n − 1)
qkn −

(
P(Sn−k = n − k)

P(Sn = n − 1)

)2
q2k n(2k − 1)

+
(
P(Sn−2k = n − 2k + 1)

P(Sn = n − 1)
−

(
P(Sn−k = n − k)

P(Sn = n − 1)

)2)
q2k n(n − 2k + 1).
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Finally, by [31, Lemma 6.2],

P(Sn−2k = n − 2k + 1)

P(Sn = n − 1)
−

(
P(Sn−k = n − k)

P(Sn = n − 1)

)2 = O
(1
n

)

for k ≤ √
n, uniformly in k. Combining all estimates, we find that V(Zn,k) =

O(qkn) = O(n/k3/2), which completes the proof. �

We remark that identity (3) also follows from a result shown in [12, Lemma 4.6]

combined with the asymptotics (5) on the probability that an unconditioned Galton–
Watson tree is of size k.

From Lemma 1, we can now derive the following lemma on fringe subtrees of a
random tree Tn of size n drawn from a simply generated family F :

Lemma 2 Let Tn be a random tree of size n drawn randomly from a simply generated
family of trees F such that the offspring distribution ξ of the corresponding critical
Galton–Watson process satisfies V(ξ) = σ 2 < ∞. Let a, ε be positive real numbers
with ε < 1

2 . For positive integers k, let Sk ⊆ Fk be a subset of trees of size k from
F , and let pk be the probability that a conditional Galton–Watson tree of size k with
offspring distribution ξ belongs to Sk . Now let Xn,k denote the (random) number of
fringe subtrees of size k in the random tree Tn which belong to Sk . Moreover, let Yn,ε

denote the (random) number of arbitrary fringe subtrees of size greater than nε in Tn.
Then

(a) E(Xn,k) = pkn(2πσ 2k3)−1/2(1 + o(1)), for all k with a log n ≤ k ≤ nε.
(b) V(Xn,k) = O(pkn/k3/2) for all k with a log n ≤ k ≤ nε.
(c) E(Yn,ε) = O(n1−ε/2), and
(d) with high probability, the following statements hold simultaneously:

(i) |Xn,k − E(Xn,k)| ≤ p1/2k n1/2+εk−3/4 for all k with a log k ≤ k ≤ nε,
(ii) Yn,ε ≤ n1−ε/3.

We emphasize (since it will be important later) that the inequality in part (d), item (i),
does not only hold w.h.p. for each individual k, but that it is satisfied w.h.p. for all
k in the given range simultaneously. Parts (a) and (b) were shown in the context of
conditioned Galton–Watson trees in [12, Lemma 4.6 and Lemma 4.8].

Proof Let Zn,k again denote the number of fringe subtrees of size k in the conditioned
Galton–Watson tree of size nwith offspring distribution ξ . Then by the correspondence
between simply generated families of trees and conditioned Galton–Watson trees, we
find that Zn,k and the random number of fringe subtrees of size k in a random tree
Tn of size n drawn randomly from the simply generated family F are identically
distributed. Furthermore, conditioned on Zn,k = m, the m fringe subtrees of size k in
Tn are independent conditioned Galton–Watson trees. Thus, Xn,k can be regarded as a
sum of Zn,k many Bernoulli random variables with probability pk . We thus have (see
[27, Theorem 15.1, p.84])

E(Xn,k) = pkE(Zn,k) = npk√
2πσ 2k3/2

(1 + o(1)),
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as well as (see again [27, Theorem 15.1, p.84])

V(Xn,k) = p2kV(Zn,k) + pk(1 − pk)E(Zn,k) = O
( npk
k3/2

)

by Lemma 1, which proves part (a) and part (b). For part (c), we observe that

E(Yn,ε) =
∑

k>nε

E(Zn,k) = O
(
n1−ε/2

)
,

again by Lemma 1. In order to show part (d), we apply Chebyshev’s inequality to
obtain concentration on Xn,k :

P

(
|Xn,k − E(Xn,k)| ≥ p1/2k n1/2+εk−3/4

)
≤ V(Xn,k)

pkn1+2εk−3/2 = O(n−2ε).

Hence, by the union bound, the probability that the stated inequality fails for any k in
the given range is only O(n−ε), proving that the first statement holds w.h.p. Finally,
Markov’s inequality implies that

P

(
Yn,ε > n1−ε/3

)
≤ E(Yn,ε)

n1−ε/3 = O(n−ε/6),

showing that the second inequality holds w.h.p. as well. �


2.2 Families of Increasing Trees

An increasing tree is a rooted tree whose vertices are labelled 1, 2, . . . , n in such a
way that the labels along any path from the root to a leaf are increasing. If one assigns
a weight function to these trees in the same way as for simply generated trees, one
obtains a simple variety of increasing trees. The exponential generating function for
the total weight satisfies the differential equation

Y ′(x) = Φ(Y (x)). (6)

A general treatment of simple varieties of increasing trees was given by Bergeron,
Flajolet and Salvy in [5]. Three special cases are of particular interest, as random
elements from these families can be generated by a simple growth process. These are:

– recursive trees, where Φ(t) = et ;
– generalized plane-oriented recursive trees (gports), where Φ(t) = (1 − t)−r for
some constant r > 0;

– d-ary increasing trees, where Φ(t) = (1 + t)d .

Plane-oriented recursive trees (ports) are the special case of gports with r = 1.
These three families of increasing trees are the increasing tree analogues of labelled
trees, (generalized) plane trees and d-ary trees, respectively. Collectively, these are
sometimes called very simple families of increasing trees [40]. In all these cases, the
differential equation (6) has a simple explicit solution, namely
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– Y (x) = − log(1 − x) for recursive trees,
– Y (x) = 1 − (1 − (r + 1)x)1/(r+1) for gports,
– Y (x) = (1 − (d − 1)x)−1/(d−1) − 1 for d-ary increasing trees.

It follows that the number (total weight, in the case of gports) of trees with n vertices
is

– (n − 1)! for recursive trees (where each of these trees is equally likely),
–

∏n−1
k=1(k(r + 1) − 1) for gports,

–
∏n−1

k=1(1+k(d−1)) for d-ary increasing trees (in particular, n! for binary increasing
trees).

There is a natural growth process to generate these trees randomly: start with the root,
which is labelled 1. The n-th vertex (labelled n) is attached at random to one of the
previous n − 1 vertices, with a probability that is proportional to a linear function
of the (out-)degree. Specifically, the probability to attach to a vertex v with degree
(number of children) � is always proportional to 1 + α�, where α = 0 for recursive
trees, α = 1/r for gports and α = −1/d for d-ary increasing trees. So in particular, all
vertices are equally likely for recursive trees, vertices can only have up to d children
in d-ary increasing trees (since then the probability to attach further vertices becomes
0), and vertices in gports have a higher probability to become parent of a new vertex
if they already have many children; hence they are also called preferential attachment
trees.

It is well known that the special case d = 2 of d-ary increasing trees leads to a
model of random binary trees that is equivalent to binary search trees, see for example
[16].

We make use of known results on the total number of fringe subtrees of a given
size in very simple families of increasing trees. In particular, we have the following
formulas for the mean and variance (see [25]):

Lemma 3 Consider a very simple family of increasing trees, and let α be defined as
above. For every k < n, let Zn,k be the random number of fringe subtrees of size k
in a random tree of size n drawn from the simple family of increasing trees. Then the
expectation of Zn,k satisfies

E(Zn,k) = (1 + α)n − α

((1 + α)k + 1)((1 + α)k − α)
,

and for the variance of Zn,k , we have V(Zn,k) = O(n/k2) uniformly in n and k.

Now we obtain the following analogue of Lemma 2. The key difference is the
asymptotic behaviour of the number of fringe subtrees with k vertices as k increases:
instead of a factor k−3/2, we have a factor k−2.

Lemma 4 Let Tn be a random tree of size n drawn from a very simple family of
increasing trees with α defined as above. Let a, ε be positive real numbers with ε < 1

2 .
For every positive integer k with a log n ≤ k ≤ nε, let Sk be a subset of the possible
shapes of a tree of size k, and let pk be the probability that a random tree of size k from
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the given family has a shape that belongs to Sk . Now let Xn,k denote the (random)
number of fringe subtrees of size k in the random tree Tn whose shape belongs to Sk .
Moreover, let Yn,ε denote the (random) number of arbitrary fringe subtrees of size
greater than nε in Tn. Then

(a) E(Xn,k) = npk
(1+α)k2

(1 + O(1/k)) for all k with a log n ≤ k ≤ nε.

(b) V(Xn,k) = O(pkn/k2) for all k with a log n ≤ k ≤ nε.
(c) E(Yn,ε) = O(n1−ε), and
(d) with high probability, the following statements hold simultaneously:

(i) |Xn,k − E(Xn,k)| ≤ p1/2k k−1n1/2+ε for all k with a log k ≤ k ≤ nε,
(ii) Yn,ε ≤ n1−ε/2.

Proof The proof is similar to the proof of Lemma 2. Again we find that Xn,k can be
regarded as a sum of Zn,k Bernoulli random variables with probability pk . By [27,
Theorem 15.1], we have

E(Xn,k) = pkE(Zn,k)

as well as

V(Xn,k) = p2kV(Zn,k) + pk(1 − pk)E(Zn,k).

Now (a) and (b) both follow easily from Lemma 3. In order to estimate E(Yn,ε),
observe again that

E(Yn,ε) =
∑

k>nε

E(Zn,k).

Now (c) also follows easily from Lemma 3. Finally, (d) is obtained from (b) and (c)
as in the proof of Lemma 2. �


3 Proof of Theorem 1 and Theorem 2

We will focus on the proof of Theorem 1, which is presented in two parts. First, the
upper bound is verified; then we prove the lower bound, which has the same order of
magnitude. A basic variant of the proof technique was already applied in the proof of
Theorem 3.1 in [43].

3.1 The Upper Bound

For some integer k0 (to be specified later), we can clearly bound the total number of
isomorphism classes covered by the fringe subtrees of a random tree Tn of size n from
above by the sum of

(i) the total number of isomorphism classes of trees of size smaller than k0, which is∑
k<k0 |Ik | (a deterministic quantity that does not depend on the tree Tn), and
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(ii) the total number of fringe subtrees of Tn of size greater than or equal to k0.

To estimate the number (i) of isomorphism classes of trees of size smaller than k0, we
note that |Ik | ≤ eC1k+o(k) by condition (C1), thus also

∑

k<k0

|Ik | ≤ eC1k0+o(k0). (7)

Therefore, we can choose k0 = k0(n) in such a way that k0 = log n
C1

− g(n) for a
function g with g(n) = o(log n) and

∑

k<k0

|Ik | = o
( n√

log n

)
, (8)

thus making this part negligible. The concrete choice of the function g depends on
the lower-order term in the exponent on the right-hand side of (7), and furthermore,
g has to be chosen large enough, so that the bound o(n/

√
log n) on the sum of sizes

of isomorphism classes in (8) is achieved. For our purposes, it is enough to note that
there exists such a function g.

In order to estimate the number (ii) of fringe subtrees of Tn of size greater than or
equal to k0, we apply Lemma 2 with ε = 1/6. We let Sk be the set of all trees of size k
generated by our simply generated family of trees, so that pk = 1, to obtain the upper
bound

∑

k0≤k≤nε

Xn,k + Yn,ε = n√
2πσ 2

∑

k0≤k≤nε

1

k3/2
(1 + o(1)) + O

(
n1−ε/3

)

= 2√
2πσ 2

n√
k0

+ o

(
n√
log n

)
,

in expectation and w.h.p. as well, as the estimate from Lemma 2 (part (d)) holds
w.h.p. simultaneously for all k in the given range. Now we combine the two bounds
to obtain the upper bound on An stated in Theorem 1, both in expectation and w.h.p.

3.2 The Lower Bound

Let Sk now be the set of trees that belong to isomorphism classes in Jk (see condition
(C2)). Our lower bound is based on counting only fringe subtrees which belong to
Sk for suitable k. By condition (C2a), we know that the probability pk that a random
tree in F conditioned on having size k belongs to a class in Jk tends to 1 as k → ∞.
Hence, by Lemma 2, we find that the number of fringe subtrees of size k in Tn that
belong to Sk is

Xn,k = n√
2πσ 2k3

(1 + o(1)),
both in expectation and w.h.p.

We show that most of these trees are the only representatives of their isomorphism
classes as fringe subtrees. We choose a cut-off point k1 = k1(n); the precise choice
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will be described later. For k ≥ k1, let X
(2)
n,k denote the (random) number of unordered

pairs of isomorphic trees (trees belonging to the same isomorphism class) among the
fringe subtrees of size k which belong to Sk . We will determine an upper bound for
its expected value.

To this end, let � denote the number of isomorphism classes of trees in Sk , and let
q1, q2, . . . , q� be the probabilities that a random tree of size k lies in the respective
classes. By condition (C2b), we have qi ≤ e−C2k+o(k) for every i . Let us condition on
the event that Xn,k = N for some integer 0 ≤ N ≤ n. Those N fringe subtrees are
all independent random trees. Thus, for each of the

(N
2

)
pairs of fringe subtrees, the

probability that both belong to the i-th isomorphism class is q2i . This gives us

E(X (2)
n,k | Xn,k = N ) =

(
N

2

) �∑

i=1

q2i ≤ n2

2

�∑

i=1

qi e
−C2k+o(k) ≤ n2

2
e−C2k+o(k).

Since this holds for all N , the law of total expectation yields

E(X (2)
n,k) ≤ n2

2
e−C2k+o(k).

Summing over k ≥ k1, we find that

∑

k≥k1

E(X (2)
n,k) ≤ n2

2

∑

k≥k1

e−C2k+o(k) ≤ n2

2
e−C2k1+o(k1). (9)

We can therefore choose k1 in such a way that k1 = log n
C2

+ g(n), again for a function
g with g(n) = o(log n) and such that

∑

k≥k1

E(X (2)
n,k) = o

( n√
log n

)
. (10)

Here again the concrete choice of the function g depends on the lower-order term in
the exponent on the right-hand side of (9), and furthermore, g has to be chosen large
enough, so that the bound o(n/

√
log n) on the sum of sizes of isomorphism classes in

(10) is achieved.
If an isomorphism class of trees of size k occursm times among the fringe subtrees

of a random tree of size n, it contributes m − (m
2

)
to the random variable Xn,k − X (2)

n,k .

As m − (m
2

) ≤ 1 for all non-negative integers m, we find that Xn,k − X (2)
n,k is a lower

bound on the total number of isomorphism classes covered by fringe subtrees of Tn .
This gives us
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An ≥
∑

k1≤k≤nε

Xn,k −
∑

k1≤k≤nε

X (2)
n,k,

where we choose ε as in the proof of the upper bound. The second sum is negligible
since it is o(n/

√
log n) in expectation and thus also w.h.p. by the Markov inequality.

For the first sum, the same calculation as for the upper bound (using Lemma 2) shows
that it is

2n
√
2πσ 2k1

+ o

(
n√
log n

)

both in expectation and w.h.p. This yields the desired statement. �


3.3 Increasing Trees

With Lemma 4 in mind, it is easy to see that the proof of Theorem 2 is completely
analogous. The only difference is that sums of the form

∑
a≤k≤b k

−3/2 become sums
of the form

∑
a≤k≤b k

−2.
As the main idea of these proofs is to split the number of distinct fringe subtrees

into the number of distinct fringe subtrees of size at most k plus the number of distinct
fringe subtrees of size greater than k for some suitably chosen integer k, this type of
argument is called a cut-point argument and the integer k is called the cut-point (see
[20]). This basic technique is applied in several previous papers to similar problems
(see for instance [14, 20, 43, 45]).

4 Applications: Simply Generated Trees

Let F be a simply generated family of trees for which the corresponding critical
Galton–Watson process with distribution ξ satisfies V(ξ) < ∞. In this section, we
show that Theorem 1 can be used to count the numbers

(i) Hn of distinct trees (as members of F),
(ii) Jn of distinct plane trees, and
(iii) Kn of distinct unordered trees

represented by the fringe subtrees of a random tree Tn of size n drawn randomly
from the family F . In order to estimate the numbers Jn and Kn , we additionally need
a result by Janson [31] on additive functionals in conditioned Galton–Watson trees:
Let f : T → R denote a function mapping a plane tree to a real number (called a
toll-function). We define a mapping F : T → R by

F(t) =
∑

v∈t
f (t(v)).
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Such a mapping F is then called an additive functional. Equivalently, F can be
defined by a recursion. If t1, t2, . . . , th are the root branches of t (the components
resulting when the root is removed), then

F(t) = f (t) +
h∑

j=1

F(t j ).

The following theorem follows from Theorem 1.3 and Remark 5.3 in [31]:

Theorem 6 ([31], Theorem 1.3 and Remark 5.3) Let Tn denote a conditioned Galton–
Watson tree of size n, defined by an offspring distribution ξ with E(ξ) = 1, and let
T be the corresponding unconditioned Galton–Watson tree. If E(| f (T )|) < ∞ and
|E( f (Tk))| = o(k1/2), then

F(Tn)

n

p→ E( f (T )).

For the remainder of this section, we fix the following notation (see Sect. 2.1): Let
F always denote a simply generated family of trees with generating series Φ(x) =∑

m≥0 φmxm . Furthermore, with R we denote the radius of convergence of Φ and
suppose that there exists τ ∈ (0, R]with τΦ ′(τ ) = Φ(τ).We assume that the variance
of the offspring distribution ξ of the Galton–Watson process corresponding to F
satisfies V(ξ) = σ 2 < ∞.

4.1 Distinct Fringe Subtrees in Simply Generated Trees

In order to count distinct fringe subtrees in a random tree Tn of size n drawn from a
simply generated family of trees F , we consider two trees as isomorphic if they are
identical as members of F and verify that the conditions of Theorem 1 are satisfied.
That is, we consider a partition ofFk into isomorphism classes of size one, or in other
words, each tree is isomorphic only to itself. The total number of isomorphism classes
|Ik | is thus the total number of trees in F of size k. In order to ensure that condition
(C1) from Theorem 1 is satisfied, we need to make an additional assumption on F :
We assume that the weights φk of the weight sequence (φk)k≥0 are integers, and that
each tree t ∈ F corresponds to a weight of one unit, such that the total weight yn
of all plane trees of size n then equals the number of distinct trees of size n in our
simply generated family F of trees. This assumption is satisfied, e.g., by the simply
generated family of plane trees (Example 1), the family of d-ary trees (Example 2)
and the family of Motzkin trees (Example 3). We have the following theorem on the
asymptotic growth of the numbers yn :

Theorem 7 (see [16], Theorem 3.6 and Remark 3.7) Let d denote the greatest common
divisor of all indices m with φm > 0. Then

yn = d

√
Φ(τ)

2πΦ ′′(τ )

Φ ′(τ )n

n3/2

(
1 + O(n−1)

)
,
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if n ≡ 1 mod d, and yn = 0 if n �≡ 1 mod d.

For the sake of simplicity, we will tacitly assume that d = 1 holds for the simply
generated families of trees considered below, though all results presented below can
be easily shown to hold for d �= 1 as well. We obtain the following result from
Theorem 1:

Theorem 8 Let Hn denote the total number of distinct fringe subtrees in a random tree
Tn of size n from a simply generated family F of trees whose weights φm are integers.
Then for c = 2τ−1(Φ(τ) log(Φ ′(τ )))1/2(2πΦ ′′(τ ))−1/2, we have

(i) E(Hn) = c
n√
log n

(1 + o(1)),

(ii) Hn = c
n√
log n

(1 + o(1)) w.h.p.

The first part (i) of Theorem 8 was already shown in [23, 43], our new contribution is
part (ii).

Proof We verify that the conditions of Theorem 1 are satisfied if we consider the
partition of F into isomorphism classes of size one, that is, each tree t is isomorphic
only to itself. We find that

|Ik | = yk,

i.e., the number |Ik | of isomorphism classes of trees of size k equals the number yk
of distinct trees of size k in the respective simply generated family of trees F . With
Theorem 7, we have

|Ik | =
√

Φ(τ)

2πΦ ′′(τ )

Φ ′(τ )k

k3/2
(1 + O(k−1)),

so condition(C1) is satisfied with C1 = log(Φ ′(τ )). In order to show that condition
(C2) holds, define Jk = Ik , so that every random tree of size k in the family F
belongs to a class in Jk , and the probability that a random tree in F of size k lies in
a fixed isomorphism class I ∈ Jk is 1/yk . Thus, condition (C2) holds as well, and
we have C2 = C1 = log(Φ ′(τ )). Recall that by (2), we find that the variance of the
Galton–Watson process corresponding to F is given by

V(ξ) = σ 2 = τ 2Φ ′′(τ )

Φ(τ)
.

Theorem 8 now follows directly from Theorem 1. �

Let us calculate the constant c in some special cases.

Plane trees.
The family of plane trees is obtained as the simply generated family of trees with

weight sequence (φk)k≥0 with φk = 1 for every k ≥ 0 (see Example 1). In particular,
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we find that Φ(x) = ∑
k≥0 x

k = 1
1−x and that τ = 1

2 solves the equation τΦ ′(τ ) =
Φ(τ). Thus, the constant c in Theorem 8 evaluates to

c = 2

τ

√
Φ(τ) log(Φ ′(τ ))

2πΦ ′′(τ )
=

√
log 4

π
.

d-ary trees.The family of d-ary trees is obtained as the simply generated family of trees
with weight sequence (φk)k≥0, where φk = (d

k

)
for every k ≥ 0 (see Example 2). We

find thatΦ(x) = (1+x)d and that τ = (d−1)−1 satisfies the equation τΦ ′(τ ) = Φ(τ).
Therefore, the constant c in Theorem 8 evaluates to

c = 2

τ

√
Φ(τ) log(Φ ′(τ ))

2πΦ ′′(τ )
=

(
2d

π

( d

d − 1
log d − log(d − 1)

))1/2

.

In particular, we get c = 2
√

log 4
π

for binary trees.

Remark 1 We remark that Theorem 8 does not apply to the family of labelled trees
(see Example 4), as the weight sequence corresponding to the family of labelled trees
is not a sequence of integers. In particular, the number of labelled trees of size n is
nn−1 (see for example [16]), and thus, a partition of the set of labelled trees of size n
into isomorphism classes of size one does not satisfy condition (C1) from Theorem 1.
The total number Ln of distinct fringe subtrees in a uniformly random labelled tree of
size n was estimated in [43], where it was shown that

E(Ln) =
√

2

π

n
√
log log n√
log n

(
1 + O

(
log log log n

log log n

))
.

Here, two fringe subtrees are considered the same if there is an isomorphism that
preserves the relative order of the labels.

4.2 Distinct Plane Fringe Subtrees in Simply Generated Trees

In this subsection, we consider simply generated families F of trees which admit a
plane embedding: For instance, for the family of d-ary trees (see Example 2), we
find that each d-ary tree can be considered as a plane tree in a natural way by simply
forgetting the positions to which the branches of the vertices are attached, such that
there is no distinction between different types of vertices of the same degree. Likewise,
trees from the simply generated family of labelled trees (see Example 4) admit a unique
plane representation if we order the children of each vertex according to their labels
and then disregard the vertex labels. For the family of plane trees (see Example 1),
the results from this section will be equivalent to the results presented in the previous
section.

We need the following result which follows from Theorem 6:
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Lemma 5 Let ξ be the offspring distribution of a critical Galton–Watson process
satisfying V(ξ) = σ 2 < ∞, and let Tk be a conditioned Galton–Watson tree of size k
with respect to ξ . Let M = {m ∈ N | P(ξ = m) > 0}, and let

μ =
∑

m∈M
P(ξ = m) log(P(ξ = m)).

The probability that

ν(Tk) ≤ e(μ+ε)k

tends to 1 for every fixed ε > 0 as k → ∞.

Proof Let ρ(t) denote the degree of the root vertex of a plane tree t ∈ T , and define
the function f : T → R by

f (t) =
{
log(P(ξ = ρ(t))) if P(ξ = ρ(t)) > 0,

0 otherwise.

For every t ∈ T with ν(t) > 0, the associated additive functional is

F(t) =
∑

v∈t
f (t(v)) =

∑

v∈t
log (P(ξ = ρ(t(v))))

= log

(
∏

v∈t
P(ξ = deg(v))

)

= log(ν(t)).

Let T denote the unconditioned Galton–Watson tree corresponding to ξ . Then

E(| f (T )|) =
∑

m∈M
P(ξ = m)| log(P(ξ = m))|,

as the probability that the root node of an unconditioned Galton–Watson tree T has
degree m for some m ∈ M is given by P(ξ = m). Note that if P(ξ = m) > e−m , we
have | log(P(ξ = m))| ≤ m, and if P(ξ = m) ≤ e−m , we have P(ξ = m)| log(P(ξ =
m))| ≤ e−m/2. Thus, we are able to bound E(| f (T )|) from above by

E(| f (T )|) ≤
∑

m≥0

P(ξ = m)m +
∑

m≥0

e−m/2 = E(ξ) +
√
e√

e − 1
< ∞, (11)

as the Galton–Watson process is critical by assumption. Furthermore, we have

|E( f (Tk))| ≤
∑

m≥0

P(ρ(Tk) = m)| log(P(ξ = m))|.
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By (2.7) in [29], there is a constant c > 0 (independent of k and m) such that

P(ρ(Tk) = m) ≤ cmP(ξ = m)

for all m, k ≥ 0. We thus find

|E( f (Tk))| ≤ c
∑

m∈M
mP(ξ = m)| log(P(ξ = m))|

≤ c
∑

m≥0

P(ξ = m)m2 + c
∑

m≥0

me−m/2 < ∞, (12)

as V(ξ) < ∞ by assumption. As the upper bound holds independently of k, we thus
have |E( f (Tk))| = O(1). Altogether, we find that the requirements of Theorem 6 are
satisfied. Let

μ = E( f (T )) =
∑

m∈M
P(ξ = m) log(P(ξ = m)).

Then by Theorem 6, the probability that

F(Tn) = log(ν(Tn)) ≤ (μ + ε)n

holds tends to 1 for every ε > 0 as n → ∞. Thus, the statement follows. �

We are now able to derive the following theorem:

Theorem 9 Let Jn denote the number of distinct plane trees represented by the fringe
subtrees of a random tree Tn of size n drawn from a simply generated family of trees
F . Set κ = 2τ−1(Φ(τ))1/2(2πΦ ′′(τ ))−1/2. Furthermore, let M = {k ≥ 0 | φk > 0}
and define the sequence (ψk)k≥0 by ψk = 1 if k ∈ M and ψk = 0 otherwise. Let
Ψ (x) = ∑

k≥0 ψk xk , and let υ denote the solution to the equation υΨ ′(υ) = Ψ (υ).
Set

C1 = log(Ψ ′(υ)) and C2 = −μ,

with μ defined as in Lemma 5. Then

(i) κ
√
C2

n√
log n

(1 + o(1)) ≤ E(Jn) ≤ κ
√
C1

n√
log n

(1 + o(1)),

(ii) κ
√
C2

n√
log n

(1 + o(1)) ≤ Jn ≤ κ
√
C1

n√
log n

(1 + o(1)) w.h.p.

Proof Here we consider two trees as isomorphic if their plane representations are
identical. This yields a partition of Fk into isomorphism classes Ik , for which we will
verify that the conditions of Theorem 1 are satisfied. The number |Ik | of isomorphism
classes equals the number of all plane trees of size k with vertex degrees in M , which
can be determined from Theorem 7: the weight sequence (ψk)k≥0 characterizes the
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simply generated family of plane trees with vertex degrees in M . We thus find by
Theorem 7:

log(|Ik |) = log(Ψ ′(υ))k(1 + o(1)),

so condition (C1) is satisfied with

C1 = log(Ψ ′(υ)).

Now we show that condition (C2) is satisfied as well. By Lemma 5, there exists a
sequence of integers k j such that

P
(
ν(Tk) ≤ e(μ+1/ j)k) ≥ 1 − 1

j

for all k ≥ k j . So if we set εk = min{ 1j | k j ≤ k}, then

P
(
ν(Tk) ≤ e(μ+εk )k

) ≥ 1 − εk,

and εk → 0 as k → ∞. Now define the subset Jk ⊆ Ik as the set of isomorphism
classes of trees whose corresponding plane embedding t satisfies ν(t) ≤ e(μ+εk )k . The
probability that a random tree of size k in F lies in an isomorphism class in the set Jk

is precisely the probability that a conditioned Galton–Watson tree Tk corresponding to
the offspring distribution ξ satisfies ν(Tk) ≤ e(μ+εk )k . Thuswe find that the probability
that a random tree inFk lies in an isomorphism class in the setJk tends to 1 as k → ∞.

Furthermore, the probability that a random tree Tk of size k in F has the shape of
t ∈ Tk (where Tk again denotes the set of plane trees of size k as defined in Sect. 2)
when regarded as a plane tree, i.e., the probability that Tk lies in the fixed isomorphism
class I ∈ Jk containing all trees in the family F with plane representation t is never
greater than

Pξ (t) = ν(t)
∑

t ′∈Tk ν(t ′)
.

In particular, the numerator is bounded by e(μ+εk )k as I ∈ Jk . In order to estimate
the denominator, we apply Theorem 7: we find that

∑
t ′∈Tn ν(t ′) is the total weight

of all plane trees of size n with respect to the weight sequence (P(ξ = k))k≥0 =
(φkτ

kΦ(τ)−1)k≥0. If we set Φ̃(x) = ∑
k≥0 φkτ

kΦ(τ)−1xk , then Φ̃(1) = Φ̃ ′(1) = 1,
and we obtain from Theorem 7 that

∑

t∈Tn
ν(t) =

√
Φ̃(1)

2πΦ̃ ′′(1)
Φ̃ ′(1)n

n3/2
(1 + O(1/n))

=
√

Φ(τ)

2πτ 2Φ ′′(τ )
n−3/2(1 + O(1/n)). (13)
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Hence,

Pξ (t) ≤
√
2πτ 2Φ ′′(τ )

Φ(τ)
k3/2e(μ+εk )k(1 + O(k−1)) = eμk+o(k),

which shows that condition (C2) is satisfied with C2 = −μ. The statement of Theo-
rem 9 now follows from Theorem 1 and (2).

�

Remark 2 We remark that for the family of plane trees, the statement of Theorem 9 is
equivalent to the statement of Theorem 8: as φk = 1 for every k ≥ 0 in this case, the
constant C1 in the upper bound of Theorem 9 evaluates to log(Φ ′(τ )). Furthermore,
for every plane tree t of size n, we have ν(t)/

∑
t ′∈Tn ν(t ′) = 1/yn , so that the constant

C2 in Theorem 9 evaluates to log(Φ ′(τ )) as well.

Let us determine the constants appearing in the upper and lower bound explicitly
in some examples.
Binary trees. The family of binary trees is obtained from the weight sequence (φk)k≥0
withΦ(x) = 1+2x+x2. A plane representation of a binary tree is aMotzkin tree (see
Example 3), so we find thatΨ (x) = 1+x+x2, withΨ defined as in Theorem 9. Thus,
υ = 1 solves the equation υΨ ′(υ) = Ψ (υ) and Ψ ′(υ) = 3. Hence, the constant C1 in
Theorem 9 evaluates toC1 = log 3.We remark again that the functionΨ characterizes
the family of Motzkin trees (Example 3). The asymptotic growth of the number of
Motzkin trees is well known, see e.g. [22]. To compute the constant for the lower
bound, we find that τ = 1 and Φ(τ) = Φ ′(τ ) = 4. Hence, the offspring distribution
ξ of the Galton–Watson process corresponding to F is defined by P(ξ = 0) = 1/4,
P(ξ = 1) = 1/2 and P(ξ = 2) = 1/4. We find

μ =
2∑

k=0

P(ξ = k) log(P(ξ = k)) = −3 log 2

2
,

and hence C2 = (3 log 2)/2. With κ = 2τ−1(Φ(τ))1/2(2πΦ ′′(τ ))−1/2 = 2/
√

π , we
can conclude that

κ
√
C2 =

√
6 log 2

π
≈ 1.1505709891 and κ

√
C1 = 2

√
log 3√
π

≈ 1.1827073223.

Labelled trees. Recall that we obtain a unique plane representation of a labelled tree if
we first order the children of each vertex according to their labels and then disregard
the vertex labels. The family of labelled trees is obtained as the simply generated
family of trees with weight sequence (φk)k≥0 satisfying φk = 1/k! for every k ≥ 0.
We find thatΨ (x) = ∑

k≥0 x
k and that υ = 1/2 solves the equation υΨ ′(υ) = Ψ (υ),

so that the constant C1 in Theorem 1 evaluates to C1 = log 4. In order to compute
the constant for the lower bound, we first notice that τ = 1 solves the equation
τΦ ′(τ ) = Φ(τ) with Φ(τ) = e. The offspring distribution ξ of the Galton–Watson
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process corresponding to the family of labelled trees is well known to be the Poisson
distribution (with P(ξ = k) = (ek!)−1 for every k ≥ 0). Hence, we have

μ =
∑

k≥0

P(ξ = k) log(P(ξ = k)) = −e−1
∑

k≥0

1 + log (k!)
k! ≈ −1.3048422423.

With κ = 2τ−1(Φ(τ))1/2(2πΦ ′′(τ ))−1/2 = √
2/π , we finally obtain

κ
√
C2 =

(
2

π

(
1 +

∑

k≥2

log(k!)
ek!

))1/2

≈ 0.9114210724

and

κ
√
C1 =

√
2 log 4

π
≈ 0.9394372787.

4.3 Distinct Unordered Fringe Subtrees in Simply Generated Trees

In this subsection, we apply Theorem 1 to count the number of distinct unordered
trees represented by the fringe subtrees of a random tree of size n drawn randomly
from a simply generated family of trees. Thus we consider two trees from the family
F as isomorphic if their unordered representations are identical. This is meaningful
for all simply generated families, since every rooted tree has a natural unordered
representation. Let t ∈ T be a plane tree. As a simple application of the orbit-stabilizer
theorem [4, Proposition 6.9.2], one finds that the number of plane trees with the same
unordered representation as t is given by

∏
v∈t deg(v)!
|Aut(t)| ,

where |Aut(t)| denotes the cardinality of the automorphism group of t . This is because
the permutations of the branches at the different vertices of t generate a group of order∏

v∈t deg(v)! acting on the plane trees with the same unordered representation as t ,
and |Aut(t)| is the subgroup that fixes t . It follows that

ν(t)

∏
v∈t deg(v)!
|Aut(t)|

is the total weight of all plane representations of t within a simply generated family.
This quantity will play the same role that ν(t) played in the proof of Theorem 9. From
Theorem 6, we obtain the following result:

Lemma 6 Let ξ be the offspring distribution of a critical Galton–Watson process
satisfying V(ξ) = σ 2 < ∞, and let Tk be a conditioned Galton–Watson tree of size k
with respect to ξ . Then there is a constant λ < 0 such that the probability that
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ν(Tk)

∏
v∈Tk deg(v)!
|Aut(Tk)| ≤ e(λ+ε)k

holds tends to 1 for every ε > 0 as k → ∞.

Proof As in the proof of Lemma 5, we aim to define a suitable additive functional.
To this end, we need a recursive description of |Aut(t)|, the size of the automorphism
group. Let ρ(t) again denote the degree of the root vertex of t , let t1, t2, . . . , tρ(t)

be the root branches of a tree t , and let m1,m2, . . . ,mkt denote the multiplicities of
isomorphic branches of t (m1 + m2 + · · · + mkt = ρ(t)). Here we call two trees
isomorphic if they are identical as unordered trees. That is, the ρ(t) many subtrees
rooted at the children of the root vertex fall into kt many different isomorphism classes,
where mi of them belong to isomorphism class i , respectively. Then we have

|Aut(t)| =
ρ(t)∏

j=1

|Aut(t j )| ·
kt∏

i=1

mi ! ,

since an automorphism of t acts as an automorphismwithin branches and also possibly
permutes branches that are isomorphic. In fact, the whole structure of Aut(t) is well
understood [32]. It follows from the recursion for |Aut(t)| that

F(t) = log

(
ν(t)

∏
v∈t deg(v)!

|Aut(t)|
)

(well-defined for all t with ν(t) > 0) is the additive functional associated with the toll
function f that is defined by

f (t) =
{
log(P(ξ = ρ(t))ρ(t)!) − log(m1!m2! · · ·mkt !) if P(ξ = ρ(t)) > 0,

0 otherwise.
(14)

Let M = {m ≥ 0 | P(ξ = m) > 0}, and let T be the unconditioned Galton–Watson
tree corresponding to ξ . Since

0 ≤ log(ρ(t)!) − log(m1!m2! · · ·mkt !) ≤ log(ρ(t)!),

we have

E(| f (T )|) ≤
∑

m∈M
P(ξ = m)| log(P(ξ = m))| +

∑

m∈M
P(ξ = m)| log(m!)|.

The first sum was shown to be finite earlier in (11), and the second sum is finite as
log(m!) = O(m2) and V(ξ) < ∞ by assumption. Moreover, we find

|E( f (Tk))| ≤
∑

m∈M
m≤k

P(ρ(Tk) = m)| log(P(ξ = m)m!)|.
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Again by (2.7) in [29], there is a constant c > 0 (independent of k and m) such that

P(ρ(Tk) = m) ≤ cmP(ξ = m)

for all m, k ≥ 0. We thus find

|E( f (Tk))| ≤ c
∑

m∈M
m≤k

mP(ξ = m)| log (P(ξ = m)m!) |

≤ c
∑

m∈M
mP(ξ = m)| log (P(ξ = m)) | + c

∑

m∈M
m≤k

mP(ξ = m) log (m!) .

The first sum was shown to be finite in (12). As log(m!) ≤ m logm, we obtain for the
second sum:

∑

m∈M
m≤k

mP(ξ = m) log (m!) ≤ log k
∑

m∈M
m2

P(ξ = m) = O(log k),

as by assumption, E(ξ) = 1 and V(ξ) < ∞. In particular, we thus have E| f (Tk)| =
O(log k). Altogether, we find that the requirements of Theorem 6 are satisfied. Now
set

λ = E( f (T )).

By Theorem 6, the probability that

F(Tk) = log

(
ν(Tk)

∏
v∈Tk deg(v)!

|Aut(Tk)|
)

≤ (λ + ε)k

holds tends to 1 for every ε > 0 as k → ∞. Thus, the statement follows. �

Additionally, we need the following result on the number of unordered trees with

vertex degrees from some given set M ⊆ N:

Theorem 10 ([22, pp. 71-72]) Let M ⊆ N with 0 ∈ M, and let uM
k denote the number

of unordered rooted trees t of size k with the property that the outdegree of every vertex
in t lies in M. Then

uM
k ∼ aM · bkM

k3/2
if k ≡ 1 mod d, where d is the greatest common divisor of all elements of M, and
uk = 0 otherwise, where the constants aM , bM depend on M.

Again for the sake of simplicity, we assume that d = 1 holds for all families of trees
considered in the following. We are now able to derive the following theorem:
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Theorem 11 Let Kn denote the total number of distinct unordered trees represented
by the fringe subtrees of a random tree Tn of size n drawn from a simply generated
family of trees F . Set κ = 2τ−1(Φ(τ))1/2(2πΦ ′′(τ ))−1/2. Furthermore, let M =
{m ∈ N | φm > 0} and set C1 = log(bM ), where bM is the constant in Theorem 10,
and C2 = −λ, where λ is the constant in Lemma 6. Then

(i) κ
√
C2

n√
log n

(1 + o(1)) ≤ E(Kn) ≤ κ
√
C1

n√
log n

(1 + o(1)),

(ii) κ
√
C2

n√
log n

(1 + o(1)) ≤ Kn ≤ κ
√
C1

n√
log n

(1 + o(1)) w.h.p.

Proof Here we consider two trees as isomorphic if their unordered representations are
identical. This yields a partition of Fk into isomorphism classes Ik , for which we will
verify that the conditions of Theorem 1 are satisfied. The number |Ik | of isomorphism
classes equals the number of all unordered trees of size k with vertex degrees in M ,
which is given by Theorem 10: we have

log(|Ik |) = log(bM )k(1 + o(1)).

Hence, condition (C1) is satisfied with C1 = log(bM ). Note that if two plane
trees t, t ′ ∈ T have the same unordered representation, we have ν(t) = ν(t ′),∏

v∈t deg(v)! = ∏
v∈t ′ deg(v)! and |Aut(t)| = |Aut(t ′)|. As in the proof of Theo-

rem 9, we can now use Lemma 6 to show that there exists a sequence εk that tends to
0 as k → ∞ with the property that

P

(
ν(Tk)

∏
v∈Tk deg(v)!
|Aut(Tk)| ≤ e(λ+εk )k

)
≥ 1 − εk .

So let Jk ⊆ Ik denote the subset of isomorphism classes of trees in Fk such that the
trees t that they represent satisfy

ν(t)

∏
v∈t deg(v)!
|Aut(t)| ≤ e(λ+εk )k .

The probability that a random tree of size k drawn fromFk lies in an isomorphism class
that belongs to the setJk is precisely the probability that a conditionedGalton–Watson
tree Tk of size k with offspring distribution ξ satisfies

ν(Tk)

∏
v∈Tk deg(v)!
|Aut(Tk)| ≤ e(λ+εk )k,

which is at least 1 − εk by construction. Thus condition (C2a) is satisfied.
Now let I ∈ Jk be a single isomorphism class, and let u be the unordered tree that

it represents. The probability that a random tree inF of size k lies in the isomorphism
class I is

ν(u)
∑

t∈Tk ν(t)

∏
v∈u deg(v)!
|Aut(u)| ,
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since
∏

v∈t deg(v)!/|Aut(t)| equals the number of plane representations of the tree u,
each of which has probability ν(u). As explained in the proof of Theorem 9 (see (13)),
we have

∑

t∈Tk
ν(t) =

√
Φ(t)

2πτ 2Φ ′′(τ )
k−3/2(1 + O(k−1)).

Thus, the probability that a random tree in F of size k lies in a single isomorphism
class I ∈ Jk is never greater than

√
2πτ 2Φ ′′(τ )

Φ(τ)
k3/2e(λ+εk )k(1 + O(k−1)) = eλk+o(k).

So condition (C2b) is satisfied as well, with C2 = −λ. Theorem 11 now follows
directly from Theorem 1. �


In order to obtain bounds on the number Kn of distinct unordered trees represented
by the fringe subtrees of a random tree Tn drawn from some concrete family of trees,
we need to determine the values of the constants λ and bM in Lemma 6 andTheorem 10
for the particular family of trees. We show this in two examples.
Binary trees. For the family of binary trees, the required values can be obtained from
known results. The number of unordered rooted trees of size k with vertex degrees in
M = {0, 1, 2} is given by the (k + 1)st Wedderburn-Etherington number Wk+1. The
asymptotic growth of these numbers is

Wk ∼ aM · k−3/2 · bkM ,

for certain positive constants aM , bM [7, 19].
In particular, we have bM ≈ 2.4832535363. In order to determine a concrete value

for the constant λ in Lemma 6 for the family of binary trees, we make use of a theorem
by Bóna and Flajolet [7] on the number of automorphisms of a uniformly random full
binary tree: a full binary tree is a binary tree where each vertex has either exactly two
or zero descendants, i.e., there are no unary vertices. Note that every full binary tree
with 2k − 1 vertices consists of k leaves and k − 1 binary vertices, thus it is often
convenient to define the size of a full binary tree as its number of leaves. The following
theorem is stated for phylogenetic trees in [7], but the two probabilistic models are
equivalent:

Theorem 12 (see [7, Theorem2])Consider a uniformly random full binary tree Tk with
k leaves, and let |Aut(Tk)| be the cardinality of its automorphism group. The logarithm
of this random variable satisfies a central limit theorem: For certain positive constants
γ and β, we have

P(|Aut(Tk)| ≤ 2γ k+β
√
kx )

k→∞→ 1√
2π

∫ x

−∞
e−t2/2 dt

for every real number x. The numerical value of the constant γ is 0.2710416936.
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The simply generated family of full binary trees corresponds to theweight sequence
with φ0 = φ2 = 1 and φ j = 0 for j /∈ {0, 2}. The corresponding offspring distribution
ξ1 satisfies P(ξ1 = 0) = P(ξ1 = 2) = 1/2. Let t denote a (plane representation of)
a full binary tree of size n = 2k − 1, with k leaves and k − 1 internal vertices. Then
νξ1(t) = 2−2k+1 and

∏
v∈t deg(v)! = 2k−1, and consequently

νξ1(Tk)

∏
v∈Tk deg(v)!
|Aut(Tk)| = 1

2k |Aut(Tk)|

for a random full binary tree Tk with k leaves. It follows from Theorem 12 that

1

2k − 1
log

(
νξ1(Tk)

∏
v∈Tk deg(v)!
|Aut(Tk)|

)
p→ − (1 + γ ) log 2

2
,

thus λ = − (1+γ ) log 2
2 ≈ −0.4405094831 in this special case. Since unordered rooted

trees with vertex degrees in M = {0, 2} are counted by the Wedderburn-Etherington
numbers as well [7], we obtain Theorem 3 as a corollary of Theorem 11.

In order to obtain a corresponding result for binary trees rather than full binary
trees, we observe that as every full binary tree with k leaves has exactly k − 1 internal
vertices, there is a natural one-to-one correspondence between the set of full binary
trees with k leaves and the set of binary trees with k − 1 vertices. Let ϑ(t) denote the
binary tree of size k − 1 obtained from a full binary tree t with k leaves by removing
the leaves of t and only keeping the internal vertices of t . Then ϑ is a bijection between
the set of full binary trees with k leaves and the set of binary trees of size k−1 for every
k ≥ 2. Fringe subtrees of t correspond to fringe subtrees of ϑ(t) and vice verca, except
for the leaves of t . Thus t and ϑ(t) have almost the same number of non-isomorphic
fringe subtrees (the difference is exactly 1). If Tk is a uniformly random full binary
tree with k leaves, then ϑ(Tk) is a uniformly random binary tree of size k − 1. Hence,
in view of this correspondence between binary trees and full binary trees, Theorem 3
follows.
Labelled trees. As another example, we take the family of labelled trees. Here, we
have M = {0, 1, 2, . . .}, and the number of isomorphism classes is the number
of Pólya trees (rooted unordered trees), which follows the same kind of asymp-
totic formula as the Wedderburn-Etherington numbers above, with a growth constant
bM ≈ 2.9557652857, see [39], [22, Section VII.5] or [19, Section 5.6]. This gives us
immediately the value of C1 = log(bM ).

The number of automorphisms satisfies a similar central limit theorem as in Theo-
rem 12, with a constant γ ≈ 0.0522901096 (and k being the number of vertices rather
than the number of leaves), see [38]. Since we haveP(ξ = m) = 1

em! for labelled trees,
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the expression log(P(ξ = ρ(t))ρ(t)!) in (14) simplifies to −1 for every value of ρ(t).
So we have λ = −1 − γ and thus C2 = 1 + γ ≈ 1.0522901096. Finally, κ = √

2/π
in this example. Putting everything together, we obtain the following numerical values
for the constants in Theorem 11 in the case of labelled trees:

κ
√
C2 ≈ 0.8184794989 and κ

√
C1 ≈ 0.8306271816.

5 Applications: Increasing Trees

We now prove the analogues of the previous section for increasing trees by verifying
that the conditions of Theorem 2 are satisfied. Note that (C1) still holds in all cases
for the same reasons as before. Only condition (C2) requires some effort.

Once again, wemake use of results on additive functionals. For additive functionals
of increasing trees with finite support, i.e., for functionals for which there exists a
constant K such that f (t) = 0 whenever |t | > K , a central limit was proven in [28]
and [42] (the latter even contains a slightly more general result). Those results do
not directly apply to the additive functionals that we are considering here. However,
convergence in probability is sufficient for our purposes.Wehave the following lemma:

Lemma 7 Let Tn denote a random tree with n vertices from one of the very simple
families of increasing trees (recursive trees, d-ary increasing trees, gports), and let
F be any additive functional with toll function f . As before, set α = 0 for recursive
trees, α = − 1

d for d-ary increasing trees and α = 1
r for gports. We have

E(F(Tn)) = E( f (Tn)) +
n−1∑

k=1

((1 + α)n − α)E( f (Tk))

((1 + α)k + 1)((1 + α)k − α)
.

Moreover, if E| f (Tn)| = o(n) and
∑∞

k=1
E| f (Tk )|

k2
< ∞, then we have

F(Tn)

n

p→ μ =
∞∑

k=1

(1 + α)E( f (Tk))

((1 + α)k + 1)((1 + α)k − α)
.

Proof The first statement follows directly from Lemma 3, since fringe subtrees are,
conditioned on their size, again random trees following the same probabilisticmodel as
the whole tree. For functionals with finite support, where f (T ) = 0 for all but finitely
many trees T , convergence in probability follows from the central limit theorems in
[28] and [42]. For the more general case, we approximate the additive functional F
with a truncated version Fm based on the toll function

fm(T ) =
{
f (T ) |T | ≤ m,

0 otherwise.

123



Algorithmica (2022) 84:3686–3728 3717

Sincewe already know that convergence in probability holds for functionals with finite
support, we have

Fm(Tn)

n

p→ μm =
m∑

k=1

(1 + α)E( f (Tk))

((1 + α)k + 1)((1 + α)k − α)
.

Now we use the triangle inequality and Markov’s inequality in order to estimate
P(|F(Tn)/n − μ| > ε). Choose m sufficiently large so that |μm − μ| < ε

3 . Then we
have, for n > m,

P

(∣∣∣
F(Tn)

n
− μ

∣∣∣ > ε
)

≤ P

(∣∣∣
Fm(Tn)

n
− μm

∣∣∣ >
ε

3

)
+ P

(∣∣∣
Fm(Tn) − F(Tn)

n

∣∣∣ >
ε

3

)

≤ P

(∣∣∣
Fm(Tn)

n
− μm

∣∣∣ >
ε

3

)
+ 3

ε
E

∣∣∣
Fm(Tn) − F(Tn)

n

∣∣∣

≤ P

(∣∣∣
Fm(Tn)

n
− μm

∣∣∣ >
ε

3

)

+ 3

ε

(
E| f (Tn)|

n
+

n−1∑

k=m+1

((1 + α)n − α)E| f (Tk)|
n((1 + α)k + 1)((1 + α)k − α)

)
.

Since Fm (Tn)
n

p→ μm , it follows that

lim sup
n→∞

P

(∣∣∣
F(Tn)

n
− μ

∣∣∣ > ε
)

≤ 3

ε

∞∑

k=m+1

(1 + α)E| f (Tk)|
((1 + α)k + 1)((1 + α)k − α)

.

As
∑∞

k=1
E| f (Tk )|

k2
< ∞ by assumption, we can take m → ∞, and finally find that

lim
n→∞P

(∣∣∣
F(Tn)

n
− μ

∣∣∣ > ε
)

= 0,

completing the proof. �

In order to apply this lemma in the same way as for simply generated trees, we need

one more ingredient: let t be a plane tree with n vertices. The number of increasing
labellings of the vertices with labels 1, 2, . . . , n is given by

n!
∏

v |t(v)| ,

see for example [44, Eq. (5)] or [34, Section 5.1.4, Exercise 20]. Considering a tree
as a poset, this is equivalent to counting linear extensions. The quantity

∑

v

log |t(v)|,
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i.e., the sum of the logarithms of all fringe subtree sizes, is also known as the shape
functional, see [18].

5.1 Distinct Fringe Subtrees and Distinct Plane Fringe Subtrees in Increasing Trees

In this section, we consider increasing trees with a plane embedding. There is a natural
embedding for d-ary increasing trees, where each vertex has d possible positions at
which a child can be attached. Similarly, plane-oriented recursive trees (ports) can
be regarded as plane trees with increasing vertex labels. In these cases, the notion
of distinctness as in Sect. 4.1 is still meaningful: two fringe subtrees are considered
the same if they have the same shape (as d-ary tree/plane tree) when the labels are
removed.

Let us start with d-ary increasing trees. In this case, the isomorphism classes are
precisely d-ary trees (Example 2), whose number is

|Ik | = 1

k

(
dk

k − 1

)
.

It follows that

C1 = lim sup
k→∞

log |Ik |
k

= d log d − (d − 1) log(d − 1),

so (C1) is satisfied. See also the discussion in Sect. 4.1.
We now verify (C2). Taking the number of increasing labellings into account, as

explained above, we find that for a given d-ary tree t with n vertices, the probability
that a random increasing d-ary tree with n vertices has the shape of t is

n!
∏n−1

k=1(1 + k(d − 1))

∏

v

1

|t(v)| .

Recall here that the denominator
∏n−1

k=1(1+k(d−1)) is precisely the number of d-ary
increasing trees with n vertices. Note next that

n!
∏n−1

k=1(1 + k(d − 1))
∼ Γ ( 1

d−1 )n
(d−2)/(d−1)

(d − 1)n
= exp

(− log(d − 1)n + o(log n)
)
.

The additive functional with toll function f (t) = log |t | clearly satisfies the conditions
of Lemma 7, with

μ =
∞∑

k=1

(1 − 1/d) log k

((1 − 1/d)k + 1)((1 − 1/d)k + 1/d)

= d(d − 1)
∞∑

k=1

log k

((d − 1)k + d)((d − 1)k + 1)
.
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Thus it is possible (as in the proofs of Theorem 9 and Theorem 11) to define subsets
Jk ⊆ Ik of d-ary increasing trees with the property that the shape of a random d-ary
increasing tree with k vertices belongs to Jk with probability 1− o(1) as the number
of vertices goes to infinity, while the probability of any single isomorphism class in
Jk is never greater than e−(log(d−1)+μ)k+o(k). So condition (C2) is also satisfied, with
a constant

C2 = log(d − 1) + d(d − 1)
∞∑

k=1

log k

((d − 1)k + d)((d − 1)k + 1)
.

Hence we obtain the following theorem as a corollary of Theorem 2.
Theorem 13 Let Hn be the number of distinct d-ary trees occurring among the fringe
subtrees of a random d-ary increasing tree of size n. For the two constants

c(d) = d

d − 1
log(d − 1) + d2

∞∑

k=1

log k

((d − 1)k + d)((d − 1)k + 1)
,

c(d) = d

d − 1

(
d log d − (d − 1) log(d − 1)

)

the following holds:

(i)
c(d)n

log n
(1 + o(1)) ≤ E(Hn) ≤ c(d)n

log n
(1 + o(1)),

(ii)
c(d)n

log n
(1 + o(1)) ≤ Hn ≤ c(d)n

log n
(1 + o(1)) w.h.p.

In the special case d = 2, which corresponds to binary search trees, we have
c(2) ≈ 2.4071298335 and c(2) ≈ 2.7725887222, cf. Theorem 5. This was already
obtained in the conference version of this paper, see [46].

For ports, the procedure is analogous. The isomorphism classes are precisely the
plane trees (see Example 1), and we have

|Ik | = 1

k

(
2k − 2

k − 1

)
,

thus C1 = log 4. Moreover, arguing in the same way as for d-ary trees, we find that
(C2) is satisfied with

C2 = log 2 +
∞∑

k=1

2 log k

(2k + 1)(2k − 1)
.

So Theorem 2 yields
Theorem 14 Let Hn be the number of distinct fringe subtrees in a random plane-
oriented recursive tree of size n. For the two constants

c7 = log 2

2
+

∞∑

k=1

log k

(2k + 1)(2k − 1)
≈ 0.5854804841

123



3720 Algorithmica (2022) 84:3686–3728

and c8 = log 2 ≈ 0.6931471806, the following holds:

(i)
c7n

log n
(1 + o(1)) ≤ E(Hn) ≤ c8n

log n
(1 + o(1)),

(ii)
c7n

log n
(1 + o(1)) ≤ Hn ≤ c8n

log n
(1 + o(1)) w.h.p.

For d-ary increasing trees, the notion of distinctness of Sect. 4.2 also makes sense
(for ports, it is simply equivalent to that of Theorem 14). In this case, we consider
fringe subtrees as distinct only if they are different as plane trees. Thus the isomorphism
classes are plane trees withmaximumdegree at most d, which form a simply generated
family of trees. Their generating function Yd(x) satisfies

Yd(x) = x(1 + Yd(x) + Yd(x)
2 + · · · + Yd(x)

d).

Letting τd be the unique positive solution of the equation 1 = t2 + 2t3 + · · · +
(d − 1)td , the exponential growth constant of this simply generating family is ηd =
1+τd+τ 2d +···+τ dd

τd
= 1+2τd +3τ 2d +· · ·+dτ d−1

d , see Theorem 7. Thus (C1) is satisfied
withC1 = log ηd . We also note that ηd ∈ [3, 4]. Specifically, in the special case d = 2
we obtain the Motzkin numbers with η2 = 3, see Example 3. Moreover, we have
limd→∞ ηd = 4.

In order to verify (C2) and determine a suitable constant, we combine the argument
from the previous two theorems with that of Sect. 4.2. The probability that a random
increasing d-ary tree with n vertices has the shape of t , regarded as a plane tree, is

n!
∏n−1

k=1(1 + k(d − 1))

∏

v

( d
deg(v)

)

|t(v)| .

Note here that the product
∏

v

( d
deg(v)

)
gives the number of d-ary realizations of the

plane tree t , see the proof of Theorem 9 for comparison. So we consider the additive
functional with toll function f (t) = log |t | − log

( d
ρ(t)

)
, where ρ(t) is the degree of

the root of t , instead of just f (t) = log |t | as it was chosen before. Since
( d
ρ(t)

)
is

clearly bounded, the conditions of Lemma 7 are still satisfied, and we obtain a suitable
constant C2 that satisfies (C2) as before. For example, in the binary case we have the
following theorem:

Theorem 15 Let Jn be the number of distinct plane trees occurring among the fringe
subtrees of a random binary increasing tree of size n. For the two constants

c9 = 4
∞∑

k=2

log k − 2 log 2
k

(k + 1)(k + 2)
= 4

∞∑

k=2

log k

(k + 1)(k + 2)
− 2 log 2

3
≈ 1.9450317130

and c10 = 2 log 3 ≈ 2.1972245773, the following holds:

(i)
c9n

log n
(1 + o(1)) ≤ E(Jn) ≤ c10n

log n
(1 + o(1)),

(ii)
c9n

log n
(1 + o(1)) ≤ Jn ≤ c10n

log n
(1 + o(1)) w.h.p.
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5.2 Distinct Unordered Fringe Subtrees in Increasing Trees

The notion of distinctness of Sect. 4.3 is meaningful for all families of increasing trees
we are considering in this paper. In this section, two fringe subtrees are regarded the
same if there is a (root-preserving) isomorphism between the two.

In the same way as for simply generated families of trees, we have to take the
number of automorphisms into account, so there are now three factors that determine
the probability that a random increasing tree in one of our very simple families is
isomorphic to a fixed rooted unordered tree t :

– the number of plane representations of t , which is given by

∏
v deg(v)!
|Autt | ,

– the weight

∏

v

φdeg(v),

where φk = (d
k

)
for d-ary increasing trees, φk = (r+k−1

k

)
for gports, and φk = 1

k!
for recursive trees.

– the number of increasing labellings of any plane representation, which is

|t |!
∏

v |t(v)| .

The product of all these is proportional to the probability that a random increasing
tree with n = |t | vertices is isomorphic to t . One only needs to divide by the number
(more precisely: total weight) of n-vertex increasing trees in the specific family to
obtain the probability.

So once again we consider a suitable additive functional that takes all these into
account. For a tree t whose root degree is ρ(t) and whose branches belong to kt
isomorphism classes with respective multiplicities m1, m2, …, mkt , we define the toll
function by

f (t) = log |t | + log
(
m1!m2! · · ·mkt !

)

−

⎧
⎪⎨

⎪⎩

log dρ(t) = log
(
d(d − 1) · · · (d − ρ(t) + 1)

)
d-ary increasing trees,

log rρ(t) = log
(
r(r + 1) · · · (r + ρ(t) − 1)

)
gports,

0 recursive trees.

(15)
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Let F be the associated additive functional. Then the probability that a random tree
with k vertices belongs to the same isomorphism class as a fixed k-vertex tree t is

e−F(t) ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k!∏k−1
j=1(1+(d−1) j)

d-ary increasing trees,

k!∏k−1
j=1((r+1) j−1)

gports,

k recursive trees.

It is easy to see that the toll function f (t) is O(log |t | + ρ(t) log ρ(t)) =
O(ρ(t) log |t |). So in order to show that the conditions of Lemma 7 are satisfied,
one needs to bound the average root degree in a suitable way. For d-ary increasing
trees, this is trivial. In the other two cases, one can use generating functions.

Recall that the exponential generating function Y (x) for an increasing tree family
satisfies the differential equation

Y ′(x) = Φ(Y (x)),

with Φ(t) = et for recursive trees and Φ(t) = (1 − t)−r for gports. The bivariate
generating function Y (x, u), in which u marks the root degree, is given by

∂

∂x
Y (x, u) = Φ(uY (x)),

thus

∂2

∂x∂u
Y (x, u)

∣∣∣
u=1

= Φ ′(Y (x))Y (x).

The average root degree of k-vertex trees is

[xk] ∂
∂u Y (x, u)

∣∣∣
u=1

[xk]Y (x)
=

[xk−1] ∂2

∂x∂u Y (x, u)

∣∣∣
u=1

k[xk]Y (x)
= [xk−1]Φ ′(Y (x))Y (x)

k[xk]Y (x)
.

Plugging in Y (x) = − log(1 − x) (for recursive trees) and Y (x) = 1 − (1 − (r +
1)x)1/(r+1) (for gports) respectively and simplifying, we find that the average root
degree is 1 + 1

2 + · · · + 1
k−1 ∼ log k for recursive trees and
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(r + 1)k−1(k − 1)!
∏k−1

j=2((r + 1) j + 1)
− r ∼ rΓ

( r

r + 1

)
k1/(r+1)

for gports. Consequently, we find that E| f (Tk)| = O(log2 k) and E| f (Tk)| =
O(k1/(r+1) log k) respectively in Lemma 7, which means that the conditions of that
lemma are satisfied.

We can conclude now as before that the conditions of Theorem 2 hold. The number
of non-isomorphic fringe subtrees is of the order n/ log n for all families of increasing
trees we are considering. For example, we obtain Theorem 4 as a corollary in the
case of binary increasing trees, or equivalently, binary search trees (see the conference
version of this paper [46]).

For recursive trees, the upper bound of O(n/ log n) was determined recently in a
paper of Bodini, Genitrini, Gittenberger, Larcher and Naima [6]. The authors of that
paper conjectured that this upper bound is asymptotically sharp and proved a lower
bound of order

√
n. Indeed, our general theorem (Theorem 2) applies and confirms

their conjecture.

Theorem 16 Let Kn be the total number of distinct unordered fringe subtrees in a
random recursive tree of size n. For two constants c11 ≈ 0.9136401430 and c12 ≈
1.0837575972, the following holds:

(i) c11
n

log n
(1 + o(1)) ≤ E(Kn) ≤ c12

n

log n
(1 + o(1)),

(ii) c11
n

log n
(1 + o(1)) ≤ Kn ≤ c12

n

log n
(1 + o(1)) w.h.p.

Here, the constant c12 is the logarithm of the growth constant for the number of
unordered rooted trees (Pólya trees), see the discussion of labelled trees in Sect. 4.3
for comparison. The constant c11 is more complicated: it is given by

c11 =
∞∑

k=1

E( f (Tk))

k(k + 1)
,

where Tk stands for a random recursive tree with k vertices and f is defined in (15). It
seems difficult to determine the expected value E( f (Tk)) exactly, and even numerical
approximation is somewhat trickier than in the previous examples (however, it is easy
to compute simple lower bounds, as it is clear that E( f (Tk)) ≥ log k). Let us describe
the approach:

The component log |t | in Eq. (15) is easy to deal with and contributes ∑∞
k=1

log k
k(k+1)

to the constant c11. In order to numerically compute the contribution of the rest, let
us determine the probability that a specific rooted unordered tree S occurs exactly
m times among the root branches of a k-vertex recursive tree. The contribution to
E( f (Tk)) will be precisely logm! times that probability. Let s = |S| be the size of S,
and let pS denote the probability that a random recursive tree of size s is isomorphic
to S. Then the bivariate exponential generating function Y (x, u) for recursive trees
where the second variable u takes the number of isomorphic copies of S as a root
branch into account is given by
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∂

∂x
Y (x, u) = exp

(
Y (x, 1) + (u − 1)pS

s
xs

)
.

Recall here that the coefficient of xs in Y (x, 1) = − log(1−x) is 1
s , so

pS
s xs represents

the fraction that is isomorphic to S. For simplicity, set cS = pS
s . Then this reduces to

∂

∂x
Y (x, u) = exp((u − 1)cSxs)

1 − x
.

So the number of recursive trees of size k in which precisely m branches isomorphic
to S occur is

k![xkum]Y (x, u) = (k − 1)![xk−1um] ∂

∂x
Y (x, u)

= (k − 1)![xk−1]c
m
S x

ms

m! · exp(−cSxs)

1 − x
.

There are (k − 1)! recursive trees with k vertices; thus we find that

E( f (Tk)) = log k +
∑

m≥2

∑

S

logm![xk−1]c
m
S x

m|S|

m!
exp(−cSx |S|)

1 − x
.

Since 1
k(k+1) = ∫ 1

0

∫ y
0 xk−1 dx dy, we get

c11 =
∞∑

k=1

E( f (Tk))

k(k + 1)

=
∞∑

k=1

log k

k(k + 1)
+

∑

m≥2

∑

S

logm!
∫ 1

0

∫ y

0

cmS x
m|S|

m!
exp(−cSx |S|)

1 − x
dx dy.

Interchanging the order of integration, this becomes

c11 =
∞∑

k=1

log k

k(k + 1)
+

∑

m≥2

∑

S

logm!
∫ 1

0

cmS x
m|S|

m! exp
( − cSx

|S|) dx .

Lastly, expand the exponential function into a power series and integrate to obtain

c11 =
∞∑

k=1

log k

k(k + 1)
+

∑

m≥2

∑

S

logm!
m!

∞∑

r=0

(−1)r

r !
cr+m
S

(r + m)|S| + 1

or equivalently

c11 =
∞∑

k=1

log k

k(k + 1)
+

∑

S

∑

�≥2

( �∑

m=2

(−1)�−m
(

�

m

)
logm!

) c�
S

�!(�|S| + 1)
.
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The innermost sum actually simplifies to
∑�

m=2(−1)�−m
(

�−1
m−1

)
logm and only grows

very slowly (it is O(log log �), cf. [21, Theorem 4]). Thus the sum over � converges
rapidly for every tree S. Moreover, it is O(c2S) as cS → 0. One therefore gets a good
numerical approximation by determining cS for small trees and only taking the sum
over these small trees. For the ten digits given in the statement of the theorem, it was
sufficient to consider trees S with up to 20 vertices.

6 Conclusion

Our main theorems are quite general and cover many different types of trees as well
as different notions of distinctness. As the examples with explicit constants show,
the upper and lower bounds they provide are typically quite close. Nevertheless, the
following natural question arises from our results: for the random variables Jn and Kn

as defined in Theorem 9 and Theorem 11 respectively, are there always constants cJ
and cK such that

E(Jn) = cJ n√
log n

(1 + o(1)), E(Kn) = cK n√
log n

(1 + o(1)),

and

Jn
n/

√
log n

p→ cJ ,
Kn

n/
√
log n

p→ cK ?

In order to prove such estimates, it seems essential to gain a better understanding of
the different additive functionals that we employed in the proofs of these theorems,
in particular their distributions further away from the mean values. Analogous results
for increasing trees would be equally interesting.
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