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ABSTRACT

China’s recently announced directive on tackling climate change, namely, to reach carbon peak by 2030 and to achieve
carbon neutrality by 2060, has led to an unprecedented nationwide response among the academia and industry. Under such
a directive, a rapid increase in the grid penetration rate of solar in the near future can be fully anticipated. Although solar
radiation is an atmospheric process, its utilization, as to produce electricity, has hitherto been handled by engineers. In that,
it is thought important to bridge the two fields, atmospheric sciences and solar engineering, for the common good of carbon
neutrality.  In  this  überreview,  all  major  aspects  pertaining  to  solar  resource  assessment  and  forecasting  are  discussed  in
brief.  Given  the  size  of  the  topic  at  hand,  instead  of  presenting  technical  details,  which  would  be  overly  lengthy  and
repetitive,  the  overarching goal  of  this  review is  to  comprehensively  compile  a  catalog of  some recent,  and some not  so
recent, review papers, so that the interested readers can explore the details on their own.
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Article Highlights:

•   A review of reviews of solar resource assessment and forecasting is presented.
•   An all-in-one compendium of research topics in the fields of resource assessment and forecasting is presented. 
•   A bridge between atmospheric sciences and solar energy engineering is needed.

 

 
  

1.    Introduction

The  field  of  solar  energy  can  be  broadly  categorized
into  four  parts:  (1)  solar  resource  assessment  and  forecast-
ing,  (2)  photovoltaic  (PV)  technology,  (3)  concentrating
solar power (CSP) technology, and (4) solar heating and cool-
ing. Insofar as solar radiation is concerned, solar engineering
takes a vital  role in connecting atmospheric science, which
deals with the atmospheric chemistry and physics governing
the  amount  of  solar  radiation  reaching  the  Earth’s  surface,
and downstream applications, such as grid integration, day-
lighting,  or  heating,  ventilation,  and  air  conditioning
(HVAC).  However,  unlike  atmospheric  science,  electrical
engineering,  architecture,  or  mechanical  engineering,  it  is
not  entirely  clear  whether  or  not  solar  engineering  can  be

viewed as a subject on its own—very few universities offer
a curriculum on that, and very few people would attain a cer-
tificate that says "Bachelor of Solar Engineering" at the end
of the day. That said, as long as climate change and carbon
neutrality  are  of  interest,  it  is  a  fact  that  solar  engineering
would be involved in one way or another. On this point, one
must be aware of the interdisciplinary nature when making
scientific inquiries regarding the use of solar energy.

Take  grid  integration  of  solar  energy,  for  instance,
power system operators require information on future solar
generation and electric load at different time scales and hori-
zons, in order to perform unit commitment—an integer pro-
gramming  problem  determining  which  thermal  generator
should be turned on at which instance. Clearly, the sciences
and technologies involved in this task are multifaceted. First
and  foremost,  there  is  atmospheric  science,  which  is
required to address the questions of when, where, and how
much  solar  radiation  is  available.  Next,  solar  engineering
must  be  involved,  since  it  deals  with  the  conversion  from
solar radiation to solar power. Last but not least, power system
engineering knowledge is needed in order to balance the (con-
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ventional  thermal  plus  renewable)  generation  and (electric,
heating, and cooling) load in an operational fashion. On top
of all those, modern scientific techniques, such as statistics,
machine  learning,  or  mathematical  optimization,  almost
always play a part.

Through the above elaboration,  one can readily under-
stand the challenge here: no one would be able to comprehen-
sively  acquire  all  knowledge pertaining to  grid  integration.
And  the  same  can  be  said  for  daylighting,  HVAC,  or  any
other application of an interdisciplinary nature. The undercur-
rent  of  resistance,  as  in  many  problems  of  a  like  form,  is
chiefly  due  to  our  limited  time—so much has  been collec-
tively known by humankind, that a single lifetime is not suffi-
cient  to  reach  all  frontiers  of  knowledge.  Atmospheric  sci-
ence,  as  traditionally  conceived,  is  the  study  of  the  Earth's
atmosphere.  Customarily,  once  theories  in  regard  to  atmo-
spheric  chemistry  and  physics  are  developed  and  under-
stood, the job of atmospheric scientists is  considered done.
On the other hand, solar engineers are concerned with applica-
tions,  hardware,  and  execution.  During  that  process,  little
attention has been paid to the suitability and validity of scien-
tific  theories  on  which  their  engineering  is  based.  There
really  is  not  much  surprise  to  the  reasons  that  have  led  to
the status quo—people in various communities went to differ-
ent schools, received training under different thinking styles,
and are employed by departments of different agendas. The
sheer amount of effort that would be required to convert to
convert from one profession to another is monumental.

We  all  know  it  is  generally  beneficent  to  know  more,
but consider this question: how often do we spend time on
reading  relevant  but  secondary  literature  as  to  our  own
research domain? Priority is an interesting notion, in that, it
is supposed to be solely internal to individuals. It is human
nature to prioritize those tasks that are familiar to us and, in
parallel,  postpone  those  less  familiar  ones.  To  that  end,  if
we are to deviate from this rule of thumb, others who hold
fast  to  it  may  consequently  produce  more  results  and  thus
attain more recognition. This is thought to be the inquiry of
interest: should we invest time and energy in things we are
partially interested in but are not good at? Involution, a popu-
lar word of the Chinese urban dictionary, which refers to the
situation where peer  pressure forces one to take (or,  not  to
take) certain actions that may or may not lead to a favorable
outcome, is sufficient in narrating the scenario.

One  remedy  to  counter  the  effect  of  involution  is  to
reduce the amount of effort that is required to achieve certain
goals. More formally, in line with the theory of economics,
the  trick  is  to  lower  the  opportunity  cost.  One  possible
action of this kind is to summarize the best practices in one
field  to  researchers  and professionals  in  another  field,  e.g.,
through  review papers.  However,  reading  review  papers  is
still an inefficient approach, since there are all too many of
them—there  are  hundreds,  if  not  thousands,  of  review
papers published on solar resource assessment and forecasting
alone—especially under today's "publish or perish" regime,
which  has  been  commonplace  in  most  academic  domains.

In this regard, it is thought that überreview has now become
absolutely necessary. One may interpret an überreview as a
review of  reviews.  It  is  on this  account  that  an überreview
on solar  resource assessment  and forecasting is  herein pre-
sented.

Presenting an überreview is by no means a simple task,
because  the  literature  contains  many  outdated,  duplicated,
and  non-representative  reviews  that  can  be  misleading  or
even  harmful,  particularly  to  those  who  are  not  familiar
with the domain. In fact, even highly cited recent textbooks
and handbooks can be outdated, and may contain questionable
information. Since solar resource assessment and forecasting
is a fast-advancing field with many parallel works, this überre-
view is composed of carefully selected and most representa-
tive  reviews  from  credible  sources  that  could  fully  reflect
the state-of-the-art. 

2.    Solar resource assessment

The idea central to solar resource assessment resides in
identifying suitable and reliable data, without which no con-
clusion made can be deemed valid.  Data for solar  resource
assessment  present  in  three  main  forms:  (1)  ground-based
measurements, (2) remote-sensing retrievals, and (3) output
of  numerical  weather  prediction  (NWP)  models.  Among
these three forms, carefully calibrated ground-based measure-
ments  are  most  accurate,  followed  by  remote-sensing
retrievals, whereas NWP output is the least accurate.

Living in an age of data explosion, one must not forget
that solar radiation data was once scarce. Before the advent
of  modern  remote  sensing  and  NWP,  researchers  used  to
rely on low-accuracy empirical models for the estimation of
solar radiation, such as the Ångström–Prescott type of mod-
els, which are based on sunshine duration. As compared to
the current data practice and ways of estimating or retrieving
solar radiation, sunshine duration data are of poor and incon-
sistent quality, and empirical correlations obtained at one loca-
tion  rarely  apply  to  another.  Therefore,  many  researchers,
such as Gueymard et al. (2009), had advocated the termination
of use of such models, years ago. As of now, satellite-to-irra-
diance  algorithms  and  improved  parameterization  of  NWP
models  have  long  become  mainstream,  albeit  numerous
research  issues  remain.  In  this  section,  data  and  modeling
issues related to solar resource assessment are reviewed in sec-
tions 2.1 and 2.2, respectively. 

2.1.    Data for solar resource assessment

Ground-based  measurements  are  made  using  radiome-
ters, and the respective science is known as radiometry. When-
ever radiometry is of interest, the textbook by Vignola et al.
(2019) always presents itself as a useful reference. In terms
of instrumentation,  that  is,  pyranometer  and pyrheliometer,
different  radiometers  are  subject  to  different  measurement
uncertainties  and  performance.  Due  to  the  high  cost  of
research-grade  radiometers,  it  is  exceptionally  luxurious  to
collocate  more  radiometers  than  needed  at  a  single  site.  In
that, the review and intercomparison of 51 collocated radiome-
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ters,  as  presented  by Habte  et  al.  (2016),  is  one  of  a  kind.
Ground-based  data  can  be  used  to  validate  the  other  two
forms of data. However, its own quality control (QC) must
be first conducted, to ensure that the baseline for any subse-
quent  validation  is  legitimate.  Unfortunately,  there  is  not
any QC routine that can be deemed universal, but the basic
one set forth by Long and Shi (2008) has gained most accep-
tance and is used by the Atmospheric Radiation Measurement
(ARM)  and  the  Baseline  Surface  Radiation  Network
(BSRN). Figure 1 shows a diagnostic visualization of poten-
tial data problems in ground-based measurements. Detailed

interpretation  of  this  plot  is  not  within  the  scope  of  this
review,  nevertheless,  one  can  see  the  level  of  complexity
that is typically involved during QC of irradiance data—it is
by no means just applying a few statistical filters, like what
most  people  do,  instead,  much  domain  knowledge  is
required to justify the validity of the data under scrutiny.

Solar engineers are interested in four types of radiometry
measurements:  (1)  global  horizontal  irradiance  (GHI);  (2)
beam normal irradiance (BNI)a; (3) diffuse horizontal irradi-
ance (DHI); and (4) global tilted irradiance (GTI). Whereas
the energy production of PV systems depends on GTI, that

 

 

Fig. 1. Some visualization to facilitate quality control  of irradiance data.  See Forstinger et  al.  (2021) for detailed interpretation of
these plots.

 
a The word “beam” is used interchangeably with “direct.”
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of  CSP depends  solely  on  BNI.  It  is  well  known that  GHI
can  be  split  into  BNI  (after  the  modification  of  cosine  of
zenith angle) and DHI. Nonetheless, since the definition of
what  constitutes  the  beam  component  is  a  human  conven-
tion, some issues regarding the circumsolar region—the vicin-
ity  of  the  Sun  disk—exist,  and  a  good  summary  of  those
issues can be found in Blanc et al. (2014). In fact, measuring
the beam radiation component can be considered as a study
domain  on  its  own,  namely,  directional  radiometry  [see
(Mishchenko,  2011),  for  review],  which  is  an  active
research field in the area of atmospheric measurement tech-
nique, because lots of information about aerosols and clouds
can be derived from circumsolar measurements. As for GTI,
it is not only affected by horizontal irradiance components,
albedo also plays a vital part;  for albedo-related topics,  the
reader is referred to Gueymard et al. (2019). In any case, pub-
licly  available,  research-grade,  ground-based  radiometry
data are rare as compared to data of other meteorological vari-
ables  such  as  temperature,  humidity,  or  precipitation.  For
instance,  there  are  about  100  radiometry  stations  in  China,
however, measurements of the aforementioned basic meteoro-
logical variables are available at more than 50 000 stations.
On this point, Chapter 6 of Sengupta et al. (2021) contains a
rather  complete  list  of  ground-based  radiometry  data
sources.

±60◦
In contrast to ground-based data, satellite-derived irradi-

ance covers all locations on Earth that are between  lati-
tudes,  see Fig.  2.  For  higher-latitude  locations,  satellite-
derived  irradiance  is  also  available,  but  only  comes  at  a
lower temporal  resolution.  This  is  because satellite-derived
irradiance  for  mid  and  low  latitudes  is  retrieved  from
remote-sensing  images  taken  by  geostationary  satellites,
whereas for high-latitude irradiance estimations, they come
from data of polar orbiters. Given the fields-of-view of differ-
ent weather satellites, as well as the ownership of these satel-
lites,  satellite-derived irradiance products  are  developed by
different agencies and weather centers, and thus are heteroge-
neous.  Not  only  are  the  retrieval  algorithms  powering  the

products different, accuracy also varies greatly across prod-
ucts, and across locations, time periods, and sky conditions.
This  is  precisely  why  a  somewhat  major  effort  has  been
paid to validating these satellite-derived irradiance products,
among which the work by Yang and Bright (2020) can easily
be regarded as most comprehensive, at the time of writing.

Satellite-to-irradiance algorithms can be broadly catego-
rized into those that rely on radiative transfer and those that
do  not. Huang  et  al.  (2019) provided  a  comprehensive
review elaborating the  pros  and cons of  the  two categories
of  method.  And  a  more  detailed  description  regarding  the
treatment  of  clouds  during  the  retrieval  can  be  found  in
Miller  et  al.  (2018).  Notwithstanding,  regardless  of  which
algorithm  is  used,  the  satellite-derived  irradiance  products
are  always limited by the  native  resolutions  of  the  original
satellite  imagery.  Whereas  previous-generation  satellites
have a 60-min–10-km native resolution, the native resolution
of  the  latest-generation  satellites  has  reduced  to  10  min
1  km,  offering  more  opportunities  for  operational  appli-
cations of satellite data in solar engineering.

The output of NWP models is of two kinds, one forecast
and the other reanalysis. Operational NWP models issue fore-
casts a few times a day, over forecast horizons of a few days,
at a regional or global scale. From a statistics point of view,
weather forecasts are multivariate time series of lattice pro-
cesses, whose spatio-temporal trajectory is governed by the
physical laws of the atmosphere. On this note, the textbook
written  by Cressie  and  Wikle  (2015) is  inspirational,  in
terms of linking statistics and physical science. Since atmo-
spheric  scientists  are  familiar  with  this  topic,  only  a  few
notable, general, and educational reviews are suggested here:
Bauer  et  al.  (2015); Müller  et  al.  (2021); McNeal  et  al.
(2021). What is more important, instead, is how to parameter-
ize NWP models such that the quality of its radiation output
can  be  enhanced;  the  reader  is  referred  to Jimenez  et  al.
(2016) for a list of issues and challenges.

NWP  produces  forecasts,  but  the  operational  models
are constantly undergoing changes and developments. In con-

 

 

Fig.  2. Five  geostationary  weather  satellites  jointly  cover  all  locations  on  Earth  between  ±60°  latitudes.  Gridded
irradiance estimates can be derived from the visible- and infrared-channel images captured by these satellites. (Other
meteorological satellite series, such as Fengyun, are not shown, since their field-of-views overlap with the ones in the
figure.) Data source: National Solar Radiation Data Base.
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trast, reanalyses use “frozen” models and produce estimates
of weather variables over a period typically spanning a few
decades.  The  most  well-known  global  reanalyses  include
the ECMWF Reanalysis, Version 5 (ERA5; Hersbach et al.,
2020) and Modern-Era Retrospective Analysis for Research
and  Applications,  Version  2  (MERRA-2; Gelaro  et  al.,
2017),  which  have  been  used  in  countless  ways  by
researchers  from  various  fields.  With  no  exceptions,  these
reanalyses have been shown to be useful in solar engineering
as well, particularly when measurements of atmospheric vari-
ables,  such  as  aerosol  optical  depth  or  surface  albedo,  are
required but are unavailable. At the moment, the literature is
short  of  a  review  on  how  reanalysis  data  are  involved  in
solar engineering. 

2.2.    Models for solar resource assessment
 

2.2.1.    Solar constant

Many  calculations  in  the  field  of  solar  engineering
begin with the solar constant. The solar constant is obtained
through  calculating  the  average  of  total  solar  irradiance
(TSI),  which is  the Sun's  instantaneous output,  over a long
period  of  time,  typically  over  a  few  decades.  Whereas  the
overall  concept  is  straightforward,  the determination of  the
solar  constant  is  mostly  hindered  by  data.  The  pioneering
work on the measurement of the solar constant was made by
Samuel Pierpont Langley, who invented a precise bolometer
in  1880.  Spaceborne  TSI  observations,  on  the  other  hand,
started from 1978, and are made by various instruments cover-
ing different time periods, but with some overlaps. Since the
disagreement among various instruments is often non-negligi-
ble, it is generally difficult to know which instrument is trust-
worthy  during  which  period.  The  most  recent  advance  on
this topic is put forward by Gueymard (2018), who performed
an re-evaluation of the solar  constant  based on 42 years of
TSI data. The conclusion, after careful debate and data analy-
sis, suggests a solar constant of 1361.1 Wm−2. 

2.2.2.    Spectral irradiance

A super majority of solar engineering tasks only require
the broadband solar irradiance to operate. However, in some
PV,  photobiological,  and  photochemical  applications,  e.g.,
during characterization of PV materials or determination of
photosynthetically  active  radiation,  spectral  irradiance  is
needed. For an all-inclusive compendium of applications of
spectral  irradiance,  the  reader  is  referred  to Gueymard
(2019). Just like the broadband solar irradiance, spectral irra-
diance  data  can  be  either  measured  or  modeled.  Given  the
fact  that  spectroradiometers  are  costly,  spectral  irradiance
models  are  in  high  demand.  At  the  moment,  the  Simple
Model  of  the  Atmospheric  Radiative  Transfer  of  Sunshine
(SMARTS) model  is  arguably the  most  popular  choice;  its
25-year journey has been recently compiled by its inventor

(Gueymard, 2019). One should note, however, that most spec-
tral irradiance models, including SMARTS, are restricted to
producing  clear-sky  spectra.  In  that,  the  accuracy  of  these
models is highly dependent on the quality of inputs, such as
aerosol, water vapor, or surface albedo. 

2.2.3.    Clear-sky

Clear-sky  irradiance  refers  to  the  irradiance  obtained
under a cloud-free atmosphereb. The ratio between the irradi-
ance (or PV power) and its clear-sky expectation is known
as  the  clear-sky  index.  If  not  specified,  clear-sky  index
refers  to  clear-sky  index  calculated  with  GHI.  The  models
which  are  used  to  estimate  the  clear-sky  irradiance  are
called  clear-sky  models,  and  they  can  be  either  physics-
based or empirical. Physics-based clear-sky models leverage
radiative transfer. However, owing to legacy reasons, simpli-
fied  radiative  transfer  or  look-up  table  are  ordinarily  used
by the solar energy community. On the other hand, empirical
clear-sky models fit irradiance observations under clear-sky
conditions to some mathematical function forms, but model
parameters  obtained  through  this  way  are  rarely  general.
When properly  modeled,  clear-sky irradiance  describes  the
diurnal and seasonal variation in irradiance caused by all fac-
tors  but  clouds.  Therefore,  these  models  are  very  useful  in
terms of detrending the irradiance or PV power time series,
during  forecasting,  satellite-to-irradiance  modeling,  among
other data analyses pertaining to radiation modeling. A pair
of  recent  reviews  compared  75  clear-sky  models  for  GHI
(Sun et al., 2019) and 95 clear-sky models for BNI and DHI
(Sun et al., 2021). It was found that the REST2 model (Guey-
mard, 2008) has the best overall performance, if high-quality
input  variables  are  available.  REST2  is  a  physics-based
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Fig.  3. A  scatter  plot  of  diffuse  fraction  versus  clearness
index .  The color bar indicates the number of points in the
neighborhood.  Data  source:  Fort  Peck  station,  Baseline
Surface Radiation Network.

 
b One  problem  with  this  definition  is  that  in  situations  where
aerosol  loading  is  high,  the  appearent  clear-sky  irradiance  would
be very low.
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method that takes the effects of aerosol and other atmospheric
particulates,  which  attenuate  incoming  solar  radaition,  into
consideration.  It  requires  several  input  variables,  included
aerosol  optical  depth  and  column ozone,  which  need  to  be
sourced  from  reanalysis  or  remote-sensing  databases,  such
as the aforementioned MERRA-2. 

2.2.4.    Separation

Also known as decomposition modeling, separation mod-
eling aims at splitting the beam and diffuse radiation compo-
nents from the global one, using parameters that are calcula-
ble,  such  as  zenith  angle  or  clear-sky  index.  More  specifi-
cally,  diffuse  fraction  (the  ratio  between  DHI  and  GHI)  is
expressed  as  a  function  of  clearness  index  (the  ratio
between  GHI  and  extraterrestial  GHI)  and  other  variables,
see Fig. 3. for an example scatter plot. The reason why solar
engineers are interested in separation modeling is two-fold.
Firstly,  when  estimating  GTI,  both  GHI  and  DHI  are
required.  If  DHI measurements  are unavailable,  it  needs to
be  estimated  from  GHI  through  separation  modeling.  Sec-
ondly,  satellite-to-irradiance algorithms only estimate GHI,
whereas the diffuse and beam components in most satellite-
derived irradiance products need to be, and in fact are, gener-
ated using separation models. The number of separation mod-
els in the literature is numerous: there have been more than
150 models proposed so far. Besides one or two exceptions,
most of these models are empirical in nature, and the perfor-
mance of these models depends on the data that is used during
model fitting. It is to this effect that the ranking of separation
models  has  been  controversial,  until  the  recent  review  by
Gueymard and Ruiz-Arias (2016), who compared 140 separa-
tion  models  using  data  from  worldwide  locations.  In  that
review, the Engerer2 model (Engerer, 2015) has been identi-
fied as quasi-universal. Since then, many other models have
been proposed, and Engerer2 is often used as a benchmark.
Among  these  new  proposals,  the  Yang2  model  (Yang  and
Boland,  2019; Yang,  2021)  is  the  best  separation model  to
date, which is able to outperform Engerer2 by a significant
margin (see Yang and Gueymard, 2020, for review), which
is due to the fact that Yang2 uses a low-frequency diffuse frac-
tion estimate as input that is able to capture the low-frequency
variability  in  high-frequency  diffuse  fraction—Yang2  is
equivalent of cascading two Engerer2 at  different temporal
resolutions. Traditional separation models are deterministic,
in that, they do not carry any notion of uncertainty on the dif-
fuse fraction estimates. Nonetheless, recent advances in radia-
tion  modeling  have  led  to  probabilistic  separation  models,
albeit their widespread acceptance has not been fully evident
(see Yang and Gueymard, 2020). 

2.2.5.    Transposition

Transposition  models  convert  irradiance  components
on a horizontal surface to those on tilted surfaces. Since PV
panels, when not restricted by topography or installation sur-
face, should be placed on an Equator-facing surface that has
a tilt angle comparable to the site's latitude (this is to maximize
the  annual  energy  production),  transposition  modeling  is

essential in PV design, simulation, and performance evalua-
tion. The number of available transposition models is not as
many as separation models, yet, there are about 25 of them.
All of those models only differ in the treatment of the diffuse
transposition  factor,  whereas  the  treatment  for  direct  and
reflected radiation components is  shared across all  models.
As reported by Yang (2016), after a worldwide comparison
using  18  datasets,  the  1990  version  of  the  Perez  model
(Perez et al., 1990) stood out from a pool of 26 models, and
was found to be the most accurate model to date. The Perez
model separates the sky dome into three geometrical  parts,
within each of which the radiance is constant: (1) the circum-
solar  disk,  (2)  the horizon band,  and (3) an isotropic back-
ground. Indeed, based on a bibliometric analysis, the paper
by Perez et al. (1990) is the most cited one in the history of
the  Solar  Energy  journal,  which  suggests  the  popularity  of
the model. Similar to the case of separation modeling, transpo-
sition  has  been  viewed  as  a  deterministic  process,  histori-
cally. Nevertheless, in the recent article by Quan and Yang
(2020),  probabilistic  transposition  models  have  been  dis-
cussed, and two general strategies for converting traditional
deterministic  transposition  models  to  probabilistic  ones
were explained. 

2.2.6.    Angular distribution of radiance

The  three-part  geometrical  framework  of  the  Perez
model  facilitates  the  determination  of  the  sky-view  factor,
which is the part of the sky as seen by the tilted surface. How-
ever, in urban environment or terrain with a humpy topogra-
phy, where obstruction throughout a year is complex and het-
erogeneous, this simple three-part division of the sky dome
is no longer sufficient. Instead, one requires a more granular
breakdown of the sky dome—the angular distribution of radi-
ance—to estimate the diffuse irradiance received by a tilted
surface.  Beside  radiance  distribution,  a  similar  concept  is
the angular distribution of luminance, which is essential for
daylighting,  as  required  during  architectural  design. Figure
4 shows the angular distribution of luminance for 15 standard
sky types defined by the International Commission on Illumi-
nation (CIE, 2004). Models proposed for angular distribution
of radiance/luminance are mostly empirical (see Torres and
Torres,  2008,  for  a  review),  in  that,  the  model  coefficients
are  determined  by  fitting  the  model  to  measured  data.  The
most common type of instrument measuring radiance/lumi-
nance  is  the  sky  scanner,  which  sequentially  scans  the  sky
dome in a patch-by-patch fashion, every few minutes. 

2.2.7.    Site adaptation

Both  satellite-derived  irradiance  and  NWP  output  are
often  found  biased.  To  enhance  the  bankability  of  a  solar
energy project, may it be a PV one or a CSP one, the bias in
raw data ought to be corrected—this procedure is known as
site  adaptation  in  this  field,  which  is  similar  to  the
measure–correlate–predict  procedure  in  wind  engineering.
This  is,  to  some extent,  closely related to data assimilation
in NWP, in which the output field of NWP is taken as the ini-
tial state, and is adjusted by measurements using mathemati-
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cal method, such as optimal interpolation or Kalman filter-
ing.  The  idea  central  to  site  adaptation  is  to  use  a  short
period (such as one year) of high-accuracy ground-based mea-
surements  to  correct  a  long  period  (typically  10–20  years)
of  low-accuracy  gridded  data  at  a  site  collocated  with  the
ground-based  measurements.  Traditionally,  site  adaptation
has always been viewed as a deterministic regression prob-
lem, in that, various techniques have been reviewed by Polo
et al. (2020). However, as uncertainty quantification slowly
gains  attention,  probabilistic  site-adaptation  techniques
become relevant, which are reviewed and validated by Yang
and Gueymard (2021). One should note that site adaptation
is a step that cannot be circumvented during solar energy sys-
tem  feasibility  study,  design,  and  simulation.  For  an
overview  on  solar  project  financing  and  bankability,  the
reader is referred to Yang and Liu (2020). 

3.    Solar forecasting

It is customary to regard the two closely interconnected
fields, namely, solar irradiance forecasting and solar power
forecasting, as one—solar forecasting. At this stage, two com-
mon misconceptions must be warned. One of those is the mis-
conception that satisfactory solar power forecasts can be pro-
duced using purely data-driven methods. As machine learning
and statistical methods become widely available in software
packages and tools,  many novices tend to simply pass data
to these packages and tools without considering the underly-
ing physics; insofar as the methods have not been used previ-

ously, novelty can be claimed. This is in fact a very bad prac-
tice,  and we shall  explain why shortly after,  in section 3.1.
The  other  common  misconception  is  that  the  novelty  in
solar forecasting should be solely revolved around forecasting
methodology. Indeed, forecasting methodology is an impor-
tant aspect, but it is never the only one. The field of solar fore-
casting has five main aspects: (1) forecasting methodology,
(2) post-processing, (3) irradiance-to-power conversion, (4)
verification, and (5) materialization of values. These are dis-
cussed in Section 3.2. 

3.1.    Salient characteristics of solar forecasting

It is not possible to produce good solar power forecasts
without  good  solar  irradiance  forecasts.  The  rationale
behind this argument is rather straightforward: solar power,
may it be from PV or CSP, varies chiefly according to irradi-
ance condition, in that, there does not seem to be any valid
reason  why  solar  irradiance  forecasts  should  not  be
involved during solar power forecasting. Moreover, because
solar irradiance is an atmospheric process, it is best forecast
using  physical  approaches.  There  have  been  numerous
works  that  adopt  a  purely  data-driven  approach  to  forecast
solar power, in which historical weather and power data are
used  as  input  of  machine  learning  and  statistical  methods.
Forecasts generated in this way would be perpetually subopti-
mal, because they ignores the salient features of solar irradi-
ance.  In  other  words,  what  distinguishes  solar  forecasting
from any other forecasting domain is not how sophisticated
the data-driven methods are, instead, it  is the consideration

 

 

Fig. 4. Angular distribution of sky luminances for each of the 15 CIE standard sky types. A solar zenith angle of 60°
and a solar azimuth angle of 180° is assumed.
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of atmospheric physics, namely, domain knowledge, that mat-
ters. 

3.1.1.    Reproducibility

The first and foremost salient characteristic of solar fore-
casting is reproducibility. As methods and algorithms grow
more and more complex, and their number increases exponen-
tially,  it  would  be  very  time  consuming  to  reproduce  the
results  of  forecasting  papers  of  interest  without  computer
code. Statisticians are generous sharers in that respect, since
publishing  computer  code  alongside  with  research  articles
has been a common practice in their domain. Solar forecasting
research,  in  the  early  days,  was  non-reproducible,  in  that,
the code and data were kept proprietary. However, the situa-
tion has changed drastically now, owing to a few initiatives
by  field  leaders  (e.g.,  see Yang  et  al.,  2018a).  In  fact,  this
switching of publishing regime is no coincidence, for the pit-
falls  of  non-reproducible  forecasting  research  have  been
debated  elsewhere,  by  general-purpose  forecasting  experts,
in the top journal of their field (Makridakis et al., 2018; Boy-
lan et al., 2015). Moving forward, it is thought that the atten-
tion  paid  to  non-reproducible  research  (or,  papers  do  not
present  computer  code)  is  going  to  become  less  and
less—we do not have all day to make suppositions on the tech-
nical ambiguities, which exist almost surely in any research
paper nowadays. 

3.1.2.    Operational

It is well known that NWP forecasts, when needed, can
be  issued  at  arbitrary  temporal  resolutions.  However,  most
operational NWP forecasts have an hourly resolution, since
otherwise,  the data to be disseminated would be too big to
be practical. This fact poses some challenges to solar forecast-
ers,  since  the  spatial  and  temporal  scale  of  forecasts
required for grid integration is often smaller than the synop-
tic-  or  meso-scale  NWP output.  Hence,  to  convert  the  raw
NWP forecasts to a form that is readily usable by grid opera-
tors,  downscaling and other  post-processing techniques  are
needed. Another important aspect of operational forecasting
is lead time. It is customary for researchers to design rolling
forecast  experiments  of  various  sorts  in  academic  papers.c

Notwithstanding,  in  an  operational  sense,  rolling  forecasts
are  coupled  with  lead  times.  This  fact  has  been  largely
ignored by solar forecasters. Since longer horizon is more dif-
ficult to forecast, the inclusion of lead time is of great impor-
tance for mimicking the actual operational forecasting con-
text. 

3.1.3.    Physics-based

The third salient characteristic of solar forecasting is con-
sisted in its physical nature. Unlike forecasting in a social set-
ting (see Makridakis et al., 2020, for a review on that), fore-
casting of solar ought to pay more attention on the spatio-tem-

poral  behavior  of  irradiance.  Information  describing  such
behavior can be captured by sky cameras, weather satellites,
or  NWPs,  which  constitute  the  three  most  commonly  used
forms  of  exogenous  data  in  solar  forecasting.  Historically,
as first argued by Inman et al. (2013), sky camera, satellite,
and  NWP  data  are  most  suitable  for  intra-hour,  intra-day,
and day-ahead solar forecasting, respectively. Nevertheless,
with the advent of high-resolution remote sensing and NWP
modeling,  this  correspondence  is  no  longer  valid,  e.g.,  5-
min–2-km  National  Solar  Radiation  Data  Based is  well
suited  for  intra-hour  forecasting,  or  the  National  Oceanic
and  Atmospheric  Administration's  High-Resolution  Rapid
Refreshe updates hourly and is thus suitable for intra-day fore-
casting.  In  one  way  or  another,  utilizing  physics-based
approaches, as to capture the dynamics of clouds, is what dis-
tinguishes solar  forecasting from any other  forecasting set-
ting. 

3.1.4.    Ensemble

Weather  forecasters  are  fully  aware  of  the  advantages
of ensemble forecasting, which issues several equally-likely
trajectories  of  atmospheric  processes,  rather  than  just  one.
An ensemble forecast is a special form of probabilistic fore-
cast, which describes the uncertainty involved in the quantity
to  be  forecast.  For  probabilistic  forecasting  in  a  solar  con-
text,  the  review  by van  der  Meer  et  al.  (2018) is  recom-
mended.  Reviews  on  probabilistic  weather  forecasting  are
numerous,  and  the  ones  by Gneiting  and  Katzfuss  (2014);
Gneiting  and  Raftery  (2005) are  among  the  high-quality
ones.  An ensemble  can  be  constructed  in  different  ways,  a
typology can be found in Roulston and Smith (2003). In the
field of statistics, ensemble forecasting is known as combin-
ing forecasts, which has been widely recognized as the best
forecasting  practice—references  and  reviews  on  this  topic
are too many to list, but a few early reviews are herein enu-
merated  (Wallis,  2011; Armstrong,  2001a; Clemen,  1989).
Whereas a majority of existing works combine deterministic
forecasts, combining probabilistic forecasts is now trending
(Winkler et al., 2019; Clements and Harvey, 2011). 

3.1.5.    Skill

Suppose there is a world without clouds, solar forecasting
would be a very straightforward calculation. This is because
physics-based clear-sky models are able to attain highly accu-
rate estimates of surface irradiance. Thus, as also mentioned
earlier, clear-sky models are often employed by solar forecast-
ers as a detrending tool, such that the variation in clear-sky
index can be mostly attributed to the effects of moving and
varying  clouds.  This  argument  aligns  with  the  principle  of
forecasting  outlined  by Armstrong  (2001b),  which  states
that when seasonal component is present in the time series,
it  needs  to  be  removed  before  forecasting.  To  that  end,  if
one  is  to  quantify  the  skill  of  a  particular  forecasting

 
c See https://robjhyndman.com/hyndsight/rolling-forecasts/.
d https://developer.nrel.gov/docs/solar/nsrdb/psm3-5min-download/.
e https://rapidrefresh.noaa.gov/hrrr/.
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method  relative  to  a  reference  method,  forecasts  must  be
first  produced  in  terms  of  clear-sky  index,  and  then  back-
transformed to irradiance or solar power for verification and
skill computation. Otherwise, the comparison would not be
fair, and the resultant skill would be futile. Most solar fore-
casting papers in the current literature fall victim to this pit-
fall,  in  that  the  reference  models  of  poor  performance  are
often chosen to exaggerate the skill of the proposed models.
The recommended forecast  verification procedures  are  dis-
cussed in the next section.

What  we  have  just  described,  namely,  reproducibility,
operational,  physics-based,  ensemble  and  skill,  take  the
acronym of ROPES, which has been recommended by Yang
(2019) as  the  guideline  to  good  solar  forecasting  research
practice.  Indeed,  the  ROPES  guideline  summarizes  all
salient characteristics of solar forecasting well. In what fol-
lows,  another  viewpoint  on  solar  forecasting  is  presented.
Instead  of  examining  the  salient  characteristics,  different
aspects of solar forecasting, that is,  the research topics,  are
reviewed. 

3.2.    Five aspects of solar forecasting research
 

3.2.1.    Forecasting methods

Most  well-cited  reviews  on  solar  forecasting,  such  as
Antonanzas et al. (2016) or Voyant et al. (2017), have been
focusing  on  enumerating  methods.  In  that,  a  classification
of forecasting techniques seems to have become an essential
component  of  any review paper.  Nevertheless,  the  strategy
of  classifying  forecasting  techniques  has  two  main  draw-
backs.  Firstly,  the  classification  of  some  techniques  often
depends on individual viewpoints, e.g., regression can be clas-
sified  into  both  statistics  and  machine  learning.  In  other
words, the border between one class of methods and another
is often fuzzy, and thus rarely allows a clean-cut classifica-
tion, which may in turn render the classification subjective.
Secondly, the enumeration of methods would never be exhaus-
tive. A typical review would contain at most a few hundred
references,  whereas  the  number  of  publications  is  on  the
order of thousands, which implies that the strategy of enumer-
ation would always be incomplete. It is often seen sentences
like  "machine  learning  methods  include  A,  B  and  C"  in
review papers.  But  why A,  B,  and  C should  be  mentioned
instead  of  D,  E,  and  F  is  seldom  justified.  One  possible
defense may be that A, B, and C are more popular than D, E,
and F. But if this is indeed the motivation, a more objective
approach must be sought. In this regard, text mining as a bib-
liometric tool is useful; the reader is referred to Yang et al.
(2018b) for a text-mining-based review on solar forecasting,
in which most frequently appeared keywords and topics are
extracted from a pool of 1000 recent papers. 

3.2.2.    Post-processing

Physics-based  solar  forecasting  depends  mainly  on
three types of exogenous data, they are, images captured by
sky cameras, remote-sensed data by weather satellite, and out-
put of NWP. In an early review by Inman et al. (2013), the

fundamentals  of  physics-based  solar  forecasting  methods
have  been  described.  However,  owing  to  the  incomplete
understanding on the physical processes and the limited preci-
sion of input data, forecasts from the physics-based methods
are often found to be biased or uncalibrated (or incorrectly dis-
persed).  Post-processing  of  initial  forecasts  is  hence  often
found to be able to improve the quality of forecasts substan-
tially. Another important motivation for post-processing fore-
casts is to enable bidirectional conversion from deterministic
to probabilistic forecasts, which is often required in practice.
Similar to the case of base forecasting methods, there have
been numerous post-processing methods proposed in the liter-
ature,  and  enumeration  of  methods  would  again  be  ineffi-
cient. Therefore, Yang and van der Meer (2021) have advo-
cated the use of thinking tools,  which can be thought of as
“style ”  or  “mechanism ”  of  post-processing.  For  example,
regression as a thinking tool aims to remove bias from the ini-
tial  deterministic  forecasts,  in  that,  the  particular  choice  of
method does not matter, e.g., one can choose either a neural
network or  a  polynomial  regression,  which,  when properly
set  up and trained,  would most  likely  result  in  similar  out-
comes.  Other  notable recent  compendia on post-processing
of  forecasts  include  those  from Vannitsem  et  al.  (2021,
2018). 

3.2.3.    Irradiance-to-power conversion

The mapping between irradiance and other weather vari-
able  to  solar  power  is  closely  analogous  to  that  between
wind speed and wind power; one can refer to such mapping
as solar power curve. To convert irradiance to solar power,
one can adopt either a direct (or data-driven) approach or an
indirect (physical) one. The direct approach views the output
of a solar energy system as the dependent variable (or the pre-
dictand),  and  irradiance  and  other  weather  variables  as  the
independent variables (or the predictors). In this way, a regres-
sive relationship can be established. In contrast, the indirect
approach considers  explicitly  the  physics  of  different  steps
of the conversion, which include solar positioning, separation
modeling, transposition modeling, PV cell temperature model-
ing, soiling, shading, mismatch, degradation, among others.
Since  these  models  need  to  be  applied  sequentially,  where
the output of one model is the input of the next, the indirect
approach is also known as model chain. The model chain con-
cept  is  well  described  in  the  documentation  of  the  pvlib
library in Python (Holmgren et al., 2018). Despite the a priori
advantage of model chain, its uptake has been stagnant, per-
haps due to the complexity and effort required to master and
use  model  chain—recall  that  each  type  of  radiation  model
presents  numerous  choices.  One  exception  is  the  paper  by
Mayer  and  Gróf  (2021),  who  compared  several  model
chains, which is likely to be the most comprehensive paper
on irradiance-to-power conversion by far, and thus is highly
recommended. 

3.2.4.    Forecast verification

After a solar irradiance or power forecast is issued, it is
customary to  validate  it,  so  that  actions  can be  opted  as  to
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improve the next forecast. Good is an abstract notion, but so
long as the question "what constitutes a good solar forecast"
is concerned, the essay by Murphy (1993) is widely recog-
nized  as  seminal,  in  that,  consistency,  quality,  and  value
have been argued to jointly characterize the most desirable
weather  forecasts.  Forecast  verification has  hitherto  been a
major focus of meteorology, and atmospheric scientists are
expected to be familiar with, or at least aware of, the intricacy
and technical depth of this topic. Whereas the book by Jolliffe
and Stephenson (2012) provides an overview on forecast veri-
fication, reviews on more specific topics, such as spatial fore-
cast  verification  (Gilleland  et  al.,  2010),  consistency
between  judgment  and  forecast  (Gneiting,  2011),  accuracy
measures for deterministic forecasts (Hyndman and Koehler,
2006), are also available. Particularly worth mentioning is a
pair of recent reviews, which details the verification of solar
forecasts, one for deterministic forecasts (Yang et al., 2020)
and the other probabilistic (Lauret et al., 2019). 

3.2.5.    Materialization of values

By  "materialization  of  values",  we  mean  quantifying
the usefulness of forecasts. Since a forecast has no intrinsic
value,  its  value  must  be  materialized  through  its  ability  to
influence decision-making (Murphy, 1993). At present, nor
is there any work reviewing the relationship between the qual-
ity  and  value  of  solar  forecasts.  This  is,  to  a  large  extent,
due  to  the  fact  that  different  countries  have  different  grid
codes, under which the monetary compensation and penalty
are  advised;  if  one  is  to  compare  the  economic  values  of
two  sets  of  forecasts  in  different  markets,  it  would  not  be
fair. In any case, the standards and challenges of using solar
forecasts  for  grid-side  operations,  as  described  by Yang  et
al. (2021), are often shared by power grids worldwide. In par-
allel, Li and Zhang (2020); Ahmed and Khalid (2019) pre-
sented reviews on several concrete examples of how proba-
bilistic  forecasts  may  be  used  in  power  system operations,
although  in  reality,  given  the  conservative  nature  of  the
power  system  industry,  probabilistic  forecasts  have  yet  to
receive any sizable adoption. With the increasing penetration
of solar  energy,  the value of  solar  forecasts  would become
more  apparent.  In  the  paper  by Makarov  et  al.  (2011),  the
basic operational practices of the California Independent Sys-
tem  Operator  (CAISO)  are  reviewed,  from  which  one  can
understand how better forecasts can lead to higher load-fol-
lowing performance,  less  regulation  and reserves,  and thus
higher economic values. Other notable reviews on the materi-
alization  of  values  of  solar  forecasts  also  exist  (e.g.,
Emmanuel et al., 2020; Sampath Kumar et al., 2020). 

4.    Conclusion and outlook

In this überreview, topics related to solar resource assess-
ment and forecasting have been listed concisely. This überre-
view can thus act as a catalog of research, for anyone who
wishes to enter the field or stay up-to-date. Generally speak-
ing,  solar  resource  assessment  mainly  focuses  on  data  and
models. In that, ground-based, remote-sensed, and dynami-

cally  modeled  radiation  data  play  a  vital  part  during  solar
energy system design, simulation, and performance evalua-
tion. Additionally, the choice of radiation models of various
sorts, such as transposition model, separation model, or site-
adaptation  model,  also  should  not  be  viewed  as  trivial.
Much effort has been devoted to the development and valida-
tion  of  these  radiation  models.  Hence,  opting  the  recom-
mended radiation models during research is highly advised.

On the other hand, forecasting of solar irradiance, as a
means to forecast solar power, is required during grid integra-
tion.  In  this  regard,  the  value  of  solar  forecasts  solely
resides in their ability to influence decision-making pertaining
to  power  system  operations.  Solar  forecasting  research  is
never about which model is fancier and how much machine
learning is  used. Instead,  understanding the salient features
of solar irradiance should be emphasized. Raw solar forecasts
should be generated using physics-based methods, and post-
processed  using  statistical  and  machine-learning  models.
Moreover, irradiance-to-power conversion and forecast verifi-
cation have yet to receive the attention they deserve.

In  any case,  solar  resource  assessment  and forecasting
can benefit from the participation of atmospheric scientists.
Cloud is the critical parameter that ties atmospheric science
and  solar  energy  together.  Among  all  cloud  types,  the
largest uncertainty is associated with cumulus and cirrus. Fur-
ther understanding of the dynamic and physical processes gov-
erning  the  production,  maintenance,  and  disappearing  of
these clouds is necessary, as to improve the forecast skill of
NWP,  which  would  then  certainly  advance  solar  resource
assessment  and  forecasting.  Aerosol  is  another  parameter
that  is  key  to  solar  engineering.  Given  the  fact  that  many
large solar energy systems are located in semi-arid regions,
they are often affected by dust  episodes.  Progress in atmo-
spheric chemistry would enhance our understanding of how
natural  and  anthropogenic  aerosols  impact  solar  energy
resources, and how to consider these effects in NWP. In this
regard,  developments  in  atmospheric  science  would  be  an
important  booster  for  solar  engineering.  To  achieve  this
goal,  mutual  understanding  is  very  important.  First,  the
solar  energy  community  should  be  familiar  with  the  latest
developments  in  atmospheric  sciences.  Second,  the  atmo-
spheric sciences community should know the needs of solar
engineers. Indeed, if we are to achieve carbon neutrality by
mid of this century, a high proportion of solar energy in the
energy mix is a must, and for that, interdisciplinary collabora-
tion is absolutely vital. We should wish this review can help
bridge the two communities.
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