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Diagnosis of acute neuropathies

Introduction

Polyneuropathy may be classified according to the tem-
poral development (acute, subacute, chronic); the
anatomical distribution of involvement (cranial nerves,
upper or lower limbs, respiratory muscles, symmetrical
or asymmetrical involvement); functional selectivity
(sensory, motor or autonomic fiber affection or combi-
nations of these); the pathological changes (primary af-
fection of myelin or axons); and the underlying cause of
the disease (immunological disorder, cancer, infection,
toxins,metabolic disorder,or hereditary disease) [13,31,
110, 145]. The acute and subacute polyneuropathies pre-
sent a particular diagnostic challenge since these dis-
ease states may be treatable and require prompt initia-
tion of treatment.

The aim of this overview is to describe the acute and
subacute neuropathies and in particular the character-
istic diagnostic findings of these diseases.

Definition of acute polyneuropathy

Acute inflammatory polyneuropathies in Guillain-Barré
syndrome are defined as reaching nadir in less than 4
weeks and often within days [8]. A subacute neuropathy
is defined as a neuropathy that reaches its clinical max-
imum in less than a few months (but more than 4 weeks),
and forms an ill defined transition between acute and
chronic neuropathies that develop over many months to
years.

Mononeuropathy due to compression, ischemia or
bleeding into the nerve may develop within minutes to
hours. In this connection, the autoimmune asymmetric
neuropathies (mononeuritis multiplex) present a classi-
fication difficulty in the sense that each “attack” of one
or more nerves can be defined as acute. However, this
stuttering course may occur over many months or years,
and the disorder may in this respect reach a confluent
chronic state of a generalized polyneuropathy. These re-
lapsing neuropathies often present differential diagnos-
tic difficulties and it is important that diagnostic proce-
dures are promptly initiated to make the correct choice
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■ Abstract Acute and subacute
polyneuropathies present diagnos-
tic challenges since many require
prompt initiation of treatment in
order to limit axonal degeneration
and since an exact and detailed
diagnosis is a prerequisite for mak-
ing the correct choice of treatment.
It is for instance of utmost impor-
tance to recognize whether the
underlying pathological changes
are due to demyelination or to
axonal degeneration and electro-
diagnostic tests can thus in most
cases contribute considerably to

the securing of an exact diagnosis.
The specific and characteristic
electrophysiological findings in the
different types of acute and sub-
acute neuropathies are discussed,
and the various electrophysiologi-
cal pitfalls and technical problems,
which are met in these patients, are
mentioned.

■ Key words polyneuropathy ·
electrophysiology · nerve
conduction studies · sensory 
nerve · motor nerve
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of treatment with the least possible delay to avoid fur-
ther destruction of nerve fibers. These neuropathies will
therefore be included here. Furthermore, some chronic
polyneuropathies may show acute exacerbations and do
thus in some cases present considerable differential di-
agnostic problems (e. g. diabetic amyotrophy, porphyric
neuropathies, alcohol related neuropathies). These cases
are therefore also included here. On the other hand re-
lapsing inflammatory neuropathy is usually included in
the group of disorders classified as chronic inflamma-
tory demyelinating neuropathy (CIDP).

Patients with sequelae after an acute mono- or
polyneuropathy are often considered as suffering from
chronic disease. This is incorrect if the deficit is due to
axonal degeneration that occurred during the acute at-
tack of the disease and represents incomplete or absent
regeneration and recovery.

Acute neuropathies can be grouped into three main
categories according to the underlying cause of the pe-
ripheral nerve affection (Table 1).

■ Diagnosis of acute neuropathies

The diagnostic procedures used in diagnosing acute
neuropathies include history and clinical neurological
examination, analysis of spinal fluid, determination of
serum antibodies associated with neuropathies, and
nerve biopsy for histopathological examination. Elec-
trophysiological studies play a major and decisive role in
the determination of the peripheral nerve involvement.
Since the treatment of the neuropathies is determined
by the characterization of the peripheral nerve involve-

ment electrophysiological studies are often pivotal in
the diagnosis of these neuropathies and the basic prin-
ciples of electrophysiological test will therefore be sum-
marized below.

Electrophysiological studies

The main purposes of electrophysiological studies are
determination of 1) the most likely primary pathologi-
cal changes (such as axonal degeneration or demyelina-
tion), 2) whether motor or sensory fibers or both are af-
fected, and 3) the distribution of abnormalities. The
methods include nerve conduction studies and elec-
tromyography (EMG) (to ascertain the presence of mo-
tor fiber loss) [24], and in selected cases sensory evoked
potentials (SEP) and transcranial and root magnetic
stimulation (MEP) to estimate the symmetry, extent and
pathophysiological changes in sensory and motor
nerves [142] and involvement of the central nervous sys-
tem. Repeat studies may be necessary in early or mild
cases of suspected neuropathy.

■ EMG

In the early phase of an acute neuropathy, EMG changes
are sparse in terms of denervation activity and the mo-
tor unit potentials do not show signs of reinnervation.
The most revealing finding is loss of motor unit activity
with reduced recruitment or discrete activity at maxi-
mum effort in weak muscles; however, this sign does not
distinguish between axonal failure and block of conduc-

Table 1 Overview of acute polyneuropathies according to the cause of the disease

Type of acute polyneuropathy Main etiological groups Subclassification Pathology

Primary acute polyneuropathy Guillain-Barré syndrome Acute inflammatory demyelinating Demyelination (± conduction block) 
polyneuropathy (AIDP) with variable axonal loss

Acute motor axonal neuropathy (AMAN) Axonal degeneration of motor fibers
Acute motor and sensory axonal neuropathy (AMSAN) Axonal degeneration of motor and 

sensory fibers
Miller Fisher syndrome Mixed axonal degeneration and

demyelination

Nonsystemic vasculitis with- Ischemic axonal degeneration due 
out other organ involvement to vasculitis

Secondary acute Secondary to autoimmune Connective tissue diseases, polyarteritis nodosa, Axonal degeneration
polyneuropathy and malignant disorders Wegener granulomatosis, systemic lupus 

erythematosus, rheumatoid arthritis, Sjögren, cancer
Secondary to infectious AIDS, neuroborreliosis, hepatitis C Axonal degeneration

disease
Secondary to metabolic Diabetes mellitus Axonal degeneration

disorders Uremia Axonal degeneration and dysfunction
Acute porphyria Axonal degeneration

Induced by toxic Arsenic, amiodarone, vincristine, cisplatin, pyridoxin, Mostly axonal degeneration, amiodarone 
substances disulfiram, gold salts, glue, alcohol, organo-phosphates associated with demyelination
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tion due to demyelination. In cases where the study is
carried out days to weeks after the acute onset of symp-
toms, the EMG may show signs of denervation with fib-
rillation potentials and positive sharp waves. The inter-
val between the lesion and occurrence of signs of
denervation varies between a few days up to 2–3 weeks.
The shorter the distance between the site of degenera-
tion and the muscle the faster the denervation signs ap-
pear [103, 111]. The extent of denervation is an impor-
tant factor in determining the degree of axonal loss.

Changes in the motor unit potentials occur over
weeks after chronic partial denervation reflecting rein-
nervation of denervated muscle fibers. Reinnervation
may occur, 1) as collateral sprouting with reinnervation
of muscle fibers from motor axons innervating other,
neighboring muscle fibers, and the reinnervated motor
units usually have long duration and polyphasic shape,
or 2) as regeneration from completely interrupted mo-
tor axons with growth from the proximal axon stump. In
this severe denervation the first reinnervated potentials
may have brief or long duration polyphasic appearance
with low amplitude (‘nascent’ units), and with time after
reinnervation and expansion of motor unit territories
the motor unit potentials take on the characteristic fea-
tures of long duration and high amplitude.

Thus it should be realized that EMG signs of chronic
partial denervation with evidence of reinnervation is
dependent on the time lapse between the lesion and the
examination and is not, as such, evidence of a chronic
neuropathy.

■ Nerve conduction studies

The distribution and severity of involvement of motor
or sensory fibers or both are ascertained by determina-
tion of amplitudes, shapes, and conduction velocities of
compound muscle (CMAP) and sensory nerve action
potentials (SNAP), respectively. The amplitudes of the
CMAP and the SNAP are the result of summation of in-
dividual motor unit potentials and of individual sensory
fiber action potentials, respectively, and they are influ-
enced both by the number and synchronization of sin-
gle unit responses. Desynchronization causes reduced
summation and the amplitude may in addition become
decreased by phase cancellation. In acute neuropathy re-
duced amplitudes of the CMAP and the SNAP are sensi-
tive indicators of axonal loss. In the later stages of the
neuropathy, the amplitude of the CMAP is affected by
compensatory collateral sprouting and the deviation
from control values therefore depends on the time of
study in relation to the nerve disorder. By contrast the
SNAP amplitude is not influenced by collateral sprout-
ing thus making this parameter a sensitive indicator of
loss of fibers [88].

The distinction between axonal loss and demyelina-

tion is based on the relationship between conduction ve-
locity and amplitude of the compound responses. Loss
of fast conducting fibers is associated with proportional
reduction of conduction velocity, and the response is a
measure of conduction along the remaining less affected
fibers. By contrast in demyelination the propagation of
activity is determined by the effect of the pathological
process on conducting fibers. In chronic generalized ax-
onal polyneuropathies the relationship between the di-
ameters of the largest fibers in the nerve and the con-
duction velocities of the SNAPs correspond to a
conversion factor of ~4.5 m/s/μm, whereas the conduc-
tion velocity is lower than expected from the diameters
of the largest fibers in demyelinating neuropathy [14].
Considerable inconsistencies are, however, often noted
between the findings at nerve conduction studies and
the histopathological changes at nerve biopsy in multi-
focal demyelinating or axonal disorders. The explana-
tions for the discrepancies may be: First, the conduction
velocity of the SNAP is determined by the fastest con-
ducting fibers in the nerve and if some fast conducting
fibers are spared in a heterogeneous demyelinating
process, then the response may have normal velocity
and low amplitude and suggest that the lesion is pri-
marily axonal in nature [90].Second,conduction is stud-
ied over much longer distances than the transverse sec-
tions at histological examination and the two
methodologies therefore provide complementary infor-
mation and cannot be expected to replace one another.
Teasing of nerve fibers provide additional information
that cannot be obtained in transverse sections (G. Said,
personal communication). It has been increasingly rec-
ognized that the amplitudes and conduction velocities
of nerve provide only limited evidence about the under-
lying pathophysiology in peripheral nerve disorders.
Thus studies of axonal excitability have greatly in-
creased our understanding of abnormalities that are not
immediately accessible through conventional ap-
proaches [21, 26].

Although demyelination almost never occurs in iso-
lation, it is, however, important to ascertain whether this
is the primary pathological lesion both from a differen-
tial diagnostic aspect and because the prognosis is more
favorable if the main pathological mechanism is de-
myelination.

Electrophysiological features of demyelination

Demyelination is characterized by reduced conduction
velocities that cannot be explained by loss of fast con-
ducting fibers [14, 87]. In order to define criteria
(Table 2) that allow electrophysiological diagnosis of de-
myelinating inflammatory neuropathy, the findings in
patients with characteristic clinical features have been
used [2, 3, 72]. These criteria should be considered ten-
tative guidelines and take into account the influence of
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loss of axons. According to the distribution of motor
conduction velocities, the lower limit explained by loss
of fibers in the upper limb is about 45 m/s [46, 47] cor-
responding to 60–70 % of control mean values (Table 2)
[143].

Demyelination in acute neuropathy may be associ-
ated with conduction block of motor fibers (motor con-
duction block, MCB), defined as a more than 50 % re-
duction of the CMAP amplitude evoked by proximal as
compared with distal stimulation [117]. Sensory con-
duction block is a rare phenomenon in acute demyeli-
nation but has been documented in patients with
chronic inflammatory demyelinating neuropathy of the
multifocal acquired demyelinating motor and sensory
neuropathy (MADSAM) or Lewis-Sumner syndrome
[88, 90, 101, 132]. Although conduction velocity across a
nerve segment with conduction block is uncertain, mea-
surements usually indicate it to be reduced. MCB is usu-
ally accompanied by weakness of the muscles inner-
vated by the blocked nerve, although some reports
indicate that MCB may occur in the absence of overt
weakness [115], and that the criteria of 50 % amplitude
reduction may be too conservative [118, 121]. Slowing of
conduction alone does not cause weakness (or sensory
loss).

Certain considerations must be made before a con-
duction block is established: 1) it must be considered
unlikely that the amplitude drop is caused by temporal
dispersion and phase cancellation due to diminished
numbers of motor units contributing to the CMAP [116,
121]. In other words, if the amplitude of the distally
evoked CMAP is very small (less than 1 mV) it will not
be possible to diagnose a conduction block with cer-
tainty. 2) Conduction block may also be confounded
with conduction failure in cases with loss of axonal con-
tinuity. If the nerve is examined so early in the course of
Wallerian degeneration that conduction in the distal
nerve stump is still possible conduction block may er-
roneously be diagnosed. This error occurs in particular
in vasculitis and demonstration of conduction block

must therefore in doubtful cases be repeated to ascertain
whether conduction in the distal nerve stump fails. 3)
Certain technical demands must be met before a con-
duction block is diagnosed: in cases where the nerve at
the proximal stimulation site is located deeply (due to
normal anatomy, obesity or edema) it must be ascer-
tained that the nerve is stimulated supramaximally. Us-
ing surface stimulation it has been advocated that the
stimulus strength must be more than four times the
strength of the threshold stimulus [98]. This may not al-
ways be possible, and in these instances the stimulation
may be delivered via a needle placed in close proximity
to the nerve. Other methods include the use of high volt-
age stimulators or special surface electrodes [4, 104].

Electrophysiological features of axonal degeneration

Some axonal loss occurs in nearly all cases of demyeli-
nating neuropathies, but its degree varies widely and
may be difficult to ascertain by nerve conduction stud-
ies in the acute phase due to temporal dispersion, multi-
focal conduction block, and in severe cases due to inex-
citability of nerve fibers by the stimulus current. The
axonal loss, seen as a reduced CMAP, may be localized at
any site along the length of the nerve, i. e. a distal local-
ization has the same effect on the CMAP as axonal de-
generation at the ventral root. Axonal loss is definitely
demonstrated by denervation activity and it is therefore
necessary to perform EMG examinations in order to as-
certain axonal loss. If the lesion leading to axonal de-
generation is very proximal, it may take several days
(even weeks) before denervation activity appears and
repeated EMG studies may therefore be necessary.

Can electrophysiological studies contribute to the
prediction of the prognosis?

The prognosis in Guillain-Barré syndrome depends
mainly on the degree of axonal loss and the localization
of the lesion leading to the nerve degeneration, and elec-

Table 2 Motor conduction changes consistent with demyelination

NCS Parameters Albers and Kelly, 1989 [3] Ho et al., 1997 [72] Copenhagen values (limits of values 
that can be explained by axon loss)

Upper limbs Lower limbs

Distal motor latency > 115 % of UNL (nl amp) > 110 % of UNL (nl amp) 4.5 ms 6.4 ms
> 125 % of UNL (amp < nl) > 120 % of UNL (amp < nl) 5.4 ms 7.7 ms

Motor conduction velocity < 90 % of LNL (nl amp) < 95 % of LNL (amp > 50 % of LNL) 45 m/s 35 m/s
80% of LNL (amp < nl) < 85 % of LNL (amp < 50 %) 38 m/s 30 m/s

Focal conduction changes Temporal dispersion > 10–15 % increased duration. Focal temporal dispersion
P/D amp ratio < 0.7

F-wave latency > 125 % of UNL > 120 % of UNL

LNL lower normal 95 % confidence limit; UNL upper normal 95 % confidence limit; amp amplitude of CMAP; nl normal. In the right two columns we indicate the limit of mo-
tor conduction velocities that can be explained by axonal loss at our laboratory taking strict temperature control into consideration in middle-aged individuals
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trophysiological studies are therefore needed in order to
be able to predict the prognosis. In general the degree of
axonal loss has major impact on the prognosis since re-
covery depends on nerve regeneration and reinnerva-
tion after fiber degeneration, rather than on recovery of
conduction after remyelination. Thus repeated nerve
conduction and EMG studies may be required in order
to predict the loss of nerve fibers. Recovery is, however,
relatively rapid when the localization is distal due to the
short regeneration distance as it occurs in some cases of
acute motor axonal neuropathy (AMAN). It may be im-
possible to ascertain if the lesion is localized distally or
proximally, but in the case of combined prolonged distal
latency, severely diminished CMAP, and a normal prox-
imal conduction velocity, the lesion is most likely distal.
Early denervation activity in the muscle(s) also suggests
that the lesion is distal.

Acute primary neuropathies

This category includes disease states where the only pri-
marily affected structures are the peripheral nerves, and
comprises the four subclasses of inflammatory neu-
ropathies included in the Guillain-Barré Syndrome
(GBS) and some cases of systemic vasculitis (Table 1).

The GBS was previously regarded as a single entity
characterized by demyelination of proximal as well as
distal segments of the peripheral nerve system. It is now
generally accepted that the neuropathy has different
manifestations.

■ Etiology

The pathogenesis of GBS is unknown,but infectious dis-
ease precedes the disease in 60–70 % of cases and an im-
munological cross-reaction (molecular mimicry) is sus-
pected as part of the pathophysiological mechanism. It
seems probable that the different manifestations are
triggered by different pathogenetic epitopes as also
supported by animal models of the disease [140]. The
majority of GBS patients have had an antecedent respi-
ratory infection with cytomegalovirus (CMV), Epstein-
Barr virus, Mycoplasma pneumoniae or Haemophilus
influenzae [78]. A preceding Campylobacter jejuni gas-
trointestinal infection in GBS patients has been estab-
lished in 14 % to 66 % of cases included in case-control
studies [60] and this microorganism has been linked es-
pecially to the subclass of GBS with AMAN. The im-
munological profile in AMAN is characterized by high
incidence of IgG GM1, GM1b and GD1a antibodies,
which is different from the profile seen in AIDP but sim-
ilar to that seen in AMSAN patients [157]. The antibody
profile was associated with specific pathophysiological
changes: in patients with raised anti-GM1 antibodies the

motor response was reduced, whereas in patients with
anti-GQ1b the sensory response was absent or reduced
[77]. Nevertheless, since only a minority of the infected
patients develop GBS, host factors influencing the pa-
tient’s immune response may also play a role. GBS has
been found more frequently than could be explained by
chance in patients with HIV infection [30, 69, 106], and
has also been described in lymphoma, Hodgkin’s dis-
ease, graft-versus-host reaction after allogenic bone
marrow transplantation, and other types of cancer.

■ Clinical features

GBS is characterized by ascending weakness and sen-
sory disturbances (sensory loss, paresthesia) and loss of
tendon reflexes. The onset of symptoms is sudden and
may evolve rapidly to reach a maximum within a few
days. If progression continues after four weeks the diag-
nosis must be reconsidered. The symptoms may
progress to paralysis and respiratory failure and there
may be cranial nerve involvement. Many patients com-
plain of severe pain in arms and legs. During the acute
phase cardiac rhythm disturbances and fluctuation of
blood pressure may be pronounced due to involvement
of the autonomic nervous system.

■ Diagnosis of GBS

The diagnosis of GBS is in the acute phase primarily
based on defined clinical criteria which include sym-
metrical,ascending weakness, loss of reflexes,and a pro-
gression that does not extend beyond 4 weeks [8, 11, 12].

■ Laboratory findings

Supportive laboratory findings include raised spinal
fluid protein and less than 10 leukocytes/ml [50]. If the
leukocyte count is raised above this limit, underlying
neuro-borreliosis, sarcoid or HIV may be suspected [30,
99, 119, 131]. The protein content in the spinal fluid may
not be raised until 10 days after onset of disease and
lumbar puncture may need to be repeated if the diagno-
sis remains doubtful.

■ Electrophysiological studies in GBS

Nerve conduction studies play a pivotal role in the diag-
nosis of GBS. The particular electrophysiological abnor-
malities found in each subclass of GBS will be described
separately.
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■ Acute inflammatory demyelinating neuropathy
(AIDP)

AIDP is the most frequent subtype of GBS in Europe and
the United States and affects persons of both genders
and all ages.

Electrophysiological studies in AIDP

The disease is multifocal and electrophysiological study
may show varying abnormalities in different nerves
[108]. Although demyelination directly affects conduc-
tion, other factors including inflammatory mediators
and cytokines may affect the excitability and function of
nerve fibers [137]. Some nerves may show normal con-
duction and the electrophysiological studies of several
motor and sensory nerves are required to ascertain the
diagnosis. The proximal-distal distribution of changes
along the individual nerve shows considerable variabil-
ity. Some patients have mainly distal prolongation of the
motor latencies and reduced sensory conduction veloc-
ities, whereas others show mainly or exclusively proxi-
mal abnormalities (Fig. 1). The axonal excitability mea-
sured at the wrist was in one study normal suggesting
that the changes in conduction were distal to the site of
study [96]. In cases with predominant root involvement,
abnormalities are primarily evident in prolongation of
the F-wave latencies or by the latency of magnetic
evoked potentials (MEP) evoked by root stimulation. Fi-
nally other patients have widely distributed changes
(Fig. 2 and Fig. 3). It should, however, be realized that

some patients have few or no changes when tested early
in the disease [150], and in cases with mild clinical in-
volvement electrodiagnostic findings may be few and
uncharacteristic [62]. Thus the electrophysiological ex-
amination should be repeated if the diagnosis remains
unclear or the symptoms do not respond to the treat-
ment (Fig. 3).

■ Acute motor axonal neuropathy (AMAN)

This variant of GBS is characterized by hyperacute on-
set of paresis/paralysis (often with the need of artificial
respiration) and absence of sensory disturbances. The
spinal protein is raised without increased cell count and
the disease is usually, but not always, accompanied by a

Fig. 1 Motor conduction block in 54-year-old male with Guillain-Barré syndrome.
The amplitude of the compound muscle action potential evoked at the axilla was
71 % lower than the amplitude of the response evoked at the wrist. The distal mo-
tor latency was 46 % prolonged and the conduction velocity was 21 % reduced

Ulnar nerve motor conduction

Axilla-ADQ 2 mV
–

+
1.6 mV, 49 m/s

Wrist-ADQ

5.5 mV, 4.4 ms

0 40 ms

Fig. 2 Loss of excitability of peripheral
nerves in 68-year-old with severe Guil-
lain-Barré syndrome. He had tetraparal-
ysis, sensory loss and was dependent on
mechanical ventilation. EMG showed
absent voluntary activity and severe
denervation activity. The median nerve
showed only minimal motor responses
with severely prolonged latencies and
no motor responses could be recorded
from the lower extremities (peroneal
nerve). Sensory responses were absent
from the median and sural nerves. At 14
months after presentation the patient
could walk. Conduction studies at this
time showed normal amplitudes of the
compound action potential from the ab-
ductor pollicis brevis muscle. The sen-
sory action potentials evoked at digit 3
showed reduced amplitudes. Motor and
sensory conduction velocities were re-
duced. The sensory potential in the sural
nerve had markedly reduced amplitude
and conduction velocity. The findings in-
dicated that the initial loss of excitability
was due to demyelination and that the
subsequent recovery was due to re-
myelination as well as to reinnervation

Elbow-APB 0.05 mV
–

+

0.05 mV
0.1 mV, 46.7 ms

0.1 mV0.2 mV, 18.8 ms

0 100 ms

Motor
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0
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Sensory

LM-MC 0.1 µV
–

+
0.2 µV, 29 m/s

0

3 months 14 months

no response
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1151_1169_Krarup_JON_2532  14.09.2007  10:31 Uhr  Seite 1156



1157

loss of reflexes. Particularly at the onset of the disease
the tendon reflexes may be retained or even hyperac-
tive, which in some cases lead to doubt about the diag-
nosis [94, 95]. This subclass of GBS was originally de-
scribed in China in many cases with relatively fast
complete or partial recovery [66, 72, 107]. In Western
Europe and the USA, it is much rarer, and the progno-
sis poor. Poliomyelitis may in some areas be a differen-
tial diagnostic possibility, but it can be considered an
unlikely diagnosis if not accompanied by meningitis.
C. jejuni infection (with subsequent production of IgG
antiganglioside antibodies GM1) is thought to trigger
the illness in many cases. Mycoplasma infection has also
been found to precede the disease in some cases [141].
Both in patients with AMAN [66] and in the animal
model of the disease [140, 158] the pathology is char-
acterized by periaxonal macrophage attack with anti-

bodies and activated complement deposits on the axon
membrane.

Electrophysiological findings

Motor nerve conduction studies show axonal loss with-
out signs of demyelination, and sensory nerve conduc-
tion studies are normal (Fig. 4). EMG studies show pro-
fuse denervation. Excitability studies in AMAN have
shown abnormalities localized to the distal segment of
motor fibers [96], which is consistent with rapid recov-
ery probably due to regeneration.

Fig. 3 Progressive clinical and electro-
physiological abnormalities in 54-year-
old man with Guillain-Barré syndrome
after upper respiratory tract infection. At
10 days after presentation the patient
had distal and proximal weakness in the
arms and legs, distal numbness and ab-
sent reflexes. Spinal protein was normal,
and there was some improvement at
plasma exchange. Conduction studies
showed mild distal slowing of motor
conduction velocity and markedly dis-
persed sensory potentials in the median
nerve, motor conduction block and re-
duced sensory amplitude in the per-
oneal nerve, and reduced amplitude of
the sural nerve action potential. Follow-
ing plasma exchange symptoms pro-
gressed despite treatment with IVIg and
the patient became non-ambulatory
with severe tetraparesis at 6 weeks after
the first study. At this time conduction
studies showed marked progression of
motor and sensory abnormalities of the
median, peroneal and sural nerves. Dis-
tal motor latencies became markedly
prolonged and amplitudes of both mo-
tor and sensory responses decreased by
more than 90 %. From Krarup, 2004 with
permission
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■ Acute motor and sensory axonal neuropathy 
(AMSAN)

Some patients with hyperacute GBS develop flaccid
tetraparalysis, respiratory distress and sensory distur-
bances over 1–4 days, and show signs of primarily ax-
onal motor and sensory fiber degeneration [23, 51, 52].
These cases may be considered as representing a severe
form of AIDP where the axonal degeneration is a result
of severe demyelination, and pathological studies have
in some of these patients shown axonal degeneration as
well as severe demyelination [56]. However cases of se-
vere GBS with a hyperacute onset and pronounced signs
of nerve fiber degeneration are categorized as belonging
to the subclass AMSAN of GBS.

Electrophysiological findings

Motor and sensory nerve conduction studies show se-
verely reduced CMAPs and SNAPs as signs of axonal loss
and EMG studies show profuse denervation activity.
Furthermore the motor fibers may in these patients be
inexcitable [23, 52]. Although this is consistent with ax-
onal loss, it should be remembered that severe demyeli-
nation may also render fibers inexcitable (Fig. 2).

■ Miller Fisher syndrome (MFS)

This syndrome, which occurs in 6–7 % of patients with
GBS, consists of acute onset of extraocular ophthalmo-
plegia, ataxia, loss of reflexes with raised spinal fluid
protein content, and usually rapid and complete recov-

ery [53, 113]. The disorder is heterogeneous and may in-
volve sensory loss and widespread weakness [82, 151].
The disorder is often preceded by respiratory symptoms
or by enteritis, and particular attention has been fo-
cused on the relationship with Campylobacter jejuni in-
fection [152]. IgG anti-GQ1b and anti-GT1a antibodies
have been found in serum of 80–100 % of patients with
MFS [5, 29].

Electrophysiological findings

Nerve conduction studies are variable in MFS. Sensory
nerve conduction studies have shown peripheral nerve
involvement [67] with recovery in serial studies [79, 80].
Axonal loss and demyelination may be found if several
nerves are investigated [54]. Some cases show severe in-
volvement of sensory fibers [136]. In rare patients with
tetraparesis nerve conduction studies showed only
slightly reduced amplitudes of the CMAP suggesting a
different pathophysiology from that seen in AIDP [82].

Acute and subacute neuropathies secondary to
other diseases

This category includes polyneuropathies secondary to
cancer, immunological disorders, and severe disease
courses with sepsis and multiorgan involvement, dia-
betes, diphtheria and HIV infection.

Fig. 4 Progressive severe distal and moderate prox-
imal weakness of the upper and lower extremities
without sensory loss and without respiratory symp-
toms in 46-year-old man with acute motor axonal
neuropathy (AMAN). Loss of reflexes, and spinal pro-
tein was 94 mg%. EMG of distal muscles of the hands
and legs showed pronounced denervation activity
and absent voluntary activity of the abductor pollicis
brevis and abductor digiti quinti. Conduction studies
showed absent motor responses in the APB and se-
verely reduced amplitude of flexor digitorum muscle.
The sensory responses from digit 1 (DI) and the mixed
nerve action potential from elbow were normal. The
amplitude of the motor response from the extensor
digitorum brevis (EDB) was severely reduced whereas
the sensory potential from the peroneal nerve was
normal. From Krarup, 2003 with permission
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■ Neuropathies secondary to cancer and immunological
(autoimmune) disorders

These neuropathies can subacutely affect sensory fibers
or sensory ganglion cells only while leaving motor fibers
intact and are then categorized as subacute sensory neu-
ropathies (SSN). SSN usually develops over a few weeks
to months, but can sometimes develop over days and
may also occur in a more chronic variant [9, 73]. SSN
with characteristic clinical features may be caused by a
number of systemic disorders and be the result of toxic
substances [135].

Clinical features

SSN is characterized by sensory loss, paresthesiae, and
pain often in an asymmetrical distribution, starting in
the upper or lower limbs [28]. The disorder may
progress to involve all four extremities and even the
trunk and face, and may render the patient so severely
ataxic that unsupported movements are impossible and
pseudoathetosis may develop. Muscle power is usually
not affected though the patient due to ataxia may have
so little voluntary control that strength is difficult to test.
Tendon reflexes are lost in a pattern according to the
sensory loss. The prognosis is poor regarding the sen-
sory neuropathy especially when the disease is caused by
degeneration of dorsal root ganglion cells precluding re-
covery by regeneration. Although SSN is the most char-
acteristic type of neuropathy in cancer, patients more
frequently present with a mixed sensory and motor neu-
ropathy, which may show axonal or demyelinating fea-
tures [27, 89], and paraneoplastic neuropathies usually
take the form of a generalized neuropathy [36, 37]. In
paraneoplastic SSN, the patients may not have symp-
toms of the underlying malignancy at the time of pre-
sentation, and they may show additional signs of CNS
involvement with encephalomyelitis or limbic en-
cephalitis.

Etiology

The pathophysiological mechanism of neuronal degen-
eration in SSN is not clear. In connection with malignant
disease (especially small-cell lung carcinoma,breast and
ovarian cancer) [7] and Sjögren disease [61,105,112] the
neuropathy is considered an autoimmune manifesta-
tion, and the nerve tissue is infiltrated by mononuclear
cells [42].Nevertheless, in some cases no underlying dis-
ease can be found. In small cell lung cancer antibodies
against neuronal nuclear antigens (ANNA1,anti-Hu) are
present in the blood and the CSF [6, 27, 35, 89, 100]. In
other types of cancer some patients have shown pres-
ence of anti-Purkinje cell antibodies (PCA-1, anti-Yo).
Antibodies to extractable nuclear antigens (ENA), such
as SSA-Ro and SSB-La, have been found in patients with

Sjögren syndrome and peripheral neuropathy and could
be useful serologic markers to support the diagnosis [65,
114]. Patients with Sjögren syndrome may in addition to
SSN have a distal symmetric sensorimotor neuropathy
and trigeminal sensory neuropathy [59, 65, 74, 81]. The
CSF shows raised protein and cells in patients with SSN
secondary to cancer [43, 109] and in some with Sjögren
disease [42, 112].

Electrophysiological findings

SSN are characterized by loss or severe reduction of the
SNAP whereas EMG and motor nerve conduction stud-
ies indicate a normal peripheral motor system.

■ Neuropathies associated with systemic disorders with
arteritis (vasculitic neuropathies)

Vasculitic neuropathies are seen in association with pol-
yarteritis nodosa (PAN), rheumatoid arthritis, Churg-
Strauss syndrome, Sjögren disease, systemic lupus ery-
thematosus (SLE), as a paraneoplastic manifestation,
and in patients with HIV [22]. In some cases (up to one-
third of patients) [85], no underlying systemic disease
can be detected [38, 64, 86, 129]. Nevertheless, the fact
that muscle biopsy often reveals vasculitic changes indi-
cates that the underlying pathology is not confined to
peripheral nerve. Vasculitis causes peripheral nerve in-
volvement in an acute, subacute or chronic pattern [70,
86,128,138].Recognition of vasculitis as the cause of pe-
ripheral neuropathy is important since the disorder is
treatable. The diagnosis is straightforward in cases of
known systemic vasculitides but should also be consid-
ered in patients who present with a sudden onset neu-
ropathy, but who otherwise seem healthy, since the neu-
ropathy may be the first or only clinical manifestation of
vasculitis.

Clinical features

A vasculitic neuropathy is usually characterized by a fo-
cal onset of symptoms, and may be restricted to one toe
or one finger, which indicates that a single nerve or fas-
cicle may initially be involved. Mononeuritis and
mononeuritis multiplex may progress further in a stut-
tering manner in parallel with the involvement of indi-
vidual peripheral nerves, in particular the peroneal, tib-
ial, ulnar and median nerves unilaterally or bilaterally.
At late stages a confluent mononeuritis multiplex with
features of a polyneuropathy may be reached. However,
in some cases the neuropathy develops gradually or
rapidly in a symmetrical fashion [128].
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Etiology

Necrotizing angiitis is the etiological factor in most
cases and the pathogenetic mechanism is ischemia of
nerve fibers, which causes Wallerian degeneration. In
some cases of lymphoma an angiopathy (with invasion
of malignant cells in some cases) without necrosis may
be observed. In a proportion of patients, the CNS in ad-
dition to the PNS may be involved (e. g. SLE).

Neuropathy frequently occurs in multisystemic dis-
orders due to necrotizing arteritis in polyarteritis no-
dosa (including Churg-Strauss syndrome with
eosinophilia), rheumatoid arthritis, SLE, Sjögren syn-
drome, Wegener’s granulomatosis with positive anti-
neutrophil cytoplasmic auto-antibodies, ANCA. Pa-
tients with SLE may rarely develop a GBS-like
syndrome, however, characterized by axonal loss, and
raised spinal fluid protein and cells. In addition, necro-
tizing vasculitis may be seen in neuropathy in patients
with HIV infection and in hepatitis B and C [22, 34, 55,
58, 99, 123]. Isolated vasculitis neuropathy is primarily
seen in the elderly. Vasculitis may occur in association
with gammopathy.

Mononeuropathy due to other causes occurs in dia-
betes mellitus, primarily localized to the proximal
nerves of the lower limbs (neuralgic amyotrophy) either
as an isolated manifestation of DM or on the back-
ground of a generalized diabetic sensorimotor neuropa-
thy. In these cases, vasculitis has also been demonstrated
in some patients [129, 130].

Electrophysiological features

EMG and nerve conduction studies in all types of vas-
culitic neuropathy show evidence of axonal loss. If the
patient is examined in the acute stage, nerve conduction
studies may show features suggesting conduction block
without or with minimal conduction slowing. This is,
however, due to evolving Wallerian degeneration where
conduction can still occur distal to the site of focal is-
chemia and loss of axonal continuity (Fig. 5). Both mo-
tor and sensory fibers are involved, and there are signs
of denervation in EMG studies.

Patients with involvement of peroneal, ulnar or me-
dian nerve affection present with symptoms similar to
peroneal palsy, ulnar nerve entrapment or carpal tunnel
syndrome (Fig. 6). It is therefore essential that the nerve
conduction study be carried out to exclude focal com-
pression at these sites. Nevertheless, the electrophysio-
logical studies do not show evidence of median nerve
compression indicating that the mononeuropathy is not
due to entrapment (Fig. 6). It is often revealing to carry
out conduction studies in the same nerves bilaterally,
e. g. sural, peroneal, ulnar or median nerves, to show
asymmetry.

Histopathological studies

Morphological studies from nerve or muscle or both
must be carried out to show characteristic lesions, in
particular in non-systemic or doubtful cases. It is ad-
vised that studies are carried out both on nerve and
muscle specimens to demonstrate vasculitic lesions
characterized by transmural infiltration of polymor-
phonuclear cells, lymphocytes and eosinophils, fibri-
noid occlusion of the lumen and sparing of venules
[128]. Due to the focality of these lesions serial sections
must be studied, and the absence of vasculitic lesions
does not exclude the diagnosis. Nerve biopsies show
pronounced fiber loss, often in a patchy distribution af-
fecting some fascicles more than others.

■ Critical illness neuropathy

The acute or subacute paresis which develops in inten-
sive care unit patients with sepsis and multisystem in-
volvement has become increasingly recognized as a se-
rious complication [17, 18, 39, 57]. The etiology of the
disorder is unclear but its development is related to the
extent of organ failure, and the use of corticosteroids
and non-depolarizing neuromuscular blocking agents
[19, 75]. This entity has features that make it distinct
from Guillain-Barré syndrome [20, 41], though electro-
physiological differentiation between the axonal variant
of GBS and the axonal degeneration that occurs in criti-

Fig. 5 Conduction failure associated with Wallerian degeneration in 86-year-old
man with mononeuritis multiplex and vasculitis. The patient suddenly developed
right wrist drop. On day 1 conduction studies of the radial nerve showed a moder-
ate 75 % reduction of the sensory action potential (SNAP) amplitude at the elbow
with normal conduction velocity. At the axilla the SNAP was severely reduced and
conduction between elbow and axilla was slowed. The amplitudes and latencies of
the compound muscle action potentials (CMAP) in the extensor digitorum com-
munis (EDC) and brachioradial (Br.rad.) muscles from the elbow were normal,
whereas the amplitudes from the axilla were markedly decreased and the motor
conduction velocities between axilla and elbow were reduced. Although motor and
sensory conduction block was suspected, repeat conduction studies on day 8
showed that the apparent conduction block was due to axonal failure: the ampli-
tudes of the SNAP and the CMAP at the elbow had decreased by about 90 % com-
pared to day 1 and were similar at elbow and axilla indicating axonal degeneration
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cal illness neuropathy may be difficult. The pathophysi-
ological mechanism is unclear and it is even doubtful
whether the disease entity which in many cases is desig-
nated critical illness polyneuropathy (CIP) is a true neu-
ropathy, a neuro-myopathy (CIMP) or a myopathy
(CIM).

Clinical features

The diagnosis is considered when the patient cannot be
weaned off the ventilator, and is then found to be tetra-
paretic/tetraparalytic often with absent reflexes. Sensa-
tion is usually spared though a reduced level of con-
sciousness hampers the clinical examination, and a
differential diagnosis of GBS is often considered [41].
Nevertheless, critical illness neuromuscular disease oc-
curs while the patient is in the intensive care unit,
whereas most patients with GBS are admitted to the ICU
with severe weakness. The weakness is considered to be
due to axonal degeneration or to myopathy or to both in
combination. The extent of muscle involvement as com-
pared with nerve fiber involvement is, however, uncer-
tain.

Electrophysiological findings

The electrophysiological examination must frequently
be carried out under difficult conditions at the bed-side,

and should include EMG as well as both motor and sen-
sory nerve conduction studies if possible, since the elec-
trophysiological picture in this disease is complex. The
sensory nerve conduction is often normal or only
slightly affected, while the motor conduction studies of-
ten show CMAPs of decreased amplitude (Fig. 7), pro-
longed duration and normal to moderately reduced
motor conduction velocities [19, 120]. The EMG-exami-
nation frequently shows profuse denervation activity in
weak muscles. Recording of motor unit potentials
(MUPs) requires that the patient can cooperate to gen-
erate weak contraction and may often be impossible to
obtain in patients with concomitant encephalopathy.
When MUPs can be recorded, they may show evidence
of myopathy with short duration and increased inci-
dence of polyphasic potentials, and at maximal effort
low amplitude recruitment pattern (Figs. 7 and 8). Diag-
nostic criteria for critical illness myopathy (acute quad-
riplegic myopathy) [17, 68, 76, 122, 147, 153], have been
proposed [97] to include normal SNAP (taking the pres-
ence of edema into consideration by recording with a
needle electrode if needed [19]), evidence of myopathy
on EMG and muscle biopsy and excluding other disor-
ders such as Guillain-Barré syndrome and neuromuscu-
lar transmission disorders. Direct stimulation of muscle
(Fig. 9) has been proposed to add significantly to the di-
agnostic certainty [124, 147] by showing reduced ex-
citability of the muscle fiber membrane [125, 126]. In

Fig. 6 Median and ulnar nerve conduction studies
in 75-year-old woman with clinical and electrophysi-
ological signs of mononeuritis multiplex. The patient
developed severe weakness of the right arm, the left
hand and of both legs, left more than right, after se-
vere streptococcus infection 2 months before the
electrophysiological study. A Severe motor and sen-
sory fiber loss from the left median nerve. The pro-
longed latency and reduced conduction velocity of
the compound muscle action potential (CMAP) from
the abductor pollicis brevis muscle (APB) was due to
regeneration after complete degeneration. SNAPs
were absent from both digit 1 and digit 3. The small
SNAP recorded at stimulation of digit 1 (arrow) origi-
nated from the radial nerve. B Mild motor and sen-
sory fiber loss from the left ulnar nerve was indicated
by the slight amplitude reduction in the abductor
digiti quinti (ADQ). The SNAP evoked at digit 5 was
normal. C Asymmetrical sensory fiber loss with re-
duction of the SNAP from the right sural nerve. From
Krarup, 2004 with permission
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this respect myopathy in critical illness differs from the
membrane function in e. g. muscular dystrophy where
the muscle fiber conduction velocity is normal [25]. Re-
covery of muscle force is accompanied by normalization
of the CMAP at stimulation and of the MUP parameters
at EMG (Fig. 7). Muscle pathology is often less pro-
nounced than that expected considering the amount of
denervation activity. For example in myositis and mus-
cular dystrophy, denervation activity occurs in about
half the patients [25] and is proportional to the muscle
fiber destruction and the creatinkinase level in serum
[49, 146, 149]. In critical illness the muscular involve-
ment has been classified as being due to (for review, see
[19]): loss of thick filaments, necrotizing myopathy or
“cachexic” myopathy.

The distinction of CIM from CIP may be difficult in
the patient with abundant denervation activity, small
amplitude CMAP and short duration MUPs (Fig. 8) [148,
156, 159] and only small changes in nerve conduction
studies. Short duration MUPs may occur in terminal
branch axonal degeneration, proposed to occur in CIP
studied by single fiber EMG [134]. The diagnostic crite-

ria for CIP [19] include reduced amplitude SNAP as well
as CMAP in the setting of axonal degeneration (Fig. 9).
The presence of MUPs consistent with myopathy in
some muscles and with neurogenic abnormalities in
other muscles (Fig. 8) may suggest that patients may
have signs of combined critical illness myopathy and
polyneuropathy (CIMP).

Differentiation from GBS must be sought by per-
forming a lumbar puncture. Spinal fluid examination in
critical illness neuropathy is normal as opposed to GBS.
Nerve biopsy examination shows axonal degeneration
without inflammation.

Etiology

The pathogenesis in critical illness neuropathy is un-
known but cytokines (e. g.TNFα) are considered [32,32,
33] to play a role, and activation of local immune mech-
anisms have been suggested [40, 155]. The muscle fiber
involvement in CIM has been suggested to be due to
apoptosis [44, 45].

Fig. 7 Acute quadriplegic myopathy in 24-year-old woman after severe asthma attack treated first on heart-lung machine and then mechanical ventilator. She was tetra-
paralytic with normal sensation and absent reflexes at 5 weeks after asthma, and then gradually recovered. A Examples of short duration and low amplitude MUPs from the
Brachial Biceps muscle at 5 weeks. B (left column) The duration of Brachial Biceps MUPs at 5 weeks was markedly shortened, and at 19 weeks normal; B (right column) the
amplitude was borderline reduced at 5 weeks and recovered at 19 weeks. C The duration, amplitude and force recovered partially or completely between 5 and 19 weeks
after the asthma attack. Shaded areas of the MUP duration and amplitude indicate normal ranges. D Recruitment pattern in the brachial biceps muscle during maximal vol-
untary contraction at 5 weeks, with markedly reduced amplitude, and 19 weeks, with normal amplitude after asthma. E Markedly reduced amplitude of the compound mus-
cle action potential recorded from the extensor digitorum brevis muscle at ankle and fibular head stimulation of the peroneal nerve with partial recovery of the response
from 5 to 19 weeks after the asthma attack. The sural nerve sensory action potential amplitude and conduction velocity were normal
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Neuropathies secondary to metabolic disorders

■ Acute neuropathies associated with diabetes 
mellitus (DM)

DM is associated with several syndromes involving the
peripheral nervous system, most of which are chronic.
There are, however, some distinct acute focal and multi-
focal clinical entities (1 and 2) and an acute symmetric
neuropathy [3] associated with diabetes.
1) Lumbosacral radiculoplexus neuropathy/diabetic

neuropathy/diabetic amyotrophy most often afflicts
men over 50 years of age with type 2 diabetes [48].
The symptoms may develop over days/weeks and
consist of pain proximally in one leg followed by

muscle weakness, most pronounced in proximal
muscles of the leg. The symptoms may affect both
legs asymmetrically. Sensory symptoms are not as
pronounced as motor symptoms, but there is usually
some numbness over the anterior thigh. Recovery is
slow and usually incomplete. The pathophysiological
mechanism is not clear, but microvasculitis with ax-
onal loss has been demonstrated [83].

2) Cranial neuropathies: isolated neuropathies of the
extraocular nerves (n. abducens, n. trochlearis [10]).
No studies have as yet shown that cranial neu-
ropathies are more common in diabetic patients, but
it is suspected that they occur with an increased fre-
quency as compared to healthy subjects.

3) Acute painful neuropathy associated with weight loss
may occur before or after the diabetes has been diag-

Fig. 8 Critical illness polyneuropathy (CIP) in 74-year-old man with history of intestinal surgery followed by leakage, peritonitis and septic shock, intubated and mechan-
ically ventilated for two months before examination. He had paralyzed legs and weakness of the arms, no bulbar symptoms. No sensory symptoms. On examination severe
distal weakness in the distal more than the proximal legs, moderate weakness in the distal upper extremities. No sensory loss. Reflexes in the arms weak, in the legs absent.
Left panels maximal voluntary force of the right abductor pollicis brevis showed slightly reduced pattern of normal amplitude, discrete pattern in the extensor digitorum
communis muscle, and reduced to full recruitment patterns of severely reduced amplitude in the Anterior Tibial and Medial Vastus muscles. These findings in the APB indi-
cated chronic partial denervation and the MUP duration was prolonged, also consistent with neurogenic changes. In the legs the recruitment pattern indicated myopathy,
and the shortened MUP duration of the Ant.Tib. and the Med.Vast. was consistent with this
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nosed. The main symptoms are burning feet without
sensory loss or muscle weakness. Although the prog-
nosis is favorable, recovery can take up to 10 months
and may not be complete [102, 144].

Electrodiagnostic findings

The acute painful proximal neuropathy is axonal in type,
hence EMG studies show denervation and loss of motor
units in affected muscles, while sensory studies show no
or only small abnormalities.

Laboratory findings

The CSF protein is normal or raised, in some instances
markedly.

■ Uremia

Neuropathy occurs in chronic renal failure, and is usu-
ally chronic in type. The neuropathy may rarely be acute
or subacute with signs of axonal loss of sensory and mo-
tor fibers. The cause of the neuropathy has not been def-
initely established but include speculation that it may be
attributed to accumulation of “middle molecules” that
are not cleared at dialysis [160]. However, recent studies
of nerve fiber excitability indicate that the neuropathy
may be due to raised serum potassium and associated
axonal depolarization [84, 93].

■ Acute porphyric neuropathy

Clinical features

Acute porphyric neuropathy is usually associated with
mental changes, hypertension, abdominal pain, nausea,
vomiting and severe constipation. The neuropathic syn-
drome has an acute or subacute onset with a predomi-
nantly motor peripheral neuropathy [139]. Autonomic
involvement is common in acute intermittent por-
phyria. Autonomic hyperactivity with persistent tachy-
cardia may precede the onset of somatic neuropathy.
The neuropathy may be precipitated by drugs such as
barbiturates among others [1, 127], and usually starts
symmetrically or asymmetrically in the arms followed
by facial weakness and proximal weakness in the lower
limbs. Tendon jerks are diminished or absent, some-
times with preserved ankle jerks. The differential diag-
noses include GBS,periodic paralysis,myasthenia gravis
and botulism, but porphyric neuropathy usually occurs
together with mental changes and confusion and with
prominent abdominal symptoms.

Electrodiagnostic findings

The neuropathy is axonal in form and mainly affects
motor fibers. Motor conduction velocities are normal or
slightly reduced with reduction of the CMAP, while the
sensory conduction study is normal in most cases. EMG
studies show denervation activity.

Laboratory findings

The porphyrin precursors δ-amino-laevulinic acid and
porphobilinogen can be detected in the urine, which

Fig. 9 Nerve conduction studies in patient de-
scribed in Fig. 8. The median and peroneal nerves
showed markedly reduced compound muscle action
potentials (CMAP) and moderately reduced motor
conduction velocities. The amplitudes of the sensory
potentials (SNAP) were moderately to severely re-
duced in the median, peroneal and sural nerves, and
the sensory conduction velocities were mildly re-
duced. At direct muscle stimulation of the anterior
tibial muscle the amplitude of the response was re-
duced as was the response evoked by peroneal nerve
stimulation

Right median nerve

D1-Elbow 2 µV
–
+

D1-Wrist 3 µV

D3-Elbow 0.1 µV

D3-Wrist 0.1 µV

Elbow-APB 0.5 mV

Wrist-APB 0.5 mV

0 40 ms

1.6 mV, 4.9 ms

1.6 mV, 46 m/s

1.0 µV, 42 m/s

0.6 µV, 53 m/s

6.1 µV, 38 m/s

5.1 µV, 50 m/s

Right peroneal nerve

Ret.Sup.-DFH 0.1 µV
–
+

DFH-EDB 0.3 mV

Ankle-EDB 0.3 mV

0 40 ms

0.9 mV, 5.5 ms

0.6 mV, 29 m/s

0.3 µV, 45 m/s

Left sural nerve

LM-MC 1 µV
–

+

0 20 ms

2.4 µV, 40 m/s

Ant. Tib. Nerve – muscle stimulation

Dist.muscle-TA 100 µV
–
+

DFH-TA 300 µV

0 40 ms

0.3 mV, 7.6 ms, 5.9 m/s

0.8 mV, 3.9 ms
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may turn red/dark by exposure to sunlight. The cere-
brospinal fluid may show raised protein.

Acute neuropathies induced by toxins

A number of substances and drugs are associated with
peripheral neuropathies but intoxication is a rare differ-
ential diagnostic question in acute polyneuropathy.
These include arsenic [63], amphiphilic cationic drugs
(amiodarone and perhexiline), vincristine, cisplatin,
pyridoxin, disulfiram, gold salts, glue, alcohol, and
organophosphates [15, 50, 71, 154].

A severe sensory neuronopathy may occur as a com-
plication to ingestion of amounts of pyridoxine (vitamin
B6) that greatly exceeds the daily recommended dose of
2.5 mg [133]. The rate of onset, severity and reversibility
depend on the dosage and administration of pyridoxine
[16]. I. v. infusion may cause an explosive and profound
neuropathy, whereas oral intake of large doses may
cause a more gradual onset of symptoms.The symptoms
may be reversible if the intake is discontinued early be-
fore severe degeneration has occurred though coasting
effects have been described [16].

Organophosphate intoxication causes a neuropathy

which develops after acute cholinergic toxicity. Treat-
ment with disulfiram and gold salts may cause an acute,
usually mild but occasionally fulminant neuropathy.

Cisplatin antineoplastic treatment is well known to
cause a sensory neuronopathy dependent on the cumu-
lative dose that may progress to profound sensory ataxia
[91, 92]. The development of symptoms is usually grad-
ual but may occur rapidly if treatment is continued be-
yond a limiting dose of about 300 mg/m2.

Glue sniffing is associated with an acute or subacute
sensorimotor neuropathy with autonomic features that
is due to n-hexane (or its metabolite 2.5-hexadione).The
neuropathy is associated with segmental axonal en-
largements containing neurofilaments (as also seen in
vincristine neuropathy, and ‘giant axonal’ neuropathy).

The neuropathy in alcohol abuse is usually insidious
and chronic in type. However, in a few patients an acute
proximal neuromyopathy associated with myoglobin-
uria may occasionally occur during bouts of heavy
drinking.
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