Skip to main content
Log in

Laser-induced micro-jetting from armored droplets

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We present findings from an experimental study of laser-induced cavitation within a liquid drop coated with a granular material, commonly referred to as “armored droplets” or “liquid marbles.” The cavitation event follows the formation of plasma after a nanosecond laser pulse. Using ultra-high-speed imaging up to 320,610 fps, we investigate the extremely rapid dynamics following the cavitation, which manifests itself in the form of a plethora of micro-jets emanating simultaneously from the spaces between particles on the surface of the drop. These fine jets break up into droplets with a relatively narrow diameter range, on the order of 10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allen RR, Meyer JD, Knight WR (1985) Thermodynamics and hydrodynamics of thermal ink jets. Hewlett-Packard 36:21–27

    Google Scholar 

  • Ando K, Liu A-Q, Ohl C-D (2012) Homogenous nucleation in water in microfluidic channels. Phys Rev Lett 109:044501

    Article  Google Scholar 

  • Antkowiak A, Bremond N, Le Dizes S, Villermaux E (2007) Short-term dynamics of a density interface following an impact. J Fluid Mech 577:241–250

    Article  Google Scholar 

  • Apitz I, Vogel A (2005) Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl Phys A 81:329–338

    Article  Google Scholar 

  • Arbatan T, Shen W (2011) Measurement of the surface tension of liquid marbles. Langmuir 27:12923–12929

    Article  Google Scholar 

  • Armstrong RL (1984) Aerosol heating and vaporization by pulsed light beams. Appl Opt 23:148–155

    Article  Google Scholar 

  • Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A 462:973–999

    Article  Google Scholar 

  • Bormashenko E, Pogreb R, Whyman G, Musin A, Bormashenko Y (2009) Shape, vibrations, and effective surface tensions of water marbles. Langmuir 25:1893–1896

    Article  Google Scholar 

  • Carls JC, Brock JR (1988) Propagation of laser breakdown and detonation waves in transparent droplets. Opt Lett 13:273–275

    Article  Google Scholar 

  • Chen RCC, Yu YT, Su KW, Chen JF, Chen YF (2013) Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface. Opt Express 21:445–453

    Article  Google Scholar 

  • Chitanvis SM (1986) Explosion of water droplets. Appl Opt 25:1837–1839

    Article  Google Scholar 

  • Deng P, Lee Y-K, Cheng P (2003) The growth and collapse of a micro-bubble under pulse heating. Int J Heat Mass Transf 46:4041–4050

    Article  Google Scholar 

  • Eickmans JH, Hsieh W-F, Chang RK (1987) Laser-induced explosion of \(\text{ H }_{2}\text{ O }\) droplets: spatially resolved spectra. Opt Lett 12:22–24

    Article  Google Scholar 

  • Entov VM, Sultanov FM, Yarin AL (1985) Breakup of liquid films under the action of a pressure drop in the ambient gas. Sov Phys Dokl 30:882

    Google Scholar 

  • Entov VM, Sultanov FM, Yarin AL (1986) Disintegration of liquid films subjected to an ambient gas pressure difference. Fluid Dyn 21(3):376–383

    Article  Google Scholar 

  • Gao L, McCarthy TJ (2007) Ionic liquid marbles. Langmuir 23:10445–10447

    Article  Google Scholar 

  • Heijnen L, Quinto-Su PA, Zhao X, Ohl C-D (2009) Cavitation within a droplet. Phys Fluids 21:091102

    Article  Google Scholar 

  • Hsieh W-F, Zheng J-B, Wood CF, Chu BT, Chang RK (1987) Propagation velocity of laser-induced plasma inside and outside a transparent droplet. Opt Lett 12:576–578

    Article  Google Scholar 

  • Kafalas P, Herrmann J (1973) Dynamics and energetics of the explosive vaporization of fog droplets by a 10.6-μm laser pulse. Appl Opt 12:772–775

    Article  Google Scholar 

  • Karri B, Ohl S-W, Klaseboer E, Ohl C-D, Khoo BC (2012) Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole. Phys Rev E 86:036309

    Article  Google Scholar 

  • Lindinger A, Hagen J, Socaciu LD, Bernhardt TM, Woste L, Duft D, Leisner T (2004) Time-resolved explosion dynamics of \(\text{ H }_{2}\text{ O }\) droplets induced by femtosecond laser pulses. Appl Opt 43:5263

    Article  Google Scholar 

  • Marston JO, Li E-Q, Thoroddsen ST (2012) Evolution of fluid-like granular ejectas generated by sphere impact. J Fluid Mech 704:5–36

    Article  Google Scholar 

  • Obreschkow D, Kobel P, Dorsaz N, de Bosset A, Nicollier C, Farhat M (2006) Cavitation bubble dynamics inside liquid drops in microgravity. Phys Rev Lett 97:094502

    Article  Google Scholar 

  • Obreschkow D, Tinguely M, Dorsaz N, Kobel P, de Bosset A, Farhat M (2011) Universal scaling law for jets of collapsing bubbles. Phys Rev Lett 107:204501

    Article  Google Scholar 

  • Paunov VN (2003) Novel method for determining the three-phase contact angle of colloid particles adsorbed at air–water and oil–water interfaces. Langmuir 19:7970–7976

    Article  Google Scholar 

  • Quinto-Su P, Lim KY, Ohl C-D (2009) Cavitation bubble dynamics in microfluidic gaps of variable height. Phys Rev E 80:047301

    Article  Google Scholar 

  • Sultanov FM, Yarin AL (1986) Radial expansion of cylindrical layers of viscous and rheologically complex fluids. J Eng Phys Thermophys 50(6):645–652

    Article  Google Scholar 

  • Sultanov FM, Yarin AL (1988) Rayleigh–Taylor instability of expanded polymer films. J Appl Mech Tech Phys 29(3):409–414

    Article  MathSciNet  Google Scholar 

  • Sultanov FM, Yarin AL (1990) Droplet size distribution in a percolation model for explosive liquid dispersal. J Appl Mech Tech Phys 31(5):708–713

    Article  Google Scholar 

  • Tagawa Y, Oudalov N, Visser CW, Peters IR, van der Meer D, Sun C, Prosperetti A, Lohse D (2012) Highly focused supersonic microjets. Phys Rev X 2:031002

    Google Scholar 

  • Thoroddsen ST, Takehara K, Etoh TG, Ohl C-D (2009) Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Phys Fluids 21:112101

    Article  Google Scholar 

  • Zeng C, Bissig H, Dinsmore AD (2006) Particles on droplets: from fundamental physics to novel materials. Solid State Commun 139:547–556

    Article  Google Scholar 

  • Zhiyuan Z, Hua G, Zhenjun F, Jie X (2014) Characteristics of droplets ejected from liquid propellants ablated by laser pulses in laser plasma propulsion. Plasma Sci Technol 16:251–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Marston.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 5382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marston, J.O., Thoroddsen, S.T. Laser-induced micro-jetting from armored droplets. Exp Fluids 56, 140 (2015). https://doi.org/10.1007/s00348-015-2007-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2007-6

Keywords

Navigation