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Abstract
The stratovolcano Mt. Pelée, Martinique, exhibits eruptive styles ranging from dome formation to sustained, highly violent 
explosive activity. Historical eruptions have produced lava domes and pyroclastic density currents, collectively termed Peléan 
activity. In pre-colonial times, several Plinian eruptions took place. Here, we explore physical controls on the proportions 
of fine particles produced—i.e., the fragmentation efficiency—during primary fragmentation. Samples were collected from 
ignimbrites from the 1929–1932 and 1902–1905 Peléan eruptions and the P1 (1300 CE), P2 (280 CE), and P3 (79 CE) Plinian 
eruptions. All samples are andesitic in bulk composition and contain a rhyolitic groundmass glass. The Peléan materials are 
more crystalline and less porous than their Plinian counterparts, a consequence of more extensive outgassing during dome 
formation. Representative blocks were cored and experimentally fragmented following rapid decompression (> 1 GPa·s−1 
from initial pressure between 5 and 20 MPa). Dry sieving allowed for determining grain size distributions, from which the 
fractal dimensions, Df, were calculated as a quantification of fragmentation efficiency. Our results indicate different behaviors 
for Peléan and Plinian samples. While fragmentation efficiency is positively correlated with applied potential energy for 
Peléan samples, this relationship is not observed for the Plinian samples, possibly due to syn-fragmentation gas escape above 
a certain porosity. The rapid decompression experiments were designed to minimize secondary fragmentation by shear along 
the walls or impact while preserving the entirety of produced materials. Thus, our experimental grainsize data are physically 
linked to sample textures and overpressure. By comparison with natural pyroclastic products—commonly incompletely 
preserved—we can approach quantitatively constraining the energetic conditions underlying individual eruptions.

Keywords  Eruption style · Magma properties · Grain size distribution · Rapid decompression experiments · Fractal 
dimension

Introduction

Mt. Pelée has erupted at least 20 times in the past 5000 years 
(including the devastating eruption of May 8, 1902) and is 
thus one of the most active volcanoes in the Eastern Carib-
bean (Westercamp and Traineau 1983; Michaud-Dubuy et al. 
2023). Seismic unrest and tremors in 2020, 2021, and 2022 
have been interpreted to reflect movements of overpressur-
ized fluids in shallow, subsurface fractures, with much of 

this movement occurring above sea level (weekly reports 
throughout 2020–2022 from Observatoire Volcanologique 
et Sismologique de Martinique). These observations led the 
local volcano observatory to increase monitoring and advise 
the local authorities to raise the alert level from green (no 
alert) to yellow (vigilance) in December 2020. Resumption 
of explosive activity could disperse lapilli and ash across 
the island, disrupting the lives of the ~385,000 inhabitants 
(population from Naulin 2016). Additionally, pyroclastic 
density currents (PDCs) could threaten the re-established 
town of St. Pierre and other towns, villages, and settlements 
situated on the flanks of the volcano.

Fragmentation behavior and eruptive styles of recent 
eruptions have varied significantly, despite magma compo-
sition remaining consistent (Dupuy et al. 1985; Fichaut et al. 
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1989; Martel et al. 1998; Martel and Poussineau 2007). This 
is likely due to differences in decompression rates, degassing 
behavior, magmatic volatile content, and mass eruption rates 
(Wilson et al. 1980; Neri and Dobran 1994; Villemant and 
Boudon 1999; Martel et al. 1998, 2000; Carazzo et al. 2008; 
Michaud-Dubuy et al. 2018, 2020). Field volcanologists 
aim to determine the total grain size distribution (TGSD) of 
pyroclastic deposits of unobserved eruptions as an indica-
tor of fragmentation efficiency and eruption energy, both of 
which positively influence the production of fine particles 
(Turcotte 1986, 1992; Kaminski and Jaupart 1998; Perugini 
and Kueppers 2012). As the proportion of fine particles 
increases, so does heat transfer efficiency, consequentially 
enhancing ash plume rise and PDC mobility. There are sev-
eral approaches to integrate the grain size distribution (GSD) 
at individual outcrops in order to estimate the TGSD (e.g., 
Bonadonna and Houghton 2005 and Costa et al. 2016). All 
methods are sensitive to the number of outcrops, their spatial 
distribution, and their distance from the vent (Costa et al. 
2016; Aubry et al. 2021). For eruptions with detailed direct 
observations, there exist only a small number of studies that 
include TGSD analysis (e.g., Costa et al. 2016; Reckziegel 
et al. 2016; Pioli et al. 2019). Calculating TGSD from explo-
sive eruption deposits on volcanic islands, like Martinique, 
is additionally complicated as substantial portions of the 
eruptive products have been deposited into the ocean and are 
not preserved in the subaerial rock record (Kueppers et al. 
2019). On small islands, field-based approaches to evaluate 
TGSD based on grain size characteristics (and not thickness 
alone) have yet to be validated. Moreover, unconsolidated 
pyroclastic deposits can undergo considerable post-eruption 
erosion by low-energy and/or short-term processes, such as 
runoff from rainfall.

Laboratory studies provide insights into primary magma 
fragmentation with minor to negligible loss of fines, second-
ary fragmentation, and transport-induced sorting. As rapid 
decompression drives magma into brittle fragmentation 
(Dingwell 1996), the resulting GSDs exhibit scale-invari-
ant fractal properties (Turcotte 1992; Korvin 1992; Åstrom 
et al. 2004), whereby a power-law relationship describes the 
fragment size distribution in a logarithmic plot of cumula-
tive particles (as in Gilvarry and Bergstrom 1961; Åstrom 
et al. 2004; Perugini and Kueppers 2012; Haug et al. 2013; 
Colò et al. 2020; Sarkar et al. 2020). Quantification of the 
fragmentation efficiency as a single variable (Df), the frac-
tal dimension, is thus enabled, and a comprehensive com-
parison across experimental conditions becomes feasible. 
This can also be applied to field TGSD results, yet a lack of 
fractal analyses of young explosive deposits currently hin-
ders this approach. For such quantification, either numbers 
of particles (i.e., fragments) or a mass-based approach is 
used, both of which summarize the fractal change in the 
amount of fragments generated for incremental size steps. 

When numbers of particles are analyzed for fractal distri-
bution, following the initial mathematical methodology of 
Mandelbrot (1983) and Turcotte (1989), particle shape is 
commonly assumed to be spherical (e.g., Kaminski and Jau-
part 1998 and Kueppers et al. 2006a). However, pyroclasts 
exhibit highly irregular geometric shapes, and certain size 
fractions can deviate very substantially from the spherical 
assumption (Liu et al. 2015). To avoid this challenge, we 
follow here the approach of Perugini and Kueppers (2012) 
in using the cumulative weight fractions for fractal distribu-
tion analysis. Assuming that the volume of a fragment is 
proportional to its mass, Df is derived from the size-mass 
relationship without requiring any information or assump-
tions regarding shape.

Following petrophysical characterization and experimen-
tal fragmentation of natural samples from recent Plinian 
and Peléan eruptions of Mt. Pelée, we evaluate the resulting 
GSDs and explore controls on the fragmentation behavior. 
We thereby aim to advance our understanding of how sam-
ple properties can influence fragmentation efficiency and 
consequently eruption dynamics. This information will help 
to refine tools for relating physical properties of pyroclastic 
deposits and individual clasts to past eruption dynamics, a 
necessary element of determining what eruption styles and 
intensity volcanoes are capable of.

Geologic setting

Mt. Pelée volcano forms the northern part of the island of 
Martinique, in the Eastern Caribbean. It is part of an oceanic 
arc forming on the Caribbean plate due to westward-directed 
subduction of the South American plate, at a rate of about 
1.3–4 cm year−1 (Macdonald et al. 2000). The volcanic for-
mation of Martinique began as early as 40 Ma (Brown et al. 
1977; Smith and Roobol 1990), with activation of several 
volcanic centers over time. The active volcanic center moved 
to the northern end of the island around 550 ka and built 
Mount Conil, located to the northwest of the most recent 
vent (Germa et al. 2015). During the next ~425 ky, the erup-
tive activity produced andesitic lava flows, lava domes, and 
variably welded pyroclastic flows (Westercamp and Traineau 
1983; Germa et al. 2011). Following a large flank collapse 
at ~127 ka (Le Prêcheur event: Le Friant et al. 2003; Bru-
net et al. 2016), the Paleo-Pelée cone formed in the pre-
served northern rim of the flank-collapse structure (Vincent 
et al. 1989). This more explosive phase of growth produced 
alternating pumice falls, pumice, and/or scoria flows and 
block-and-ash flows until ~36 ka (Solaro et al. 2020). In 
the past 2 ka, Mt. Pelée has exhibited alternating Plinian 
and Peléan type behavior (Westercamp and Traineau 1983; 
Vincent et al. 1989; Boudon et al. 2005), the latter of which 
involves dome formation and small-volume PDCs (Roobol 
and Smith 1976).
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In this study, we focused on five of the most recent 
magmatic eruptions, which took place in 1929–1932 CE 
(referred to as 1929), 1902–1904 CE (referred to as 1902), 
ca. 1300 CE (P1), ca. 280 CE (P2), and ca. 79 CE (P3) (Wes-
tercamp and Traineau 1983; Traineau et al. 1989; Boudon 
et al. 2005). The twentieth century eruptions were Peléan, 
in that they produced lava domes and dilute PDCs, while 
the earlier three eruptions were primarily Plinian, producing 
interspersed pumice lapilli fallout and deposits of variably 
dense PDCs as column stability varied (Westercamp and 
Traineau 1983; Carazzo et al. 2012, 2019, 2020). The local 
trade winds result in a generally westward tephra dispersal 
(Carazzo et al. 2012, 2019, 2020) with local precipitation 
maxima on the northeastern flanks of Mt. Pelée and a rain 
shadow in the southwest (Michaud-Dubuy et al. 2019).

Recent history of Mt. Pelée

Archeological artifacts underlying P2 deposits indicate that 
Martinique was inhabited prior to 280 CE, before being 
evacuated at the onset of the eruption (e.g., Bérard et al. 
2003 and Carazzo et al. 2019). The island was then re-
inhabited prior to the beginning of European settlement in 
1635 (Bourdier et al. 1989; Smith and Roobol 1990), likely 
closely following Peléan activity which left the flanks void 
of vegetation (Westercamp and Traineau 1983). After two 
minor phreatic eruptions in 1792 and 1851, the first mag-
matic activity observed on Martinique after European set-
tlement occurred in 1902, preceded by increased fumarolic 
activity, as well as phreatic and phreatomagmatic eruptions 
(Bourdier et al. 1989; Smith and Roobol 1990). On May 
8, 1902, PDCs overflowed topographic barriers and devas-
tated the town of St. Pierre—amongst other towns and vil-
lages—resulting in the deaths of ~28,000 people (Lacroix 
1904; Bourdier et al. 1989; Gueugneau et al. 2020). This 
eruption is considered the deadliest of the twentieth century 
and may have been the most catastrophic on Martinique. 
Over the following months, dilute and dense PDCs were 
observed, as well as growth of a lava dome and eventually 
the iconic ~350 m high spine (Lacroix 1904; Smith and Roo-
bol 1990). During these events, the town of Morne Rouge 
was also destroyed, leading to 1500 further deaths (Bourdier 
et al. 1989). The most recent eruptive activity of Mt. Pelée 
occurred from 1929 to 1932, including phreatic or phreato-
magmatic eruptions, dome formation, and PDCs—deposits 
of which overlie those from 1902 in a smaller region on the 
south flank of the volcano (Romer 1934). Products of recent 
eruptions (i.e., P4 at 2.5 ka and younger) have average silica 
content of 62 wt.%, forming a bulk andesitic composition, 
with phenocryst content ranging from 35 to 58 vol.% and 
rhyolitic matrix glass (Martel et al. 1998).

Consistency in bulk chemical composition and physical 
conditions across recent eruptions indicates homogeneity 

of an unchanging magma reservoir source (Martel and 
Poussineau 2007), with pre-eruptive storage at 875–900 °C, 
200±50 MPa, approximate oxygen fugacity of NNO + 0.6, 
and H2O contents of 5.3–6.3 wt.% in the melt (Martel et al. 
1998). Mafic enclaves with 51–59 wt.% SiO2 and banded 
clasts were produced during the 1902 and 1929 eruptions, 
and minor amounts of inherited phenocrysts grown from 
mafic melts are present across eruptions, together indicating 
magma mixing between the primary andesitic reservoir and 
a distinct mafic source (Fichaut et al. 1989; Gourgaud et al. 
1989; Pichavant et al. 2002).

Materials and methods

Sample collection and preparation

During a first sampling campaign in 2013, samples were 
collected from all volcano flanks. Preliminary experiments 
(Holzmueller and Kueppers 2015; Kueppers et al. 2015) 
showed results inconsistent with empirical findings in the 
same set up (Spieler et al. 2004; Kueppers et al. 2006a, b; 
Scheu et  al. 2006). It was concluded that a follow-up 
sampling campaign was required to constrain Mt. Pelée’s 
behavior, excluding outcrops from the eastern flanks 
where precipitation is more substantial. In March 2019, 
samples were collected from ignimbrites from the 1929, 
1902, P1, P2, and P3 eruptions, outcropping in riverbanks 
and roadside cuts. Outcrop locations are shown in Fig. 1, 
and representative images of each outcrop are shown in 
Fig. 2. Juvenile, bomb-sized clasts were selected as starting 
material to enable the drilling of rock cylinders of 25 mm 
diameter and 60 mm length for laboratory fragmentation 
experiments (Kueppers et al. 2006a, b). Upon drilling, the 
two ends of the cylinders were cut parallel and polished with 
a saw and lathe, respectively, to minimize surface roughness. 
Finally, the cylinders were washed and dried for at least 12 
h at 80°C.

Petrophysical analysis

Cylinder length (L) and diameter (d) were measured using 
a digital caliper (precision ± 0.01 mm) to calculate bulk 
volume (VB) and cross-sectional area (A). Dry mass (M) was 
determined using a balance (precision ± 0.0001 g) and then 
divided by VB to determine dry bulk density (ρB) of each 
cylinder. The displacement volume (VS) of cylinders and the 
solid density (ρS) of powdered clasts (milled to < 63 μm, 
sub-sample name ending in “_P”) were determined using a 
Quantachrome helium pycnometer (Ultrapyc 1200e), with a 
precision of 0.0001 g·cm−3. The following set of equations 
was used to define open porosity (ϕO), total porosity (ϕT), 
and closed porosity (ϕC).
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Permeability (kD) was measured for two samples per 
eruptive unit, using a benchtop gas (nitrogen) permeameter 
constructed using a quick release coreholder from Vinci 
Technologies, gas flowmeters from Bronkhorst, and a pres-
sure transducer from KELLER (see Farquharson et al. 2016 

(1)�O =
VB − VS

VB

∗ 100

(2)�T =
�S − �B

�S
∗ 100

(3)�C = �T − �O

and Heap and Kennedy 2016). All permeability measure-
ments were performed at the Strasbourg Institute of Earth 
and Environment (Strasbourg, France) at ambient labora-
tory temperature and under a confining pressure of 1 MPa 
using the steady-state method. One sample (C7-06), which 
contains rough sidewalls, was wrapped in electrical tape 
and measured at a confining pressure of 1.5 MPa to ensure 
that no gas passed between the sample and the jacket. The 
samples were left to equilibrate microstructurally to the 
confining pressure for 1 h prior to measurement. Steady-
state volumetric flow rates (Qv) were then measured (using 
a gas flowmeter) for six different pore pressure differen-
tials (∆Pk; measured using a pressure transducer), where 
Pd and Pm are downstream and mean pore fluid pressure, 

Fig. 1   DEM map of Mt. Pelée 
in the north of Martinique. 
Outcrop locations relevant 
to this study are labeled with 
circles, and the summit crater 
of Mt. Pelée is indicated with 
a triangle symbol. Key town 
locations are indicated with 
diamond symbols. Map gener-
ated using open source QGIS 
software. Coordinates are in 
WGS 84-UTM Zone 20 system. 
The inset shows the location 
of Martinique in the Carib-
bean arc. Image modified from 
Michaud-Dubuy (2019)
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respectively. These data were used to calculate permeability 
using Darcy’s law (Eq. 4) and, where necessary, were cor-
rected using the Klinkenberg or Forchheimer corrections (as 
in Heap et al. 2017). The viscosity of nitrogen as pore fluid 
is included as μ.

Textural analysis

Grayscale backscattered electron (BSE) images of 
representative thick sections of samples from all five 
eruptions were obtained using a SU5000 Schottky 

(4)kD =
Qv

PmΔPk

�LPd

A

FE-SEM (Hitachi) scanning electron microscope (SEM) 
at the Department of Earth and Environmental Sciences 
at LMU Munich. Magnification of ×60 to ×1800 was used 
with an accelerating voltage of 20 kV to observe textural 
features spanning 5 μm to 2 mm. Approximate phenocryst 
proportions in each unit were estimated from representative 
scans using the ImageJ macro RockPie (Hornby 2022), 
which is based on the ash-surface-salts macro described 
in Casas et al. (2022). This macro uses user-led grayscale 
and size thresholding to differentiate void space, glass, 
and crystals and then performs an area-based calculation 
to determine areas and proportions of each differentiated 
component.

Fig. 2   Outcrops of sampled ign-
imbrites from the 1929, 1902, 
P1, P2, and P3 eruptions, in a 
through e, respectively. Note 
shovel in a, c, and e; people for 
scale in b, and jointed clast (~15 
cm in diameter) indicated by the 
red arrow in d 
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Geochemical analysis

The bulk (whole rock) chemical compositions of the vol-
canic ashes were determined with X-ray fluorescence (XRF) 
at the Institute of Geosciences, Johannes Gutenberg Uni-
versity, in Mainz, Germany. For this purpose, ash samples 
were ground for 5 min in a zirconia ball mill to obtain a 
fine-grained (<63 μm) powder. Major elements were ana-
lyzed by measuring fused glass beads (0.4 g sample, 5.2 g 
Li2B4O7 flux) with a Philips Analytical MagiX PRO. Loss-
on-ignition (LOI) was determined by weighing the sample 
before and after heat treatment for 2 h at 980 °C. Electron 
probe microanalysis (EPMA), using a Cameca SX100 at 
LMU Munich, was performed on glass with a defocused 
beam of 10 μm at a current of 5 nA to account for Na migra-
tion, while crystalline material was measured with a focused 
beam at 20 nA, both at 15 kV accelerating voltage and with 
10 s count times. The following standards were used: Si 
and Na, albite; Al and K, orthoclase; Ca, wollastonite; Mg, 
periclase; Fe, Fe2O3; Cr, Cr2O3; Ti, ilmenite; Mn, bustamite; 
P, apatite; Cl, vanadinite; S, anhydrite; Y, YIG (Y3Fe5O12); 
Gd, GdIG (Gd3Fe5O12); Zr, ZrO2: and Hf, met. Hf.

Rapid decompression experiments

Fragmentation experiments were originally designed by 
Alidibirov and Dingwell (1996a, b) to investigate the 
response of porous magma/rock to rapid decompression and 
accordingly mimic explosive volcanic (magmatic) eruptions. 
The force of pressurized gas acting on bubble walls during 
decompression may cause brittle failure and particle ejec-
tion. These controlled and repeatable lab experiments empir-
ically correlate the starting conditions (defined by the user) 
with the observable features of the produced gas-particle 
jets (Cigala et al. 2017, 2021; Schmid et al. 2020, 2022) and 
the generated particle population (Kueppers et al. 2006a; 
Alatorre-Ibargüengoitia et al. 2011). The experiments of this 
study were performed at room temperature on cylinders with 
porosity representative of each eruptive unit, and the spe-
cific “fragmentation bomb” setup used is shown in Fig. 3. 
Experimental conditions are manipulated directly, by vary-
ing applied pressure (∆P) and, indirectly, by selecting sam-
ples of different connected porosity. The potential energy 
of fragmentation (PEF) is calculated as the multiplication 
of ∆P and connected pore volume (ϕO × VB). The model 
of Spieler et al. (2004) was referenced to select ∆P condi-
tions ranging 6–20 MPa, as to exceed sample fragmentation 
thresholds and cause complete fragmentation.

Once the intended autoclave pressure (adjusted to 0.1 bar 
precision) is achieved, the independently controlled pressure 
in the uppermost chamber is increased to exceed the ∆P 
stability of the uppermost diaphragm, such that it ruptures, 
releasing gas into the atmospheric-condition collection tank. 

The lower diaphragm(s) then consequently open, facilitating 
decompression of the overpressurized autoclave downward 
toward the sample, which is momentarily exposed to a steep 
pressure gradient. If sample textures (e.g., porosity and per-
meability) and pressure conditions permit, compressed gas 
in the open pore space of the cylinder expands, bubble wall 
strength is exceeded, and the sample fragments. Generated 
clasts are accelerated upwards by the expanding gas and 
ejected into the collection tank. A pressure transducer is set 
to trigger collection of pressure data across the depressuri-
zation event, as well as high-speed video footage (recorded 
with a Phantom V710, sampling rate of 10,000 fps, reso-
lution of 1280 by 600 pixels) of 4 s following diaphragm 
rupture. These videos show decompression to occur in less 
than 0.1 s. The experimental conditions achieved are sum-
marized in Table 1.

Grain size distribution determination

Following each rapid decompression experiment, the frag-
ments generated were carefully collected from the tank plate 
and plexiglass tube using a brush. For each experiment, the 
weight of all fragments is compared to the respective start-
ing cylinder weight (%) (following insertion into the sleeve) 
and confirms near-complete recovery of all clasts. Products 
were then dry sieved by hand at half-Φ steps from > 16 mm 
to < 63 μm diameter, with care to minimize further breaking 
while obtaining satisfactory size separation. Each size frac-
tion was weighed (precision ± 0.0001 g) and then stored in a 
sealed glass vial. The total mass (MT) of collected products 
was compared with the collected mass to confirm loss during 
sieving as << 1 wt.%. In total, we have analyzed the generated 
clasts of twenty-two experiments performed in this study and 
seventeen previously performed by Kueppers et al. (2015).

Data analysis

Experimental grain size distributions are analyzed using 
MATLAB. The base ten logarithm of cumulative weight (CW) 
fractions for fragments with a linear dimension (r) smaller than 
each sieve aperture (R) is calculated and plotted against the base 
ten logarithm of sieve aperture (Φ10). The size range of 250 μm 
to 4 mm is selected for subsequent calculations, following the 
reasoning of Perugini and Kueppers (2012) and Sarkar et al. 
(2020), to account for bias due to the cylinder starting size and 
possible loss of fine ash. Here, logarithmic cumulative weight 
fraction plots are examined for linearity within the selected 
ranges, to establish the fractal character of GSDs. These ranges 
are then used for a best-fit slope calculation, performed with 
the MATLAB curve fitting toolbox, using a linear equation 
form. Following Perugini and Kueppers (2012), the following 
equations are employed to quantify fragmentation efficiency as 
a fractal dimension (Df, CW).
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Results

Petrophysical properties

All samples from the three Plinian eruptions have a dry bulk 
density (ρB) < 1000 kg m−3 and are called pumices from 
now on, while all Peléan samples exhibit higher and more 
variable values of bulk and powder density. The pumiceous 

(5)
M(r < R)

MT

= Rv

(6)Df ,CW = 3 − v

sub-sample ϕO averages range from 55 to 66%, with greater 
variation between cylinders from separate clasts than for 
cylinders drilled from the same source clasts (Fig. 4). P3 
and P2 clasts collected in 2013 from outcrops 114 and 95, 
respectively, on the wet, eastern flanks show the greatest 
sub-sample variability. The 1929 samples have the lowest 
analyzed ϕO, averaging around 32%, while the average ϕO 
of the 1902 samples ranges from 36 to 47%: the widest range 
for the eruptive units considered. The pumiceous samples 
have ϕC around 10%, whereas the 1902 samples average 
below 0.5% (such that corresponding ϕT tends to be within 
error of ϕO) and the 1929 samples have a ϕC of ca. 1%. Per-
meability values range from 9.89 × 10−13 to 8.00 × 10−12 
m2, without systematic trends across units. The results for 
Peléan and Plinian samples fit within the effusive and explo-
sive product envelopes as defined for porosity-permeability 

Fig. 3   Photo (left) and schematic (right) of the fragmentation bomb 
setup for rapid decompression experiments, including from bot-
tom up: sample-containing autoclave, gas inlets, closed diaphragms 
(blue), tank bottom plate, cylindrical vent, plexiglass window through 

which high-speed videos are recorded, and the atmospheric pres-
sure collection tank. Gas lines are shown in red, with barometers and 
valves denoted. Data pathways are denoted by gray-filled arrowheads
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combinations by Mueller et al. (2005), respectively. Full 
petrophysical results can be found in the Supplementary 
Information (Huebsch et al. 2023).

Textural overview

BSE scans for the Plinian (Fig. 5) and Peléan (Fig. 6) sam-
ples highlight strong textural differences. The Plinian sam-
ples are highly vesiculated and have a well-connected poros-
ity structure, while the Peléan samples are significantly less 

vesicular. All observed samples are porphyritic, and in most 
samples, the phenocrysts of plagioclase and pyroxene are 
fractured (Figs. 5 and 6). The groundmass of all Peléan sam-
ples contains abundant plagioclase microlites (Fig. 6b, d).

Two-dimensional crystal content and void space, respec-
tively, are about 25–30% and 20–40% for the Peléan samples 
and 10–20% and 50–70% for the Plinian samples, in good 
agreement with pycnometry results. Most vesicles in the 
Plinian samples are round with a low aspect ratio, indicative 
of rapid vesiculation, while the heterogeneous orientation of 

Table 1   Experimental 
conditions, organized by 
eruptive unit from youngest to 
oldest. Samples with names 
starting with a letter were 
collected in 2019, those with 
numbers in 2013 (Kueppers 
et al. 2015). The experimental 
conditions are manipulated 
by applying pressure (∆P) 
to representative sub-sample 
cylinders drilled from blocks 
from each eruption, with 
varying open porosity (ϕO) 
within their bulk volume (VB), 
to create resulting potential 
energy of fragmentation (PEF). 
The resulting fragmentation 
efficiency is quantified from 
cumulative weight fractions as 
the fractal dimension, Df,CW. 
Additional parameters are 
provided in the Supplementary 
Information (Huebsch et al. 
2023)

Eruptive unit Sub-sample ∆P (MPa) ϕO (%) VB (cm3) PEF (J) Df, CW

1929 D1_05 10.2 34.95 31.44 112.08 2.31
D1_01 15.0 30.93 31.44 145.88 2.36
D2_01 19.6 31.86 31.47 196.52 2.39

1902 C7_05 7.5 47.56 31.16 111.17 2.39
C7_01 10.2 47.39 31.09 150.28 2.48
C7_02 15.1 46.20 31.31 218.39 2.44
C6_04 15.2 35.92 31.66 172.85 2.51
C6_05 17.1 35.86 31.59 193.74 2.48
C6_03 20.3 35.72 31.11 225.58 2.51

P1 B1_09 7.9 60.33 31.44 149.84 2.24
B1_05 10.1 60.27 31.19 189.84 2.22
B1_07 14.1 60.73 31.55 270.17 2.25
B1_04 17.6 60.12 31.53 333.61 2.22
B1_06 20.2 59.79 31.31 378.17 2.17
77b_01 5 56.61 30.95 87.61 2.30
77b_02 10 56.92 30.48 173.50 2.30
77b_03 10 57.20 29.72 169.99 2.34
77b_04 15 56.77 30.60 260.61 2.31
77b_05 15 56.85 30.66 261.47 2.32

P2 H1_01 7.4 62.67 30.72 142.45 2.43
H1_07 10.1 63.10 30.97 197.36 2.41
H1_06 15.1 63.46 31.00 297.05 2.36
H1_04 20.1 65.07 30.76 402.38 2.44
95_06 5 65.94 30.70 101.22 2.55
95_07 7.5 65.53 30.64 150.61 2.48
95_01 10 59.19 30.54 180.74 2.25
95_02 10 60.53 30.18 182.68 2.45
95_08 15 60.00 30.48 274.34 2.35
95_09 15 60.57 30.83 280.14 2.21

P3 A1_02 6.7 60.08 31.24 125.73 2.38
A1_01 10.4 60.20 31.08 194.58 2.28
A2_02 12.5 58.17 30.81 224.03 2.23
A2_01 20.2 57.73 31.45 366.81 2.23
114_04 5 68.82 29.95 103.06 2.56
114_16 5 67.38 30.87 104.00 2.57
114_23 10 67.69 30.78 208.35 2.52
114_07 10 67.58 30.07 203.21 2.47
114_12 15 64.88 30.49 296.73 2.41
114_17 15 65.20 30.76 300.83 2.45
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the longest axis indicates localized regions of ductile defor-
mation (Fig. 5d). The Peléan samples on the contrary exhibit 
irregularly shaped vesicles and a lower bubble number den-
sity (Fig. 6), following coalescence and outgassing.

Geochemistry

Bulk XRF analysis confirms that the erupted products 
from the five considered eruptions are andesitic, with no 
systematic silica or alkali trend across units (Fig. 7). Elec-
tron microprobe data, shown alongside results of Martel 
and Poussineau (2007), indicates that all measured glasses 
are rhyolitic, with greater variability in the denser, Peléan 
samples due to increased microlite content (Fig. 7). Spot 
analysis of phenocrysts show plagioclase to be primarily 
bytownite, ranging from labradorite to anorthite (An65-95), 
and orthopyroxene to be hypersthene, intermediate in fer-
rosilite content (Fs50-60).

Experimental grain size distributions

All fragmentation experiments led to complete disintegra-
tion of the starting cylinders. GSD results are shown in 
Fig. 8 and show distinct responses for Plinian and Peléan 
samples to rapid decompression. The mode (i.e., peak loca-
tion and shape) remained largely constant per sample set, 
and no strong positive correlation was observed between 
starting experimental pressure and the weight fraction of 
fine particles (Φ2 < 0) created. Results for P1, P2, and P3 
show mono-modal peaks between Φ2 ≈  − 1 and Φ2 ≈  − 1.5. 
Weight fraction results for 1902 and 1929 experiments form 

a broader peak around Φ2 ≈  − 1 and Φ2 ≈ 0.5. Sub-millimeter 
proportions of all produced fragments for 1902 and 1929 
experiments were 51 wt.% and 34 wt.%, respectively, and 25 
wt.%, 25 wt.%, and 30 wt.% for the P1, P2, and P3 experi-
ments, respectively. Additionally, the fractal behavior has 
been investigated for each data set between 2.8 mm and 250 
μm (vertical dashed lines in Fig. 8). The results show the 
dependence of Df, CW on PEF for the Peléan samples only 
(Fig. 9) and confirm the observed separation of the five 
investigated sample sets into two distinct groups. A generally 
positive trend exists for the Peléan (1902 and 1929) samples, 
whereas for the Plinian (P1, P2, P3) samples, fragmentation 
efficiency did not increase systematically with PEF.

Discussion

Magma characteristics

Our geochemical results confirm the findings of Martel and 
Poussineau (2007) that the volumetrically dominant magmas 
at the source of the 1929, 1902, P1, P2, and P3 eruptions are 
compositionally very similar (Fig. 7). This indicates that 
the magma reservoir compositionally unchanged over at 
least the last 2000 years. Textural heterogeneities between 
eruption units, excluding the minor mafic enclave content 
observed, likely correspond to variations in ascent condi-
tions and eruption dynamics associated with the Plinian 
and Peléan eruptive styles. We note here, however, that our 
study materials are, of necessity, all similarly sized pyro-
clastic bombs. These were selected for drilling multiple 

Fig. 4   Pycnometry porosity data 
for each analyzed sub-sample, 
organized by parent sample and 
eruptive unit, from oldest (P3, 
left) to youngest (1929, right). 
Standard error smaller than 
symbol size. Open symbols cor-
respond to data from Kueppers 
et al. (2015)
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experimental cylinders from each, and thus, their character-
istics cannot represent eruption phases where such products 
are absent.

The strong contrast in microlite contents (Figs. 5 and 
6) indicates substantial differences in cooling history 
between the Peléan and Plinian source magmas, with 
faster decompression and cooling (and accordingly less 
crystallization) in the latter. This requires substantially 

higher ascent velocities for the “Plinian magmas,” causing 
stronger oversaturation and, in the near absence of 
microlites, faster volume increase following homogeneous 
bubble nucleation. Thus, the limited time for outgassing 
facilitates significant overpressure build-up. In the Peléan 
cases, slower magma ascent and dome extrusion enabled 
efficient outgassing and related microlite nucleation and 
growth (Toramaru et al. 2008). Our observation of major 

Fig. 5   Back-scattered electron (BSE) images of the Plinian samples, 
deriving from the P3 (a, b), P2 (c, d), and P1 (e, f) eruptions. Two 
phenocryst populations can be observed: plagioclase (darker gray) 
and pyroxene (slightly brighter gray), as labeled. All samples exhibit 

high bubble number density. The scale bars in the left- and right-hand 
overview and zoom sub-figures are 500 μm and 100 μm long, respec-
tively
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phenocryst content in BSE images, consistent across 
eruptive units, is in agreement with the results of Gourgaud 
et al. (1989) and Martel et al. (1998).

In accordance with their different microlite and 
phenocryst contents, vesicle shapes are irregular in Peléan 
samples (Fig. 6) and rounder in Plinian samples (Fig. 5), 
in agreement with the results of Martel et al. (2000) and 

Martel and Poussineau (2007). Our textural observations, 
alongside the H2O contents of ~0.2–1.6 wt.% for 1902 
and 1929 samples and ~5.5 wt.% for P1 fallout and PDC 
samples (assumed to not have experienced post-depositional 
hydration) reported by Martel et al. (2000), support more 
thorough outgassing and dehydration during the Peléan 
eruptions.

Fig. 6   Back-scattered electron 
(BSE) images of samples from 
1902 (a, b) and 1929 (c, d). 
Plagioclase microlites appear as 
bright fine spots in the matrix 
(b, d). Exemplary phenocrysts 
or microlites are labeled in 
each subfigure, and plagioclase 
phenocrysts with low contrast 
to glassy matrix are outlined in 
white in d. The scale bars in the 
left- and right-hand overview 
and zoom sub-figures are 500 
μm and 100 μm long, respec-
tively

Fig. 7   TAS diagram for results 
of XRF on representative 
powdered whole-rock samples 
(one per unit, with 1% relative 
error) and EPMA on interstitial 
glasses (averages of at least four 
measurements per eruptive unit, 
with statistical error shown). 
The ranges of EPMA results 
and relative error from Martel 
and Poussineau (2007) are 
shown as darker and lighter gray 
fields, respectively
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Fig. 8   Grain size distributions 
shown as weight fractions 
across the negative base-two 
logarithm of sieve aperture. 
The left column (a, c, e) and 
right column (b, d) show results 
of fragmentation experiments 
performed with samples of the 
Plinian eruptions P3, P2, and 
P1 and Peléan eruptions 1902 
and 1929, respectively. Vertical 
dashed lines indicate the limits 
of the analyzed data range

Fig. 9   The fractal dimension 
of cumulative weight fractions 
(Df,CW) plotted against potential 
energy of fragmentation (PEF), 
for Plinian eruptions (a) and 
Peléan eruptions (b)
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Fragmentation efficiency

We observed a noticeable reduction in the mechanical 
strength of samples from the same stratigraphic unit related 
to the microclimate, i.e., samples collected at the rainy 
side of the volcano (east) were consistently weaker. Heap 
et al. (2022) reported similar results, observing the tensile 
strength of volcanic rocks to decrease as a function of extent 
of hydrothermal alteration. The P2 and P3 samples collected 
from the eastern side of the volcano (sites 95 and 114 in 
Fig. 1) exhibit a wider porosity range (Fig. 4) and a higher 
fragmentation efficiency (Table 1) than their counterparts 

from the western side (sites 13 and 209). These samples 
fragmented inconsistently and differently than typical for 
juvenile material (Spieler et al. 2004), with some experi-
ments generating more coarse fragments than dry-side coun-
terparts and therefore different GSDs (Fig. 8; Kueppers et al. 
2015). Exposure to larger precipitation volumes and presum-
ably greater soil humidity likely correlated with increased 
weathering, involving breakdown of matrix glass and suf-
ficient structural weakening to influence fragmentation 
behavior (see also, for example, Mayer et al. 2015). As only 
juvenile material is relevant for this study, our discussion 
below is restricted to the behavior and characteristics of the 

Fig. 10   Grain size distributions 
shown as weight fractions across 
the negative base-two logarithm 
of sieve aperture. Results of 
10 and 20 MPa fragmentation 
experiments are superimposed for 
ease of comparison across erup-
tion group materials. Data has 
been renormalized to exclude Φ2 
= −3, and vertical dashed lines 
indicate the limits of the analyzed 
data range

Fig. 11   The fractal dimen-
sion of experimental results on 
materials from Mt. Pelée from 
this study, together with results 
for Popocatépetl (Mexico) and 
Unzen (Japan) materials (*) 
from Perugini and Kueppers 
(2012), compared with potential 
energy of fragmentation (a) and 
open porosity (b)
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materials collected in 2019 on the dry side. Future sampling 
activities are planned for tailored textural and geochemi-
cal analysis of clasts collected from outcrops in different 
microclimates from the same stratigraphic units, to explore 
variability in weathering and devitrification.

Experimental GSD results are distinct between the Plinian 
and Peléan material groups and internally consistent within 
results for each considered eruption (Fig. 8), indicating that 
textural parameters have a greater control on fragmentation effi-
ciency than the overpressure applied. For comparison between 
material groups, the GSD results of 10 and 20 MPa experiments 
for each unit are overlain in Fig. 10. This figure was generated 
following re-normalization to exclude the variation at Φ2 = −3 
observed in Fig. 8, which occurs well outside the defined range 
of significance indicated by the vertical dashed lines. The 1902 
sample experiments produced greater weight fractions of sub-
millimeter fines than all other experiments (Fig. 10) and as a 
group exhibited the most efficient fragmentation (Fig. 9). The 
1902 and 1929 samples show a generally positive correlation 
of Df, CW with PEF (Fig. 9) and extend the observed correlation 
between PEF and fractal dimension of Kueppers et al. (2006a) 
and Perugini and Kueppers (2012) (Fig. 11a). For these mate-
rials, the proportion of fines tends to increase as a function 
of overpressure. This relationship may be bolstered by more 
populous crystal cleavage faces providing locations where brit-
tle failure can more easily occur (Cordonnier et al. 2012; Wads-
worth et al. 2018). The observed large(r) variability in Df, CW 
results for 1902 samples likely reflects the overall larger textural 
heterogeneity, including the presence of magmatic enclaves 
of various sizes. Nonetheless, we are convinced that the pre-
sented results point toward a positive correlation of Df, CW with 
PEF. In extrapolating to Peléan eruptions, we can infer that 
increased overpressurization of a dome system or shallow 
subsurface magma can lead to enhanced fine-ash production 
following dome failure or eruption onset. With increased pro-
portions of ash (i.e., relative to larger pyroclasts), heat transfer 
efficiency increases and PDCs become more buoyant and less 
topographically confined, increasing the size of the impacted 
hazard region (e.g., Taddeucci and Palladino 2002 and Wright 
et al. 2016). During the 1902 eruption of Mt. Pelée, generation 
of devastating dilute pyroclastic surges (i.e., rather than denser 
and coarser PDCs) was likely caused by the interplay of par-
ticular magma textures and pressure conditions.

In contrast, results from the P1–P3 experiments reveal a 
sub-horizontal regression in the Df, CW-PEF relationship, 
wherein additional overpressure did not result in enhanced 
disintegration of the starting sample. It seems that for the 
Martinique samples investigated, there is a maximum value 
of Df, CW that cannot be overcome by magmatic fragmentation 
alone (Fig. 11a). This cannot be attributed to permeability in 
porous rocks only, as no significant variation of permeability 
exists across the starting rock cylinders. Fragmentation by 
rapid decompression is a multi-step fracture process where 

the cylinders are broken into initially larger clasts (disrupted 
by unloading and gas overpressure) which may then break 
up into finer clasts in subsequent steps. In this case, the 
distance that gas has to flow through the permeable network 
to reach the outside of the just-generated clasts is reduced. We 
speculate that this syn-fragmentation gas loss is dictated by 
textural characteristics (e.g., porosity, tortuosity, pore throat 
aperture, and vesicle size distribution) and leads to no apparent 
fragmentation efficiency changes despite increasing the 
starting gas pressure (Fig. 11b). Eventually, this gas loss would 
accommodate the starting pressure in individual experiments 
and explain the lack of correlation between starting pressure 
or potential energy and grain size characteristics.

Although the impact on fragmentation was found to be 
minor, excess potential energy still contributed to accel-
eration of particles for samples with porosity above the 
observed threshold (Supplementary Information; Huebsch 
et al. 2023). Particle ejection begins while the gas jet is still 
under-expanded and condensed at the vent, impeding precise 
quantification of the ejection velocity of the first particles. 
Still, tracking of first visible particles supports that peak 
ejection velocity tends to be greater for Plinian than Peléan 
fragments, likely due to higher starting potential energy for 
equivalent starting pressures. In addition to further quanti-
tative textural characterization, future work will examine 
componentry of experimentally produced size fractions, to 
investigate possible concentration of denser materials (e.g., 
mafic enclaves and phenocrysts) in certain size fractions and 
if this could bias GSD and fractal dimension results.

Though representing the same process, Df calculated 
using cumulative weight fractions cannot be directly 
compared with that from numbers of particles, because it is 
a dimensionless parameter. Due to the power law formula 
being derived for changing grain sizes (Turcotte 1992), 
from the cubic proportionality of volume and mass, Df, CW 
can only be smaller than 3 (Perugini and Kueppers 2012). 
Using the Carazzo et al. (2012, 2019, 2020) field TGSD 
results for fallout deposits from P1, P2, and P3, respectively, 
we have determined Df, CW of 2.6, 2.5, and 2.8, respectively, 
for particles coarser than negative cumulative weight-grain 
size slope inflection observed in each (at 0.5 mm for P1 and 
P3 and 2 mm for P2). As each unique fragmentation process 
may be described by a single fractal dimension (e.g., Turcotte 
1986), or slope, these slope inflections indicate that secondary 
processes have modified the distribution of grain sizes at some 
point following primary fragmentation. The fragmentation 
efficiencies indicated by these field TGSDs are markedly 
more pronounced than our corresponding experimental results 
for materials from the same eruptions, especially for P1 and 
P3. This indicates that secondary fragmentation, despite 
these field TGSD analyses being of fall and not ignimbrites, 
outcompetes the opposing processes of washout of fines from 
rainfall and loss of fines to the ocean, to create an apparent net 
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increase in fragmentation efficiency. For further comparison 
of our experimental results and the corresponding field 
results of Carazzo et al. (2012, 2019, 2020), as well as the 
number of particles and cumulative weight fraction methods 
of calculating the fractal dimension, see the Supplementary 
Information (Huebsch et al. 2023).

Our experimental conditions cause predominantly tensile 
fractures (primary fragmentation). Particle-setup and parti-
cle-particle interactions are of low energy, and the impinging 
energy of the generated jets to the top of the low-P section 
is minimized by adding shock-absorbing materials. Future 
work should aim at constraining post-fragmentation pro-
cesses (i.e., secondary fragmentation and sorting). To this 
end, tumbling experiments (Kueppers et al. 2012; Hornby 
et al. 2020) with polymodal starting material could reveal 
the dynamic grain size evolution of PDCs after fragmenta-
tion and before sedimentation. Furthermore, more detailed 
field characterization of the TGSD of the Peléan deposits 
of Mt. Pelée, extending the work of Carazzo et al. (2012, 
2019, 2020) on the recent Plinian deposits, would help link 
deposit characteristics to empirically constrained material 
response laws (Alidibirov and Panov 1998; Spieler et al. 
2004; Kueppers et al. 2006a; Perugini and Kueppers 2012). 
Experimental GSD data are useful as a calibration tool when 
interpreting field TGSD results. To improve validity of com-
parison across experimental and field studies, continued 
development of TGSD methodology is required, along with 
the application of a harmonized approach for summarizing 
fragmentation efficiency.

Conclusions

The Peléan samples analyzed in this study have irregular 
vesicle shapes and are denser and more crystalline than 
Plinian samples. This set of textural characteristics indi-
cates more extensive outgassing and crystallization, con-
sistent with the typically lower ascent velocities observed 
for Peléan eruptions than for Plinian eruptions. Consistent 
andesitic whole rock and rhyolitic matrix glass compositions 
demonstrate that magma composition does not significantly 
vary across eruptive units.

Our experimental results show a porosity threshold, above 
which applying higher overpressure no longer enhances 
fragmentation efficiency. Beyond this threshold, which is 
exceeded here by Plinian samples, gas loss through a per-
meable network of bubbles and cracks allowed for syn-frag-
mentation dissipation of potential energy. To further explore 
this phenomenon, future research should include further 
textural characterization of samples (e.g., vesicle tortuosity 
and crystal size distributions) prior to their fragmentation in 
rapid decompression experiments.

For the investigated lower porosity Peléan materials, 
fragmentation efficiency was found to increase in experi-
ments with higher applied pressure. This experimentally 
determined relationship has implications for Peléan erup-
tion hazard assessment: changes in overpressure conditions 
in this eruptive regime influence the proportion of fines pro-
duced and resulting PDC dynamics. The mass fatalities at 
Mt. Pelée in May of 1902, in regions largely unreachable 
by dense pyroclastic flows, likely resulted from a specific 
combination of magma texture and overpressure conditions 
being met, facilitating production of less topographically 
controlled, dilute, and ash-rich PDCs.

Our experimental results support that field TGSDs, 
including those for the three most recent Plinian eruptions 
of Mt. Pelée, reflect particle and deposit modification by 
secondary processes. As rapid decompression experiments 
allow for quantification of the isolated efficiency of primary 
fragmentation, their results can aid more robust interpreta-
tion of fractal dimensions of field deposits comprising tex-
turally comparable material.

Under the assumption that the investigated samples 
(bomb-sized clasts > 10 cm diameter) are texturally and 
chemically representative of the juvenile magma involved 
in these five explosive eruptions, our results confirm the 
clear correlation between starting conditions of explosive 
eruptions and the related deposits. Despite their only being 
preserved in proximal deposits, we wish to stress the prob-
able importance of the comparison of the textural properties 
of lapilli clasts in future studies. The results presented are 
nevertheless an important step toward quantitatively reveal-
ing the energy underlying explosive eruptions.
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