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ABSTRACT

Measurements of column-averaged dry-air mole fractions of carbon dioxide and carbon monoxide, CO2 (XCO2) and
CO (XCO), were performed throughout 2019 at an urban site in Beijing using a compact Fourier Transform Spectrometer
(FTS) EM27/SUN. This data set is used to assess the characteristics of combustion-related CO2 emissions of urban Beijing
by analyzing the correlated daily anomalies of XCO and XCO2 (e.g., ΔXCO and ΔXCO2). The EM27/SUN measurements
were calibrated to a 125HR-FTS at the Xianghe station by an extra EM27/SUN instrument transferred between two sites.
The ratio of ΔXCO over ΔXCO2 (ΔXCO:ΔXCO2) is used to estimate the combustion efficiency in the Beijing region. A
high  correlation  coefficient  (0.86)  between  ΔXCO and  ΔXCO2 is  observed.  The  CO:CO2 emission  ratio  estimated  from
inventories  is  higher  than  the  observed  ΔXCO:ΔXCO2 (10.46  ±  0.11  ppb  ppm−1)  by  42.54%–101.15%,  indicating  an
underestimation  in  combustion  efficiency  in  the  inventories.  Daily  ΔXCO:ΔXCO2 are  influenced  by  transportation
governed by weather conditions, except for days in summer when the correlation is low due to the terrestrial biotic activity.
By  convolving  the  column  footprint  [ppm  (μmol  m–2 s–1)–1]  generated  by  the  Weather  Research  and  Forecasting-X-
Stochastic  Time-Inverted  Lagrangian  Transport  models  (WRF-X-STILT)  with  two  fossil-fuel  emission  inventories  (the
Multi-resolution  Emission  Inventory  for  China  (MEIC)  and  the  Peking  University  (PKU)  inventory),  the  observed
enhancements  of  CO2 and  CO  were  used  to  evaluate  the  regional  emissions.  The  CO2 emissions  appear  to  be
underestimated by 11% and 49% for the MEIC and PKU inventories, respectively, while CO emissions were overestimated
by MEIC (30%) and PKU (35%) in the Beijing area.

Key words: FTS, remote sensing, ΔXCO:ΔXCO2, combustion efficiency, megacity

Citation: Che, K., Y. Liu, Z. N. Cai, D. X. Yang, H. B. Wang, D. H. Ji, Y. Yang, and P. C. Wang, 2022: Characterization
of regional combustion efficiency using ΔXCO:ΔXCO2 observed by a portable Fourier-Transform Spectrometer at an urban
site in Beijing. Adv. Atmos. Sci., 39(8), 1299−1315, https://doi.org/10.1007/s00376-022-1247-7.

Article Highlights:

•  Daytime column-averaged dry-air mole fractions of atmospheric CO2 and CO are provided in urban Beijing based on a
portable FTS since 2019.

•  The  CO:CO2 emission  ratio  estimated  by  MEIC  and  PKU  is  42.54%  and  101.15%  higher  than  the  observed  ΔXCO:
ΔXCO2 (10.46 ppb ppm–1), indicating an underestimation of the combustion efficiency in inventories.

•  The  MEIC  underestimates  CO2 emissions  by  about  11%  and  overestimates  30%  CO  emissions  by  30%;  PKU
underestimates CO2 emissions by 49% and overestimates CO emissions by 35%.
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1.    Introduction

The increasing anthropogenic emissions of CO2 are the
main driving force behind global warming induced by green-
house gases (GHG) (Stocker et al., 2013). Due to increased
energy  consumption,  global  fossil  CO2 emissions  reached
9.4  ±  0.5  GtC  yr−1 over  the  last  decade  (2007–17)  (Le
Quéré  et  al.,  2020).  The  mitigation  of  anthropogenic  GHG
emissions is often accompanied by strengthened air pollution
controls (West et al., 2013). The toxic air pollutant CO is an
indirect greenhouse gas because it produces positive radiative
forcing  (0.2  W  m−2)  through  its  oxidation  reaction  with
hydroxyl  radicals  (OH)  in  the  troposphere  (Myhre  et  al.,
2013). There was a declining trend of 2% yr−1 in CO emissions
over East Asia during 2005–16, which mainly resulted from
the active clean air policies implemented in China (Zheng et
al.,  2018a),  the  largest  developing  and  energy-consuming
nation in the world with a very high contribution from megaci-
ties.

Urban areas account for 2 % of the world’s land but are
responsible for 40%–70% of the global anthropogenic CO2

emissions (Satterthwaite, 2008, 2010; Ye et al., 2020). Carbon
monoxide  (CO)  in  the  urban  atmosphere  is  a  product  of
incomplete combustion alongside the formation of CO2 dur-
ing  household  combustion,  industrial  activities,  and  motor
transportation, which results in a general positive correlation
between CO and CO2 in  urban areas.  Due to  the relatively
short lifetime for CO of only a few weeks, it can serve as an
unique tracer for atmospheric fossil-fuel CO2 emissions and
combustion  efficiency  by  analyzing  the  ratio  of  CO:CO2.
The  estimates  of  combustion  efficiency  at  the  urban  scale
could be calculated from the CO2 and CO statistical emission
inventories;  such  an  approach  is  called  the  “bottom-up ”
method. Different inventories display significantly different
CO2 and CO emissions in China, especially at regional and
city scales (Zhao et al., 2012; Dai et al., 2020). Accurate mea-
surements  of  GHG  and  pollutants  in  cities  are  essential  to
yield significant information about the regional carbon budget
and  to  propose  strategies  to  control  these  emissions  (“top-
down ”  method).  The  correlation  between  CO  and  CO2

could  be  assessed  by  directly  calculating  the  slopes  of
observed  CO and  CO2 volume  mixing  ratios  (Wang  et  al.,
2010; Worden et al., 2012). However, the slopes of CO and
CO2 are easily affected by annual background growth and bio-
genic  sources.  Thus,  regression  fits  of  excess  CO  (ΔCO)
and excess CO2 (ΔCO2) from continuous observations have
been extensively studied to quantify the anthropogenic contri-
bution to carbon variation and source combustion efficiency
(Wunch  et  al.,  2009; Silva  et  al.,  2013; Popa  et  al.,  2014;
Feng et al., 2019a; Shan et al., 2019; Cai et al., 2021; Park
et al., 2021). Megacities in China show a lower combustion
efficiency with a higher ΔCO:ΔCO2 ratio than in developed
countries (Silva et al., 2013; Silva and Arellano, 2017; Park
et al., 2021). Studies in Hefei, China have found the Emissions
Database  for  Global  Atmospheric  Research  (EDGAR)  and
the Peking University (PKU) emission inventories overesti-
mated  ΔCO:ΔCO2 in  central  China  during  2015−16  (Shan

et al., 2019).
Beijing is located in the northern part of China (Fig. 1).

It is in a representative fast-growing economic cycle and is
a heavily populated and developed region. The air pollution
control  policies  in  Beijing  are  directly  related  to  the
country’s overall goals. The total fossil-fuel CO2 emissions
of  Beijing shows high uncertainty  with  ranges  from 1 to  8
Mt in 2012 according to different emission inventories and
urban regions (~17% relative to the overall land area of Bei-
jing) contributes about 64% CO2 emissions to the total emis-
sions  for  Beijing  (Han  et  al.,  2020).  Satellite  observations
found the XCO:XCO2 ratio  in  Beijing/Tianjin  region to  be
one  of  the  highest  in  the  northern  hemisphere  due  to  its
rapid  economic  development  (Park  et  al.,  2021).  Anthro-
pogenic emissions have been estimated to make a 75.2% con-
tribution to the annual CO2 enhancement in Beijing in 2014
based  on  isotopic  analysis  (Niu  et  al.,  2016).  Long-term,
highly  accurate  in  situ  measurements  of  CO2 and  CO near
the surface have been developed in rural and urban regions
of  Beijing.  The  Shangdianzi  (SDZ)  and  Miyun  sites  are
used for  rural  areas,  and the Peking University site  is  used
for urban areas (Han et al., 2009; Wang et al., 2010; Feng et
al.,  2019a; Dayalu  et  al.,  2020).  The  ratio,  ΔCO:ΔCO2,  at
the Miyun site shows a significant decrease during 2005 to
2008  (Wang  et  al.,  2010).  The  observation  of  CO  at  the
SDZ site shows a fast downward trend in 2006–08, is stable
in 2009–13, then shows another continuous downward trend
after 2013, suggestive of improved combustion efficiencies
in  response  to  the  Air  Pollution  Prevention  and  Control
Action  Plan  implemented  in  2013  (Li  et  al.,  2020).  The
short-term pollution reduction associated with the 2008 sum-
mer  Olympics  and  2020  COVID-19  lockdowns  result  in  a
decrease of ΔCO:ΔCO2, suggesting increases in combustion
efficiency (Wang et al., 2010; Cai et al., 2021).

The “top-down” analysis of combustion efficiency in Bei-
jing  comes  mostly  from  satellite  and  in  situ  observations.
However,  in  situ  surface  monitoring  measurements  are
greatly influenced by vertical mixing. The column-averaged
dry-air mole fraction (Xgas) represents the vertically integrated
concentration per dry air and is less affected by the vertical
motion than in situ measurements. Therefore, the horizontal
gradients  of Xgas have  a  more  direct  relationship  with  the
regional-scale  flux (Yang et  al.,  2007; Wunch et  al.,  2011;
Chen et al., 2016). Satellite observations of XCO2 combined
with XCO show obvious superiority in global coverage and
have been used to quantify the correlation between CO2 and
CO for Beijing. However, satellite observation is limited by
sampling size and temporal resolution to these specific megac-
ities. Satellites make infrequent visits over cities and are easily
affected by cloud, aerosol, and topography issues (Lei et al.,
2021), leading to insufficient data for urban emissions stud-
ies.  The  Total  Carbon  Column  Observing  Network
(TCCON) is an international Fourier-transform spectrometer
(FTS) network that was originally used for satellite validation
and mainly uses ground-based high-resolution Fourier-trans-
form  infrared  (FTIR) measurements  to  record  information
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about  the  GHG  column.  High-resolution  FTIR  stations  in
China have been built at Hefei, Xianghe, and Beijing (Wang
et al.,  2017; Bi et al.,  2018; Yang et al.,  2020b). Given the
poor transportability of TCCON FTS stations, portable, low-
cost FTS is useful as a component in long-term urban column

measurements.  The  EM27/SUN  instrument  (hereafter,
EM27) is a compact FTS with its own solar tracker, which
is easy to set up and transport anywhere. FTS measurements
in or near urban Beijing have mainly focused on satellite vali-
dation (Bi et al., 2018; Yang et al., 2020b). To date, few pub-

 

 

Fig. 1. (a) WRF simulation domains for three grids (27 km, 9 km, 3 km); the red point is the EM27 observation site.
The  map  was  taken  from  a  Google  satellite  image  (https://maps.googleapis.com/).  Maps  of  CO2 (b)  and  CO  (c)
emissions in 2014 are based on the PKU fossil-fuel emission dataset. Location of the EM27 site (marked by a star) in
the center of Beijing (indicated by the closed turquoise line)–Tianjin–Hebei (BTH) area (indicated by the closed blue
line) and 125 HR (marked by a star) in Xianghe, Inner Mongolia, Beijing, Tianjin, Hebei are also shown.
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lished studies have rigorously quantified the combustion effi-
ciency in the urban region of Beijing.

In this study, one year of XCO and XCO2 measurements
based  on  EM27 were  collected  at  an  urban site  in  Beijing.
The objectives of this study were to (1) analyze the correla-
tional relationship between observed enhancements of XCO
and  XCO2 in  urban  Beijing,  (2)  reconcile  the  differences
between top-down estimates of combustion efficiency with
bottom-up estimates of combustion efficiency, and (3) evalu-
ate the regional CO2 and CO emissions estimated from bot-
tom-up  inventories  using  a  remote  sensing  data  set.  The
remainder of this paper is organized as follows. A description
of the instrument and method is given in section 2. Section
3 presents the results and discusses their implications and sec-
tion 4 concludes. 

2.    Data and methods
 

2.1.    Instrumentation

An EM27 has been set up on the roof of the Institute of
Atmospheric Physics (IAP) building in Beijing since 2019.
The IAP observation site (highlighted in Fig. 1b) is located
between the north 3rd and 4th ring road, with heavy traffic
and high CO2 and CO emissions. The EM27 spectral resolu-
tion is less than 0.5 cm−1, corresponding to a maximum optical
path difference of 1.8 cm. The compound InGaAs (indium gal-
lium arsenide) and an extended InGaAs detector are used to
stably detect 3800–14 000 cm−1 spectral information for accu-
rate  column  concentrations  of  CO2 and  CO  (Gisi  et  al.,
2012; Hase et al., 2016). It takes about 60 s to record one indi-
vidual  spectrum  with  10  interferograms  averaged.  The
EM27 is equipped with an automated protective case with a
rain  sensor  and  a  solar  irradiation  sensor.  The  cover  only
opens  under  cloudless  daytime  conditions  (0000–0900
UTC),  protecting  the  instrument  from  rain  or  snow  and
achieving  automated  EM27  observations.  A  WS500
weather station located immediately next to EM27 was used
to  measure  surface  temperature  and  surface  pressure  with
accuracies  of  0.2°C  and  0.5  hPa,  respectively,  which  were
used  to  correct  the  a  priori  temperature  profile  needed  for
the  XCO2 and  XCO  retrievals.  The  Bruker  OpticalTM

Infrared  Fourier  Transform  Spectrometer  (IFS)  125  HR
used  by  TCCON  is  a  high-resolution  spectrometer
(< 0.02 cm−1) that is tied to the World Meteorological Organi-
zation  (WMO)  scale  through  numerous  aircraft  campaigns
(Wunch et al., 2010). To ensure data quality, the EM27 has
been  calibrated  in  side-by-side  experiments  with  125  HR
(Gisi et al., 2012; Klappenbach et al., 2015; Hedelius et al.,
2017; Frey et al., 2019). High-resolution FTIR stations have
been built  near  Beijing  and are  located  in  Xianghe,  50  km
east-southeast  of  Beijing  (highlighted  in Fig.  1a)  (Yang  et
al.,  2020b). The 125 HR at the Xianghe site complies with
the TCCON specifications and is used as a calibration refer-
ence for the EM27 at Beijing in this study.

A  portable  EM27  could  act  as  a  transfer  standard
between  two  FTIR  stations  (Jacobs  et  al.,  2020).  In  this

study, another EM27 (EM27#2) was used as a mobile transfer
standard instrument  for  125 HR in Xianghe and the EM27
in  Beijing.  The  EM27#2  took  measurements  side-by-side
with  IFS  125  HR  during  the  entire  month  of  November
2019.  To  ensure  stability  during  the  shipment  of  EM27#2
across  Beijing  to  Xianghe,  we  examined  the  ratio  between
EM27s  before  and  after  the  shipment. Figures  2a and 2b
show the biases between 125 HR and EM27#2. The correction
equations  are  also  shown  in  the  figure. Figures  2c and  2d
show that the ratio was consistent before and after the ship-
ments (detailed in section 2.2), indicating that the calibration
of EM27#2 and 125 HR in Xianghe could be applied to the
EM27 retrieval in Beijing. The IFS 125 HR retrievals apply
the  TCCON  standard  retrieval  code  (GGG2014),  and  the
EM27 uses PROFFAST, with the same meteorological data
and  preliminary  profiles  input.  The  results  for  EM27#2
show a systematic bias with 125 HR, which could be corrected
by applying a linear fitting correction function (Figs. 2a and
2b).  The  biases  between EM27 and 125HR are  0.28% and
5.3% for XCO2 and XCO, respectively. 

2.2.    EM27 data processing

Columnair

A  non-linear  least-squares  fitting  retrieval  algorithm
(PROFFAST) (Hase et al., 2004) is used to analyze the spectra
recorded by EM27.  The algorithm has been officially  used
in the EM27 network, COCCON (the COllaborative Carbon
Column Observing Network) (Frey et al.,  2019). To obtain
a high-quality spectrum, the pre-processing steps involve a
direct current (DC) correction (Keppel-Aleks et al., 2007), a
Norton–Beer medium apodization (Naylor and Tahic, 2007),
a fast Fourier transform (Bergland, 1969), and a phase correc-
tion  (Mertz,  1967).  The  a  priori  profiles  obtained  by
TCCON are the official a priori profiles (Toon and Wunch,
2015). The inverse algorithm obtains the scaled target gas col-
umn by iteratively updating the state variables to best fit the
simulated  and  measured  spectra.  Finally,  the  gas  column
(Cgas) is converted to a dry-air column-averaged mole fraction
(denoted Xgas) by dividing the gas column by the simultane-
ously retrieved column-averaged dry-air mole fractions (Cair)

, where Cair could be calculated from the O2 column
combined  with  the  volume  fraction  of  O2 in  the  air
(20.95%): 

Xgas =
Cgas

Cair
. (1)

Psurf

In the post-processing process, column averaging kernels
(AK)  describe  the  altitude-dependent  sensitivity  of  the
retrieved state to the true state. As shown in Fig. 3, AK differs
among  instruments  with  different  spectral  resolutions.
EM27 is more sensitive to changes at lower levels than 125
HR, especially for high solar zenith angles (SZAs). A pressure
weighting function (PW) is used to weight the pressure thick-
nesses  of  each  level  (ΔP)  relative  to  the  surface  pressure
( ) : 

PW =
∆P
Psurf

. (2)
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2.3.    WRF - XSTILT model

Xfoot
Xfoot

Xfoot

A Lagrangian particle dispersion model (LPDM) models
a plume of atmospheric tracers from a cluster of particles. It
can determine the footprint (also called an influence function
or  adjoint  sensitivity)  of  multiple  air  parcels  released  from
an  observation  site  (receptor).  The  WRF-XSTILT,  an
LPDM  model,  is  adopted  to  analyze  the  meteorologically-
induced gas concentration variation by a regional column foot-
print simulation ( Lin et al., 2003; Fasoli et al., 2018; Wu et
al., 2018). The footprint is used to establish the source–recep-
tor  relationship  and  determine  the  distribution  spread  of
entire plumes in adjacent cells over the receptor by calculating
the sensitivity of the surrounding region (source) to the recep-
tor. The column footprint ( ) is essential for tracking the
air masses for column measurements. The parameter  is
the sensitivity of the column measurements to the upstream
and downstream surface-atmosphere fluxes. The formula to
calculate , with units of ppm (μmol (m2 s)−1)−1, for each
receptor is as follows:
 

Xfoot(xr, tr |xi,yi, tm) =
mair

hρ(xi,yi, tm)
×

1
N

N∑
i=1

∆ti(xi,yi, tm)AK(r)PW(r) , (3)

xr, tr r xi,yi, tm

mair

h
h
ρ h N

∆ti
xi,yi, tm

Xfoot

PW(r) AK(r)

where  ( )  is  the  receptor  ( )  location,  ( )  is  the
model’s initial time set, denoted by the model grid coordinates
of location and time,  is the mean molar mass of dry air
(29  g  mol−1),  is  the  atmospheric  column  height  (in
XSTILT  is set at half the planetary boundary layer (PBL)
depth),  is  the  mean  density  of  the  air  below ,  is  the
total number of released particles,  is the residence time
of particle i spent in the grid cell ( ). The total column
footprint  is the integrated footprint from different verti-
cal  altitudes  convolved  with  a  pressure  weighting  function

 and  averaging  kernel  at  the  receptor,  which
links  the  emission  sensitivity  to  the  observations.  In  the
model setup, we applied the WRF model configurations veri-
fied  by  Dayalu  et  al.  (2020)  for  the  same  study  domains
(Fig.  1a).  The  receptor  site  of  X-STILT was  set  up  at  IAP

 

 

Fig.  2. (a−b)  Scatter  plots  of  XCO2 and  XCO  from  125  HR  and  EM27#2  side-by-side  measurements  over  the
Xianghe Observatory. N is  the  number  of  comparison points, B is  the  bias  between the  two instruments, R2 is  the
correlation coefficient, and the equation has the linear fit. (c−d) Scatter plots of EM27 against EM27#2 for different
days before and after the EM27#2 transfer calibration campaign. The ratio is the proportional coefficient of EM27
(the result for EM27#2 has been taken as a reference).
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and was run backward for seven days at a 0.25° × 0.25° spatial
resolution to generate hourly column footprints. In each simu-
lation, 100 air parcels are released every 100 m within 3 km
and every 500 m from 3 to 6 km relative to the observation
level, which tends to be denser near the surface. Higher alti-
tudes are not used since only the lower atmosphere interacts
with  local  emissions  in  the  region  (Hedelius  et  al.,  2018).
The AK and PW (detailed in section 2.2) of EM27 are used
to weight and integrate the footprints of all levels to the col-
umn footprint and could be directly obtained from the output
of the EM27 retrieval. 

2.4.    The ΔXCO:ΔXCO2 calculation method
 

2.4.1.    Calculation  of  ΔXCO  and  ΔXCO2 from
measurements

The  observed  regression  slope  of  ΔXCO  against

ΔXCO2 denotes the amount of CO per CO2 emissions in the
atmosphere  that  has  been  captured  by  the  FTS,  signifying
the emission ratio or combustion efficiency. A larger slope
of the regression line reveals greater combustion efficiency
in  the  observed  XCO2.  Wunch  et  al.  (2009)  proposed  that
the Xgas anomaly (ΔXgas) could be calculated by subtracting
Xgas in  the  morning  from  the  afternoon  value  at  the  same
SZA. The anomalies are divided by the AK at the surface to
account for the sensitivity of the column measurement to sur-
face  variations  because  diurnal  changes  are  assumed  to  be
confined to the boundary layer. This method could minimize
the atmospheric effects from background or natural sources
and the SZA-dependent error. The ΔXCO:ΔXCO2 ratio, calcu-
lated from the diurnal enhancement,  is  denoted as (ΔXCO:
ΔXCO2)d.

Apart  from  the  method  based  on  diurnal  variation,

 

 

Fig. 3. A comparison of the column-averaged kernels at different SZAs for EM27 (a−b) and 125 HR (c−d).
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ΔXCO  and  ΔXCO2 could  be  estimated  from  the  regional
change  relative  to  the  background.  The  observation  site  at
urban  Beijing  records  the  pollution-related  signal  of  XCO
and XCO2. The quantification of background XCO2 concen-
tration is the sum of the boundary and biogenic XCO2 val-
ues.

The boundary XCO2 value was obtained from trajectory
endpoint of the Copernicus Atmosphere Monitoring Service
(CAMS)  satellite-derived  global  inversion-optimized  mean
column  concentrations  data  (http://atmosphere.copernicus.
eu/, version: v20r3, last access: 7 June 2021) (Chevallier et
al.,  2005; Chevallier  et  al.,  2010; Chevallier  et  al.,  2019).
These trajectories were derived from the Weather Research
and  Forecasting-Column  Stochastic  Time  Inverted
Lagrangian Transport (WRF-XSTILT). According to the vali-
dation report for the CAMS v19r1 data by Chevallier et al.
(2020),  the  biases  of  modeled  XCO2 data  show  less  bias
(less than 1 ppm) in a non-urban area when compared to the
TCCON  retrieval  results.  The  background  XCO2 values
obtained  from  CAMS  were  mostly  from  the  region  less
affected by human activities, so the CAMS background val-
ues were considered to be plausible. Biogenic XCO2 values
were from the convolution of the column footprint generated
by WRF-XSTILT and the CO2 vegetation flux. The CO2 vege-
tation  flux  comes  from  a  global  gridded  terrestrial  carbon
flux product developed by Zeng et al. (2020). Due to unavail-
able  XCO background data,  XCO background values  were
simply obtained from the lowest observed XCO. Similar to
the  diurnal  method described above,  the  AK at  the  surface
was  also  taken  into  account  in  calculating  the  anomalies.
The ratio ΔXCO:ΔXCO2 calculated from regional enhance-
ment is denoted as (ΔXCO:ΔXCO2)r. 

2.4.2.    Calculation  of  ΔXCO  and  ΔXCO2 from  bottom-up
inventories

The  simulated  regression  slope  of  ΔXCO  against
ΔXCO2 represents  the  regional  XCO  enhancement  per
XCO2 enhancement contributed from different sources trans-
ported  to  the  observation  site.  A  simple  way  to  simulate
ΔXCO:ΔXCO2 directly  from  the  emission  inventories  in  a
specific  geometrical  shape  is  as  follows  (Wunch  et  al.,
2009; Hu et al., 2019; Shan et al., 2019) 

(
∆XCO
∆XCO2

)
sim
=

ECO

ECO2

MCO

MCO2

. (4)

ECO ECO2

MCO MCO2
(∆XCO/∆XCO2)sim

Here,  and  are the CO and CO2 emissions in
the specific  area,  and  are  the molecular  masses
of CO and CO2, and is the simulated cor-
relation slope of XCO to XCO2.

The  parameters  ΔXCO  and  ΔXCO2 can  be  simulated
by the convolution of the source footprint function (modeled
by  the  Lagrangian  atmospheric  transport  model)  and  the
anthropogenic flux inventories defined as follows: 

(
∆XCO
∆XCO2

)
sim
=

Xfoot,co × ECO

Xfoot,co2 × ECO2

, (5)

ECO2 ECO

where  the  simulated  ΔXCO  and  ΔXCO2 are  the  modeled
hourly  anthropogenic  enhancement  from  different  sources.
The  ( ) and is represented by the CO2 (CO) surface
anthropogenic emissions. The footprint quantifies the sensitiv-
ity of the measurements to emissions in terms of unit concen-
tration  per  unit  flux.  Simulated  ΔXCO and  ΔXCO2 values
based  on  this  method  are  divided  by  AK  at  the  surface  to
account  for  the  sensitivities  of  column  measurements  near
the  surface.  We  focused  on  simulations  from  1100–1600
local  standard  time  (LST,  UTC  +  8  h)  consistent  with  the
time that the atmosphere is well-mixed and the depth of plane-
tary  boundary  layer  (PBL)  grow to  approach  its  maximum
in the late  morning due to  the solar  heating of  the  surface.
The PBL, in turn, collapses at sunset due to surface cooling,
which  increases  the  difficulty  of  simulation.  We  selected
this  period  so  that  the  footprint  generated  by  X-STILT
would be less susceptible to modeled PBL uncertainties (Sar-
gent et al., 2018).

ECO2 ECO ( )  is  obtained  from  monthly  gridded  fossil-
fuel emission databases. Fossil-fuel emission products come
from Peking University (PKU) and the Multi-resolution Emis-
sion Inventory for China (MEIC). The PKU product provides
global CO and CO2 grid emission maps up to 2014 with 0.1°
spatial resolution according to a sub-national disaggregation
of fuel data (Wang et al., 2013). The MEIC product provides
China’s  CO and  CO2 grid  emission  maps  up  to  2017  with
0.25° spatial resolution, including the local emission informa-
tion for each power plant and industrial operation (Zheng et
al., 2020). The Temporal Improvements for Modeling Emis-
sions by Scaling (TIMES) developed by Nassar et al. (2013)
is applied to the MEIC and PKU products to derive diurnal
CO2 emissions.  Due  to  unavailable  temporal  variations  for
CO,  we  simply  averaged  the  monthly  CO  emissions  and
assigned them to each hour.  The MEIC and PKU products
provide  gridded  regional  emissions  up  to  2017  and  2014,
respectively. Owing to the lack of an emission trend in Bei-
jing,  we  apply  the  inter-annual  variation  of  CO2 emissions
in China until 2019, as concluded from Crippa et al. (2020).
Due  to  the  unavailability  of  CO  emissions  up  to  2019,  a
mean decreasing rate in East Asia of 2% was applied, esti-
mated  from  the  top-down  inversion  method  based  on
MOPITT data from 2005 to 2016 (Zheng et al., 2018a). 

3.    Results and discussion
 

3.1.    Time series of XCO and XCO2

The  monthly  means  and  standard  deviation  of  XCO2

and XCO at mid-latitude stations in the northern hemisphere
are displayed in Fig. 4. These include FTIR stations in Bei-
jing, Pasadena (34.14°N) (Wennberg et al., 2017), Xianghe
(39.75°N) (Yang et al.,  2020b), Karlsruhe (49.10°N) (Hase
et al., 2017), Tsukuba (36.05°N) (Morino et al., 2018), and
Paris (48.97°N) (Té et al., 2017). Table 1 summarizes the sea-
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sonal  mean  and  standard  deviation  of  XCO2 and  XCO.
There  is  no  data  recorded in  February,  which  may cause  a
bias because anthropogenic XCO2 enhancements during the
Spring  Festival  should  be  significantly  lower  than  normal.
The  XCO2 values  in  Beijing  ranged  from 402  ppm to  423
ppm in  2019.  The  seasonal  variation  in  XCO2 achieves  its
peak  in  winter  (414.33  ±  2.65  ppm),  followed  by  spring
(413.58 ± 1.25 ppm) and autumn (412.09 ± 2.88 ppm), and
is  lowest  in  summer  (407.87  ±  3.34  ppm).  The  features  of
the XCO2 seasonal variation in Beijing are similar to observa-
tions from other  FTIR observation sites  in the mid-latitude
northern  hemisphere.  Intensity  of  photosynthesis,  which  is
related to the latitude of the observation site, is the main rea-
son  for  the  seasonality  in  XCO2 variation.  The  peak  and
trough  of  monthly  XCO2 means  were  found  in  December
(415.72 ± 3.18 ppm) and August (404.87 ± 1.47 ppm), respec-
tively,  which  differ  slightly  from other  FTIR  stations.  The
monthly XCO2 in Paris, Park Falls, Karlsruhe, and Xianghe
stations reach a  peak in March to April,  whereas Pasadena

and  Beijing  stations  reach  a  peak  in  December.  The
monthly XCO2 of Beijing, Xianghe, Paris, Park Falls, Karl-
sruhe reach a trough in August, whereas Pasadena reaches a
trough in September.

Values  of  XCO  ranging  from  85  to  192  ppb  are
observed  in  Beijing.  The  XCO  in  Beijing  was  higher  than
the values from other cities in the northern hemisphere and

Table 1.   Seasonal variability of average XCO2 and XCO in 2019
observed by EM27.

Season XCO2 (ppm) XCO (ppb)

Spring
(March to May)

413.58 ± 1.25 109.58 ± 5.49

Summer
(June to August)

407.87 ± 3.34 120.50 ± 4.28

Autumn
(September to November )

412.09 ± 2.88 112.37 ± 5.58

Winter
(December to February)

414.33 ± 2.65 115.78 ± 3.36

 

 

Fig.  4. Monthly  variations  in  (a)  XCO2 and  (b)  XCO  observed  at  Beijing,  Xianghe,  Karlsruhe,  Pasadena,
Tsukuba, and Paris during 2019. The geographical coordinates of each site are shown in the figure legend.
The error bars are the monthly standard deviation of XCO2 and XCO.
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lower  than  that  of  the  Xianghe  station  (Fig.  4b),  implying
the  presence  of  high  regional  emissions  in  the
Beijing–Xianghe region. As can be concluded from Table 1,
XCO is highest in summer (120.50 ± 4.28 ppb), followed by
winter (115.78 ± 3.36 ppb) and autumn (112.37 ± 5.58 ppb),
and is lowest in spring (109.58 ± 5.49 ppb). The seasonal vari-
ation in  Beijing is  similar  to  the  variation in  Xianghe.  The
increase of  CO during winter  in  Beijing could be from the
increased heating time of  vehicle  catalysts  at  low tempera-
tures (Han et al., 2009) and domestic heating. The seasonal
variations in Karlsruhe, Pasadena, and Paris show XCO val-
ues  that  are  highest  in  spring  and  lowest  in  summer  and
autumn.  The  XCO  in  summer  for  the  Beijing-Xianghe
region  presents  a  seasonal  variation  opposite  of  the  other
three urban sites. Carbon monoxide (CO) reaches a minimum
during summer at those sites due to strong ultraviolet radiation
and high humidity, facilitating the formation of OH, which
consumes more CO in the atmosphere (Té et al., 2016; Li et
al.,  2020).  Carbon  monoxide  (CO)  concentration  was  also
found to be lowest in summer from 2006 to 2018 at the Shang-
dianzi  (SDZ) in  situ  site,  a  rural  region near  Beijing (Li  et
al.,  2020).  This  result  is  consistent  with  the  Karlsruhe,
Pasadena, and Paris sites. The high XCO values in summer
observed in urban Beijing and Xianghe could be associated

with strong anthropogenic emissions. 

3.2.    ΔXCO:ΔXCO2 correlation observed by the FTS

Carbon monoxide (CO) is co-emitted and co-transported
to  the  observation  site  with  CO2.  The  slopes  of  ΔXCO  to
ΔXCO2 reflect  the  overall  combustion  efficiency  of  the
observed airmass. Figure 5 shows the daily regression slope
and the Pearson correlation coefficients (R2)  of ΔXCO and
ΔXCO2 based on the diurnal variation method. Daily regres-
sion slopes are mostly around 10 ppb ppm–1. Daily correlation
coefficients are generally larger than 0.5 on 78% of the obser-
vation  days.  Significant  positive  correlations  between
ΔXCO  to  ΔXCO2 in  winter,  spring,  and  autumn  indicate
that  most  air  parcels  originate  from  combustion  sources.
Approximately  61% of  the  daily  correlation  coefficients  in
summer (grey shaded region in Fig. 5) are small (< 0.1) and
even negative, and the regression slope shows large uncertain-
ties. This suggests that CO2 emissions are dominated by non-
CO-related sources in summer. In situ observations near Bei-
jing also captured the low correlation in summer (Wang et
al., 2010). The main reason is that the CO2 signals were signif-
icantly mixed with enhanced biospheric CO2 uptake during
the  growing  season,  which  could  offset  the  anthropogenic
emissions in urban areas. It is necessary for CO and CO2 to

 

 

Fig. 5. (a) The time series of the daily slope of ΔXCO and ΔXCO2 observed by EM27 over IAP. The error
bar represents the confidence bounds for the slope estimates. (b) The time series of correlation coefficient (R2)
of  ΔXCO and ΔXCO2.  The  red  triangles  represent  observations  with R2 less  than 0.1,  and the  blue  circles
represent R2 larger than 0.1. Summertime is indicated by grey shading.
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share a common combustion process when using CO as the
anthropogenic tracer for CO2 to investigate regional combus-
tion efficiency.  One straightforward approach is  to  remove
the observations in the growing season (Wang et al.,  2010;
Shan  et  al.,  2019).  Still,  we  found  some  strong  correlation
days  in  summer  (Fig.  5b),  so  we  excluded  the  non-CO-
related  observations  (R2 ≤ 0.1).  Before  filtering  the  data,
(ΔXCO:ΔXCO2)d observed for urban Beijing is 8.94 ± 0.13
ppb ppm−1 with an R2 of 0.80. Removal of the strong biologi-
cally-affected  days  contributed  to  the  elevated  (ΔXCO:
ΔXCO2)d of 10.46 ± 0.11 ppb ppm−1 and an R2 of 0.86.

We  extended  our  analysis  to  comparisons  of  (ΔXCO:
ΔXCO2)d based on other FTS station datasets of the mid-lati-
tude  northern  hemisphere  in  and  around  2019  (Table  2).
The FTS stations are set  up in either an urban or suburban
environment  with  varied  emissions  sources:  the  Pasadena
site is located on the southern coastal air basin of California
with  a  population of  nearly  17 million,  the  Tsukuba site  is
located in a highly urbanized city near Tokyo with a popula-
tion  of  2.28  million,  the  Paris  site  is  in  the  most  populous
city in France (2.24 million), the Karlsruhe site is a smaller
urban region surrounded by forest,  which has  a  population
of nearly 0.3 million. Stronger correlations between ΔXCO
and  ΔXCO2 exist  with  high  regression  slope  values  in  the
densely  populated  urban  regions  (Beijing,  Pasadena,
Tsukuba,  Paris,  and  Karlsruhe).  The  values  of  (ΔXCO:
ΔXCO2)d observed in Chinese cities (10.46 ppb ppm−1 in Bei-
jing,  6.76  ppb  ppm−1 in  Xianghe)  are  significantly  higher
than stations in other nations. In addition, (ΔXCO:ΔXCO2)d

in  Beijing  is  the  highest  among  all  the  cities  we  included,
implying a high pollution per amount of CO2 emissions and
relatively lower combustion efficiency over Beijing.

According  to  the  in  situ  observations,  Wang  et  al.
(2010) found a ΔCO:ΔCO2 value of 41.7 ppb ppm−1 at  the
Miyun background site in Beijing from 2007 to 2008. Han
et al. (2009) derived a ΔCO:ΔCO2 value of 43.4 ppb ppm−1

during  the  2006  winter  at  an  urban  site  in  Beijing.  Using
XCO retrievals from NASA/Terra Measurement of Pollution
in  the  Troposphere  (MOPITT)  and  XCO2 retrievals  from
the Japan Aerospace Exploration Agency Greenhouse gases
Observing Satellite (GOSAT), Silva et al. (2013) estimated
ΔXCO:ΔXCO2 in  Beijing/Tianjin  to  be  43.5  ppb  ppm−1

from  2009  to  2010.  These  values  are  significantly  larger
than  our  estimated  value  (10.46  ppb  ppm−1).  The  reason
could be that China has implemented pollution control poli-

cies since 2013. As a result, the combustion efficiency signifi-
cantly  increased  as  CO  emissions  decreased  (Zheng  et  al.,
2018b; Feng et al., 2019b; Li et al., 2020). Shan et al. (2019)
estimated ΔCO:ΔCO2 to  be  15.99,  8.02,  and 5.67 ppb ppm−1

based on in  situ,  ground-based FTS,  and satellite  measure-
ments  (GOSAT,  MOPITT),  respectively,  at  Hefei  from
2015  to  2016.  Li  et  al.  (2020)  estimated  ΔCO:ΔCO2 to  be
25.5  ppb  ppm−1 at  the  SDZ site  near  Beijing  in  2018.  The
ΔXCO:ΔXCO2 value  we  calculated  (10.46  ppb  ppm−1)  is
close  to  the  value  estimated  from  ground-based  FTS  at
Hefei in 2015−16 (8.02 ppb ppm−1) and is about 60% lower
than  the  near-surface  observed  value  at  SDZ  (25.5  ppb
ppm−1).  The  value  of  ΔCO:ΔCO2 based  on  FTS (8.02  ppb
ppm−1) at Hefei is about 50% lower than in situ observations
(15.99 ppb ppm−1)  (Shan et  al.,  2019).  In situ observations
only  capture  the  near-surface  signal  of  a  small  sampling
area  in  the  local  planetary  boundary  layer.  In  contrast,  the
FTS observations detect the whole layer of the atmosphere,
which may weaken the near-surface signal. The FTS observa-
tions have larger footprint compared to in situ observations
and  could  be  more  representative  to  the  regional  flux
(Wunch et al., 2016) 

3.3.    Effect of regional transportation on ΔXCO:ΔXCO2

Transportation  governed  by  weather  conditions  plays
an  important  role  in  the  day-to-day  variations  in  CO  and
CO2 in Beijing (Feng et al., 2019a; Panagi et al., 2020). Air
pollution  is  concentrated  in  Beijing’s  southern  and  eastern
parts (Feng et al.,  2019a). We identified source regions for
each  observation  based  on  X-STILT  footprints.  Pathways
are  characterized  by  sources  in  the  northwest  (NW)  and
north China plain (NCP) according to the year-round average
24-hour backward footprints (Figs. 6c and 6e), which share
62.93%  and  26.72%  of  the  observation  days,  respectively.
Higher XCO2 and XCO occurred when air masses originated
from the NCP region. Clean air masses originating from the
NW are less affected by human activities, which may cause
the observed decrease in XCO2 and XCO.

When an air mass passes over different source regions,
the  correlation  between  CO  and  CO2 shows  different  pat-
terns. As shown in Figs. 6b and 6d, (ΔXCO:ΔXCO2)d origi-
nating  from  the  clean  region  is  8.23  ±  0.1  ppb  ppm−1 and
from the polluted region is 11.46 ± 0.2 ppb ppm−1. Advection
that brings air masses containing emissions from the NCP con-
tributed  to  an  elevated  proportion  of  (ΔXCO:ΔXCO2)d,

Table 2.   Comparison of ΔXCO:ΔXCO2 in different FTS stations close or within the urban area in the northern hemisphere.

FTS station (longitude, latitude) Time period ΔXCO:ΔXCO2 (ppb ppm−1) R2

Beijing, CHN (39.98°N, 116.39°E) 2019.1−2019.12 10.46 ± 0.11 0.86
Xianghe, CHN (39.75°N, 116.96°E) 2018.7−2019.7 6.76 ± 0.70 0.52

Karlsruhe, DE (49.10°N, 8.44°E) 2018.1−2019.12 1.84 ± 0.21 0.52
Pasadena, US (34.14°N, 118.13°E) 2019.1−2019.12 4.06 ± 0.18 0.61
Tsukuba, JP (36.05°N, 140.12°E) 2018.1−2019.9 4.68 ± 0.22 0.58

Paris, FR (48.97°N, 2.37°E) 2019.1−2019.12 3.06 ± 0.06 0.76
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which exceeded the annual slope (10.46 ± 0.11 ppb ppm−1).
 

3.4.    Comparison  of  the  observed  and  modeled  regional
XCO2 and XCO enhancement

The  regression  slope  of  ΔXCO:ΔXCO2,  based  on  the
regional enhancement method (ΔXCO:ΔXCO2)r, is estimated
to  be  9.06  ±  1.89  ppb  ppm–1,  which  is  consistent  with  the

value  of  (ΔXCO:ΔXCO2)d (10.46  ±  0.11  ppb  ppm–1).  The
ratio (ΔXCO:ΔXCO2)d is calculated solely based on the diur-
nal  variation  observed  by  EM27.  In  contrast,  (ΔXCO:
ΔXCO2)r is  estimated by subtracting the  background value
from  the  observations.  Uncertainty  in  background  value
yields  more  uncertainty  for  (ΔXCO:ΔXCO2)r compared  to
(ΔXCO:ΔXCO2)d.

 

 

Fig.  6. (a)  Correlations  of  ΔXCO and  ΔXCO2 in  2019.  (b,  d)  Correlations  of  ΔXCO and  ΔXCO2 in  2019
originating from the NW and NCP upwind sources. R2 is the correlation coefficient of ΔXCO and ΔXCO2.
slope2019 is  the  regression  slope  of  ΔXCO  and  ΔXCO2.  (c,  e)  Maps  of  mean  24-hour  backward  footprint
[ppm / (μmol m−2 s−1), lg(x)] with 0.25° resolution at IAP, Beijing, starting at 1200 LST in 2019, originating
from the NW (c) and NCP (e). The closed blue line indicates the BTH area. Only footprint values larger 10−2

ppm / (μmol m−2 s−1) are displayed.
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The  estimated  values  for  ΔXCO  and  ΔXCO2 from
regional enhancement versus the background were used for
comparison with the model simulation at hourly timescales
(Figs. 7 and 8). The modeled ΔXCO2 (hereafter ΔXCO2,sim)
was simulated from the MEIC and PKU anthropogenic emis-
sion  inventories  (ΔXCO2,  MEIC and  ΔXCO2,  PKU).  The

observed  enhancement  ΔXCO2 (hereafter  ΔXCO2,obs)  was
the difference between the observed urban XCO2 (XCO2,obs)
and the XCO2 background (XCO2,back) from model. Summer
data is excluded due to the unavailable background data for
CO  (detailed  in  the  next  paragraph).  The  same  trend  is
shared by XCO2,back and XCO2,obs as shown in Fig. 7a.

 

 

Fig.  7. (a)  Measured  XCO2 and  CAMS  background  concentration.  (Only  1100  to  1600  LST  periods  are
displayed). (b−c) Hourly measured and modeled regional enhancement ΔXCO2 for each fossil-fuel emission
inventory (b for MEIC, c for PKU).

 

 

Fig. 8. Hourly measured and modeled XCO for (a) MEIC and (b) PKU.
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Figures  7b and 7c show  the  correlation  between
ΔXCO2,obs and ΔXCO2,sim. The x-intercept of the linear fitting
equation  of  (~1  ppm  for  MEIC  and  PKU)  represents  the
ΔXCO2,obs value with no anthropogenic effect.  The bias of
ΔXCO2,obs and ΔXCO2,sim was mainly attributed to the error
from  emission  inventories,  background  XCO2 values,  and
transport  simulation.  Both  the  observed  and  modeled
ΔXCO2 are in good agreement, with correlation coefficients
(R2) of 0.70 and 0.73 for MEIC and PKU, respectively. The
slope  of  the  fitting  equation  denotes  the  ratio  of  the
observed  ΔXCO2 change  to  the  modeled  ΔXCO2 change.
Many previous studies attempted to use the slope value as a
scale factor to evaluate and constrain regional CO2 emissions
(Sargent  et  al.,  2018; Shekhar  et  al.,  2020; Yang  et  al.,
2020a). The slope for MEIC (0.89 ppm ppm–1) is closer to
the 1:1 line than PKU (0.61 ppm ppm–1).  According to the
regression slope value, MEIC underestimates approximately
11% of CO2 emissions surrounding Beijing and PKU underes-
timates approximately 49%.

Figure  8 denotes  the  correlation  plots  of  observed
ΔXCO  (ΔXCOobs)  and  modeled  ΔXCO  (ΔXCOsim).  The
ΔXCOobs data is correlated to ΔXCOsim with R2 of 0.71 and
0.73 for MEIC and PKU, respectively. The minimum of the
observed XCO (80.0 ppb) was taken as a constant XCO back-
ground  value.  The  x-intercepts  for  MEIC  (77.63  ppb)  and
PKU (80.79 ppb) show consistency and agree with the mini-
mum of observed XCO. However, the constant background
value could not capture the variation of the true XCO back-
ground, especially for summer with strong biological-influ-
enced (detailed in section 3.1). Therefore, the ΔXCO data in
Summer are excluded. The slopes for MEIC (1.3 ppb ppb–1)
and  PKU  (1.35  ppb  ppb–1)  indicate  an  overestimation  of
approximately 30% and 35%, respectively, for CO emissions
surrounding Beijing. 

3.5.    Comparison  the  observed  and  simulated  ΔXCO:
ΔXCO2

Many studies have compared the observed ΔCO:ΔCO2

with emission inventories (Turnbull et al., 2011; Tohjima et
al.,  2014; Shan  et  al.,  2019).  To  calculate  the  simulated
ΔCO:ΔCO2 with emission inventories on a regional scale, it
is essential to know that the observational site is representa-
tive of the region. A few studies roughly specified a geometric
bounding  box  outlining  the  region  which  influences  the
observed value (Wunch et al., 2009; Hu et al., 2019; Shan et
al., 2019). However, ΔCO:ΔCO2 calculated based on the geo-
metric bounding method is sensitive to the specified size of
the enclosed area. A circle centered upon the EM27 observa-

tion  site  was  specified  as  the  influencing  region.  As  the
source  area  radius  ranges  from  50  to  500  km,  ΔCO:ΔCO2

varies  from 17.00  to  19.77  ppb  ppm–1 for  MEIC,  32.28  to
53.74  ppb  ppm–1 for  PKU,  respectively.  The  results  show
great uncertainty among different inventories and influencing
areas.  This  method  is  based  on  the  assumption  that  each
grid in the specific geometric region of the emission map con-
tributes equally to the observed concentration.

The region of influence and the sensitivity of each influ-
encing grid to the observations vary over time. Using surface
hourly backward column footprints for each measurement is
a common and robust way to quantify the sensitivity of the
atmospheric  concentration  changes  at  the  receptor  to
upwind source regions using units of concentration per unit
flux (Turnbull et al., 2011; Tohjima et al., 2014). Each foot-
print  is  convolved  with  the  corresponding  hourly  gridded
emission  inventories  (PKU,  MEIC).  The  modeled  anthro-
pogenic enhancement of CO and CO2 at the receptor site is
the  sum  of  contributions  from  the  sensitive  emission  grid
flux (detailed in section 2.3). The linear regression slopes of
the modeled ΔXCO:ΔXCO2 based on PKU, MEIC, and obser-
vations  are  shown  in Table  3.  The  outliers  are  excluded
according to the three standard deviations criterion. Modeled
ΔXCO shows  a  good  relationship  with  ΔXCO2 with R2 of
0.97 for MEIC and 0.96 for PKU. The modeled data displays
a  slightly  greater  correlation  than  the  observed  ΔXCO and
ΔXCO2 (R2 =  0.86  for  the  diurnal  variation  method, R2 =
0.83  for  the  regional  enhancement  method).  The  reason  is
that  modeled  values  only  take  the  anthropogenic  influence
of CO into account, ignoring the CO2-related but not the CO-
related signal,  such as  the resident  respiration of  CO2.  The
observed ΔXCO and ΔXCO2 values based on regional back-
ground  enhancement  display  the  weakest  correlation  (R2 =
0.83)  due  to  the  uncertainty  of  the  modeled  background
value.  The  simulated  regression  slope  of  ΔXCO  and
ΔXCO2 in  2019 is  14.91  ±  0.36  ppb ppm−1 for  MEIC and
21.04 ± 0.70 ppb ppm−1 for PKU. The MEIC and PKU inven-
tories  are  42.54%  and  101.15%  higher  than  the  observed
value (10.46 ± 0.11 ppb ppm−1), respectively.

In  recent  studies,  ΔXCO:ΔXCO2 based  on  EDGAR
(PKU)  emission  inventories  are  about  256.59%  (219.39%)
larger  than  the  values  calculated  from  the  FTS  in  Hefei
2015−16,  and  207.86%  (173.31%)  larger  than  those  in
2016−17  (Shan  et  al.,  2019).  Silva  and  Arellano  (2017)
found that ΔCO:ΔCO2 based on the EDGAR inventory was
50%  higher  than  the  value  estimated  by  satellites  in  the
megacities of China. Wang et al. (2010) found that the bot-
tom-up  estimate  of  ΔCO:ΔCO2 was  19.2%  larger  than  the

Table 3.   Comparison of the observed and simulated ΔXCO:ΔXCO2.

Dataset ΔXCO:ΔXCO2 (ppb ppm−1) R2

Emission inventories MEIC 2019 14.91 ± 0.36 0.97
PKU 2019 21.04 ± 0.70 0.96

Observations FTS (diurnal variation) 2019 10.46 ± 0.11 0.86
FTS (regional enhancement versus background) 2019 9.06 ± 1.89 0.83
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observations at Miyun, Beijing, during winter 2006. Despite
the observation and comparative methods, the emission inven-
tories  in  urban  China  might  overestimate  ΔCO:ΔCO2.  The
lack of consideration of CO2 emissions from the respiration
of the residents in dense urban regions may lead to the overes-
timation  of  bottom-up-based  ΔCO:ΔCO2 (Wang  et  al.,
2010).  Either  the  overestimation of  CO anthropogenic  flux
or under-consideration of CO sinks are possible reasons for
the elevated bottom-up estimates of ΔCO:ΔCO2 (Vardag et
al., 2015; Shan et al., 2019).

The  main  reason  why  MEIC  and  PKU  overestimated
ΔXCO:ΔXCO2 surrounding Beijing is likely due to the over-
estimation of the regional CO emissions and underestimation
of CO2 emission. The ΔXCO and ΔXCO2 discussed in section
3.4 are directly linked to the regional emission. The difference
between the modeled and observed ΔXgas is directly propor-
tional  to  the  difference  between  the  emission  inventories
and the actual emission. The deviation of the regression fitting
equation with the 1:1 line shows the model-observed differ-
ence. The slope value of modeled ΔXCO to observed is less
than one, suggestive of typical overestimations of CO emis-
sions  of  30%  and  35%  for  MEIC  and  PKU,  respectively.
The underestimation of CO2 emissions magnifies the effects
of  overestimated  CO  emission,  which  contributes  to  the
larger  difference  between  the  modeled  ΔXCO:ΔXCO2 and
the observed ratio. For MEIC, a relatively smaller underesti-
mation  of  CO2 emissions  makes  the  modeled  ΔXCO:
ΔXCO2 closer to observations. 

4.    Conclusions

Data  was  collected  for  clear  days  over  one  year  for
XCO and XCO2 using the portable FTS EM27 in the urban
area of metropolitan Beijing. The overall variation in XCO2

typical variations in anthropogenic emissions (traced by the
XCO  variation)  which  are  overlaid  upon  the  biogenic  and
meteorological  field  effects.  Correlation  analyses  between
the XCO and XCO2 enhancements provided useful informa-
tion  to  identify  the  characteristic  of  combustion  efficiency
in Beijing. The (ΔXCO:ΔXCO2)d observed in urban Beijing
(10.46 ± 0.11 ppb ppm−1) is higher than other FTS urban sta-
tions (Karlsruhe, Pasadena, Tsukuba, and Paris), suggesting
a  high  anthropogenic  proportion  of  CO2 emissions  and
lower  combustion  efficiency  in  Beijing.  Daily  ΔXCO:
ΔXCO2 varies remarkably with seasonality and weather condi-
tions.  The  ΔXCO:ΔXCO2 in  summer  shows  large  uncer-
tainty, and the correlation of ΔXCO and ΔXCO2 is weaker
than the other three seasons. According to the air mass path-
ways  arriving  in  Beijing  tracked  by  the  WRF-XSTILT
model,  the  observation  site  had  upwind  sources  from  the
NW and NCP of 62.93% and 26.72% of overall observation
days, respectively. Air masses passing over the NCP region
increased the proportion of ΔXCO to ΔXCO2 (11.46 ± 0.20
ppb ppm−1), which exceeded the slope with a clean upwind
source (8.23 ± 0.10 ppb ppm−1). When backward column foot-
prints were combined with emission inventories, observations

could be quantitatively compared with the emission invento-
ries.  The  MEIC  and  PKU  inventories  are  42.54%  and
101.15%  higher  than  the  observed  values,  respectively.
After  comparing  the  observed  regional  enhancement  with
the modeled ΔXCO and ΔXCO2, the main reason for the dif-
ference is  the overestimation of  the regional  CO emissions
and underestimation of CO2 emission. The less drastic under-
estimation  of  CO2 emissions  for  the  MEIC  results  in  the
improved  modeling  of  ΔXCO:ΔXCO2 compared  to  PKU.
This work highlights the necessity for long-term column mea-
surements in the heavily CO-emitting Beijing region. How-
ever, one station could only capture limited information on
a regional scale within a larger urban signal. The background
value obtained from the model  contains a  degree of  uncer-
tainty. Compared to in situ surface observations, FTS stations
only record the Xgas in clear-sky days, which can potentially
lead to bias from a less homogeneous sampling. An intensive
experimental  FTS  station  combined  with  WRF-XSTILT
could open up additional potential pathways for regional emis-
sions studies.
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