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Abstract
Vaccination continues to be a very important public health intervention to control infectious diseases in the world. Subunit
vaccines are generally poorly immunogenic and require the addition of adjuvants to induce protective immune responses. Despite
their critical role in vaccines, adjuvant mechanism of action remains poorly understood, which is a barrier to the development of
new, safe and effective vaccines. In the present review, we focus on recent progress in understanding the mechanisms of action of
the experimental adjuvants poly[di(carboxylatophenoxy)phosphazene] (PCPP) and poly[di(sodiumcarboxylatoethyl-
phenoxy)phosphazene] (PCEP) (in this review, adjuvants PCPP and PCEP are collectively referred to as PZ denoting
polyphosphazenes). PZs are high molecular weight, water-soluble, synthetic polymers that have been shown to regulate innate
immune response genes, induce cytokines and chemokines secretion at the site of injection and, also, induce immune cell
recruitment to the site of injection to create a local immune-competent environment. There is an evidence that as well as its role
as an immunoadjuvant (that activate innate immune responses), PZ can also act as a vaccine carrier. The mechanism of action that
explains how PZ leads to these effects is not known and is a barrier to the development of designer vaccines.
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Introduction

Vaccination continues to be a very important public health
tool in the control of infectious diseases as vaccines are
estimated to prevent approximately 2.5 million deaths and
many more illnesses worldwide each year (Andre et al.
2008). Vaccines mimic natural infection in the body lead-
ing to activation of the immune system so that future
exposure to similar antigens will trigger the memory im-
mune response. This response is much quicker than a
primary immune response due to the generation and reac-
tivation of long-lived memory plasma cells and memory
helper T cells (Castellino et al. 2009; Pasquale et al. 2015;

Sarkander et al. 2016). Subunit vaccines are safe but be-
cause they often contain highly purified antigens that tend
to be poorly immunogenic, they require the addition of
adjuvants to induce protective immunity (Ulmer et al.
2006). Effective adjuvants mediate their effects by one
or more of the following: enhance the immunogenicity
of highly purified or recombinant antigens; reduce the
amount of antigen needed in a vaccine formulation with-
out impacting efficacy; reduce the number of immuniza-
tions needed for protective immunity; improve the efficacy
of vaccines in newborns, the elderly, or immune-
compromised persons; enhance the speed and duration of
the immune response; modulate antibody avidity, specific-
ity, isotype, or subclass distribution; stimulate cell-
mediated immunity; promote the induction of mucosal im-
munity; and help overcome antigen competition in combi-
nation vaccines (Singh and O’Hagan 2003; Rajput et al.
2007). Despite adjuvants being used in billions of doses
of vaccines over many decades, how adjuvants function
(i.e., their mechanisms of action (MOA)) remains poorly
understood. This lack of clarity regarding adjuvant MOA
is a barrier to the development of safe and effective de-
signer vaccines.
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Generally, adjuvant MOA can be divided into two catego-
ries: (1) immune potentiators/immunoadjuvants that activate
innate immune responses through pattern-recognition recep-
tors (PRRs), which lead to increased immune cell recruitment
and/or their immunomodulation (Pashine et al. 2005; Olive
2012; Apostólico et al. 2016; Haghparast et al. 2016; Wu
2016), or (2) delivery vehicle/carrier adjuvants that can bind
or encapsulate antigen and bring it into association with im-
mune cells (Edelman 1992; Sadeghinia et al. 2015; Liu et al.
2017). The choice of adjuvant combinations for any vaccine
will have a direct effect on adaptive immune responses in-
duced, which is a key component in the development of mod-
ern vaccines. We will detail how polyphosphazenes (PZs)
function as an immunostimulant and as well as a delivery/
carrier adjuvant.

Polyphosphazenes as immunostimulatory adjuvants

PZs are high molecular weight, water-soluble, synthetic poly-
mers that have been shown to enhance the magnitude, quality
and duration of immune responses when co-administered with
bacterial and viral antigens in mice, pigs and cattle (McNeal
et al. 1999; Andrianov et al. 2006; Mutwiri et al. 2007, 2008;
Andrianov et al. 2009; Eng et al. 2010; Andrianov et al. 2011;
Garlapati et al. 2011; Dar et al. 2012; Magiri et al. 2018). The
two mos t i n v e s t i g a t e d po l ypho spha z en e s a r e
poly[di(carboxylatophenoxy)phosphazene] (PCPP) and
poly[di(sodiumcarboxylatoethylphenoxy)phosphazene]
(PCEP) (Mutwiri and Babiuk 2009). Changes in synthesis (such
as reduction in the reduction of acid groups) and formulation as
a soluble adjuvant or microparticle impact how they influence
the immune responses (Andrianov et al. 2004). PCEP has been
shown to have a significantly higher adjuvant activity compared
to PCPP (Mutwiri et al. 2008) and also induce 1000-fold higher
antibody titres compared to alum when co-administered subcu-
taneously with an influenza antigen in mice (Mutwiri et al.
2007). Relative to PCPP, PCEP also promotes a significantly
stronger mixed Th1/Th2 type of responses leading to a broad
spectrum immunity (Mutwiri et al. 2007) (Fig. 1).

Regulation of innate immune response genes, induction
of cytokines and chemokines and recruitment of immune
cells to the site of injection

Studies with mice and pigs revealed species-specific differences
in how PZs induce stimulation of innate immune responses
(Awate et al. 2012; Magiri et al. 2016). Intramuscular injection
of PCEP induced time-dependent changes in the gene expression
of many Badjuvant core response genes^ (Mosca et al. 2008)
such as chemokine genes CCL-2, CCL-4, CCL-5, CCL-12
and CXCL-10 in mice (Awate et al. 2012) and CCL-2 and
CXCL-10 (but not CCL-5) in pigs (Magiri et al. 2016). Major
transcription factor NF-κB gene and the inflammatory cytokine
TNF-α genes were upregulated in response to PCEP in mice
(Awate et al. 2012) but not in pigs (Magiri et al. 2016). At the
protein level, PCEP promoted significant local production of
Th1-type proinflammatory cytokines (IL-1β, Il-6, IL-18 IFN-γ
and TNF-α) and Th2-type cytokines (IL-4 and monocyte
chemoattractants CCL-2 and CXCL-10) at the site of injection
in mice but not systemically (Awate et al. 2012). Further, in vitro
studies showed that PCEP activated the NLRP3 inflammasome
in a caspase 1-depedent manner, which leads to the processing of
interleukin IL-1β-, IL-18- and IL-33-stimulated splenic dendritic
cells (DCs) in mice (Awate et al. 2014a, b). However, in pigs,
PCEP induced IL-6 gene expression but not IL-10, IL-17, or
IFN-α (Magiri et al. 2016). PCEP injection in mice increased
the expression of TLR4 and TLR9 at the site of injection (Awate
et al. 2012) whereas PCEP did not induce any significant expres-
sion of the TLR genes in pigs suggesting differences in activa-
tion of immune responses in different animal species (Magiri
et al. 2016). These results suggest that PCEP may modulate
antigen-specific immune responses by activating early innate
immune responses and promoting a strong immunostimulatory
environment at the site of injection. Our studies provide evidence
that the effect that adjuvants have on the innate immune response
can differ remarkably between species.

Intramuscular (i.m.) injection of PCEP promoted recruitment
of largely neutrophils but also macrophages, CD4+ T cells,
CD8+ T cells and CD19+ B cells, monocytes and DCs to the
injection site and the draining lymph nodes in mice (Awate et al.
2014a, b). Confocal analysis revealed that many recruited mye-
loid cells (but only a few lymphocytes) showed evidence of
intracytoplasmic lysosomal localization of PCEP (Awate et al.
2014a, b). These findings suggest that the recruitment of distinct
immune cells to the site of injection site may be an important
mechanism by which PCEP potentiates immune responses.

Activation of immune cells by polyphosphazenes

Even in the absence of antigens, PCPP and PCEP have strong
avidity to soluble immune receptor proteins such as mannose
receptor (MR) and endolysosome membrane-associated PRRs
such as TLR-7, TLR-8 and TLR-9 (Sasai and Yamamoto 2013;

Fig. 1 The structures of the polyphosphazene polyelectrolytes, PCEP and
PCPP (Andrianov et al. 2006; Teasdale and Brüggemann 2013). Image
recreated from Motifolio.com
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Andrianov et al. 2016a, b). Other studies revealed direct acti-
vation of immune cells by PCPP and PCEP through the TLR
signaling pathway, both on the external cell surface (TLR-4)
and endosome (TLR-3 and TLR-9) (Reed et al. 2013; Sasai and
Yamamoto 2013). Incubation of primary mouse splenocytes
with PCEP or PCPP triggered production of IL-4 and IL-12
but only PCEP induced significant IFN-γ production suggest-
ing that activation of innate immunity may be important in
mediating PZ adjuvant activity (Mutwiri et al. 2008). Others
have demonstrated that PCPP induced activation and matura-
tion of DCs (Andrianov et al. 2006; Andrianov et al. 2016a, b).
In the presence of antigen, PCPP has been shown to promote
activation and maturation of human adult and newborn DCs by
upregulating co-stimulatory molecules and cytokine production
and induction of an innate immune transcriptome (Palmer et al.
2014), which may suggest that PZ may be an appropriate adju-
vant to include in early life immunization.

Vaccine carrier adjuvants

Vaccine carriers have been traditionally viewed as particulate
delivery vehicles capable of facilitating physical uptake of the
antigen by antigen-presenting cells (Storni et al. 2005; De
Temmerman et al. 2011). Generally, it was thought that deliv-
ery systems tend to induce Th2-type immune responses that
are not effective against many intracellular pathogens, while
immunostimulatory adjuvants were traditionally thought to
induce Th1-type immune responses by strongly activating
the innate immune system (Ryan et al. 2001). However, these
classifications are no longer appropriate since there is growing
evidence that some delivery systems can activate innate im-
munity as well.

Polyphosphazenes as vaccine carriers

Polyphosphazenes have been exploited as protein carriers due
to their versatile molecular structures and wide spectrum of
chemical and physical properties including biodegradability
and matrix permeability (Andrianov and Payne 1998;
Teasdale and Brüggemann 2013). PZ can bind vaccine anti-
gens as well as TLR ligands or other sites on immune cells
leading to cell maturation and more effective antigen process-
ing, which supports the idea that polyphosphazenes macro-
molecules have dual antigen carrier and immunostimulant
functions (Andrianov et al. 2005; Palmer et al. 2014;
Andrianov et al. 2016a, b). Further, PZ can form stable wa-
ter-soluble, non-covalent complexes with antigenic molecules
spontaneously and, thus, do not require chemical conjugation
(Andrianov et al. 2005; Palmer et al. 2014). Non-covalent
interactions with proteins have been correlated with
immunoadjuvant activity, as well as the ability to stabilize
proteins in solution and during drying processes (Andrianov
et al. 2005; Marin et al. 2010).

Aqueous PZs can be transformed to microparticles by
cross-linking them with divalent cations. Microencapsulation
of antigens by PZ can be achieved under remarkably mild
physiological conditions (which avoid denaturation or loss
of biological activity of encapsulated material) giving them
tremendous potential as matrices for sustained antigen release
(Andrianov and Payne 1998). For example, immunogenicity
of influenza antigen and tetanus toxoid were dramatically en-
hanced when microencapsulated in PCPP microparticles
(Payne et al. 1995). Further, by varying polymer ratios and
using PZ of reduced molecular weight, it can form macromo-
lecular assemblies at the nanoscale level to cross-linked
hydrogels while maintaining protein-binding ability
(Andrianov et al. 2016a, b). Microparticles are more effective
in mucosal delivery of antigens (Shim et al. 2010), which
should be taken into consideration for vaccine development.

Adjuvant potential of polyphosphazene
in combination with other adjuvants

Because of challenges in vaccine development and regulatory
hurdles and/for purely economic reasons, the vaccine industry
has historically used one adjuvant per vaccine. However, ev-
idence has accumulated over the last decades showing that
multiple adjuvant components in the same vaccine may act
synergistically (Kindrachuk et al. 2009; Mutwiri et al. 2011;
Salvador et al. 2012; Mount et al. 2013; Levast et al. 2014;
Ciabattini et al. 2016; Didierlaurent et al. 2017; Madan-Lala
et al. 2017). Combination adjuvants are particularly suited to
only enhance and/or direct the immune responses towards
Th1-, Th2- or Th17-type responses (Kindrachuk et al. 2009;
Salvador et al. 2012; Levast et al. 2014).

Due to the short half-life of most immunostimulatory adju-
vants in vivo, combining a delivery vehicle adjuvant with an
immunostimulatory adjuvant may increase the magnitude and
modulate the quality of immune responses (Weiner et al.
1997). Mice vaccinated subcutaneously with PCPP micropar-
ticles encapsulating OVA and CpG ODN generated higher
antigen-specific antibody responses compared to antigen
alone (Garlapati et al. 2010; Wilson et al. 2010). Studies by
several investigators at VIDO-InterVac demonstrated that PZ
as part of a triple adjuvant combination (TriAdj) consisting of
PCEP or PCPP plus TLR agonist (CpG or poly I:C) plus Host
Defense Peptide (HDP) is a robust adjuvant combination in
multiple species and multiple routes of delivery. For example,
subcutaneous immunization of mice with HBsAg plus TriAdj
resulted in enhanced production of HBsAg-specific antibody
responses compared with the mice immunized with HBsAg
plus any of the three adjuvants alone (Mutwiri et al. 2008).
Relative to mice immunized with OVA plus the adjuvants
alone, mice vaccinated with OVA plus TriAdj showed en-
hanced antibody and cell-mediated responses via both
MHCI and II pathways, promoting a more balanced
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antibody-mediated and type1-biased cell-mediated immune
response (Kovacs-Nolan et al. 2009a, b, c). Mice vaccinated
subcutaneously with Bordetella pertussis antigen plus TriAdj
had a significantly reduced bacterial load after challenge and
increased antigen-specific IL-17-secreting cells relative to
vaccine comprised of one or two adjuvants alone (Garlapati
et al. 2011). Formulation of pertussis toxoid (PTd) with TriAdj
increased IgG1 responses in adult mice and induced superior
serum IgG2a antibody titers in both adult and neonatal mice
compared to mice immunized with each adjuvant alone
(Gracia et al. 2011). Recombinant-truncated bovine respirato-
ry syncytial virus (bRSV) fusion protein (DeltaF) plus TriAdj
showed enhanced secretion of antigen-specific serum anti-
body titres when comparedwithmice immunizedwith antigen
alone (Kovacs-Nolan et al. 2009a, b, c). Intranasal vaccination
with a formalin-inactivated bRSV vaccine plus TriAdj result-
ed in induced systemic and mucosal immunity in mice
(Mapletoft et al. 2010) and a significant reduction in viral
replication upon bRSV virus challenge (Mapletoft et al.
2008). Cattle immunized subcutaneously on days 0 and 90
with hen egg lysozyme antigen plus TriAdj produced superior
antigen-specific humoral responses and cell-mediated im-
mune responses relative to cattle immunized with Emulsigen
(Kovacs-Nolan et al. 2009a, b, c). Intramuscular or intrauter-
ine immunization of rabbits with a single dose of OVA,
truncated glycoprotein D (tGD) from bovine herpesvirus
and a fusion protein of porcine parvovirus protein VP2
and bacterial thioredoxin (rVP2-TrX) formulated with
TriAdj induced antigen-specific humoral responses sys-
temically and within the local (uterus) and distal mucosa
(lungs and vagina) (Pasternak et al. 2017, 2018). Thus, PZ
as part of the TriAdj combination contributes to the robust
immune responses and results in a balanced immunity for
broader protection.

Antigen-dose-sparing effect of polyphosphazene
adjuvants

The implementation of antigen stabilization and dose-sparing
technologies is an important step in improving availability of
vaccines and is a critical feature of effective vaccines at the
time of a pandemic outbreak. PZ have the potential to signif-
icantly reduce the cost of vaccination by reducing the number
of immunizations or reducing the minimal doses of antigen
required to induce significant immunity. Indeed, lethal chal-
lenge studies in ferrets demonstrated 100% protection for low-
antigen dose PCPP-adjuvanted formulations and at least a
tenfold antigen-sparing effect with improved thermal stability
of H5N1 influenza vaccine in solution (Andrianov et al.
2011). Additionally, reducing the dose of antigen by 25-fold
had no effect on antibody responses in mice immunized with
PCPP and PCEP in mice (Mutwiri et al. 2007). When used as
part of an intradermal delivery system for hepatitis B surface

antigen, PCPP demonstrated superior induction of immunity
in pigs compared to i.m. administration and significant antigen
sparing potential (Andrianov et al. 2009). Further develop-
ment of PZ as an adjuvant may therefore have a great eco-
nomic impact in the vaccine industry.

The safety profile of polyphosphazene adjuvants

Many potential immunological adjuvants are not licensed for
use in humans or veterinary species due to safety and/or toxicity
concerns (Eng et al. 2010; Sivakumar et al. 2011; Petrovsky
2015). At doses up to 1 mg, PZs have been shown to be a safe
and effective adjuvant when injected in sheep and cattle
(Kovacs-Nolan et al. 2009a, b, c) without triggering adverse
reactions such as pathological inflammatory reactions e.g.,
swelling or pain (Kovacs-Nolan et al. 2009a, b, c; Mutwiri
and Babiuk 2009). In pigs, up to 500 μg PCEP was tolerated
with few injection site reactions and reduced delayed type hy-
persensitivity (Dar et al. 2012; Magiri et al. 2016, 2018). In
human phase I clinical trials for three influenza viral strains
(A/H3N2, A/H1N1 and B strain) targeted towards both young
and elderly adults, up to 500 μg PCPP was shown to be safe,
showing sterile abscesses and non-ulcerative necrosis at the site
of inoculation (Le Cam et al. 1998). Phase I and phase II clinical
trials of a vaccine formulated with PCPP and HIV-1 antigens
did not result in either abscess at injection site, immune dys-
function, anaphylaxis, or allergy, whereas a vaccine formulated
with Freund’s complete adjuvant and HIV-1 was associated
with definable long-term adverse events (Gilbert et al. 2003).
Together, the results suggest that polyphosphazenes are well
tolerated in humans and animals but detailed safety and toxicity
studies per vaccine are still required.

Conclusion

The trend in vaccine development away from the use of
whole-cell, virus vaccines or inactivated vaccines to subunit
vaccines requires addition of potent adjuvants to induce pro-
tective immune responses. Thus, the long-term goal of vac-
cine development should be identification of key innate im-
mune targets for induction of potent but safe antigen-specific
immune responses. Recent advances in understanding of in-
nate immunity has led to increased understanding of the MOA
for adjuvants and how they drive antigen-specific immunity
and immunological memory (Guy 2007; Coffman et al. 2010;
Mohan et al. 2013). This new appreciation of innate defense
mechanisms provides a solid foundation for rational ap-
proaches to adjuvant discovery and vaccine optimization. PZ
adjuvants exhibit species-specific differences, hence adjuvant
selection may need to be tailored to the species as well. Given
these considerations, it should be increasingly possible to
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design and select adjuvants tailored to the specific needs of the
antigen, species and situation.

Many new adjuvants in clinical or preclinical development
are focused on enhancing specific types of T cell responses
and generating the multifaceted immune responses that may
be needed for challenging diseases. Understanding how adju-
vants activate the innate immune system will make a signifi-
cant impact on vaccine development in the future.
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