Skip to main content

Advertisement

Log in

High-energy picosecond kHz optical parametric oscillator/amplifier tunable between 3 and 3.5 µm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a mid-IR tunable high-energy kHz optical parametric oscillator/amplifier (OPO/OPA) based on periodically poled stoichiometric lithium tantalate (PPSLT) nonlinear crystals. These two frequency conversion stages are pumped by a 1-µm-Nd-based master oscillator power amplifier (MOPA) system generating 800 ps pulses at 0.5 kHz with energy scalable up to ~ 40 mJ. The OPO/OPA stages are temperature tunable between 3 and 3.5 µm and provide pulses with energy 4.1 mJ and pulse duration of 600 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.S. Edwards, R.H. Austin, F.E. Carroll, M.L. Copeland, M.E. Couprie, W.E. Gabella, R.F. Haglund, B.A. Hooper, M.S. Hutson, E.D. Jansen, K.M. Joos, D.P. Kiehart, I. Lindau, J. Miao, H.S. Pratisto, J.H. Shen, Y. Tokutake, van der A.F.G. Meer, A. Xie, Rev. Sci. Instrum. 74, 3207 (2003). https://doi.org/10.1063/1.1584078

    Article  ADS  Google Scholar 

  2. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003). https://doi.org/10.1021/cr010379n

    Article  Google Scholar 

  3. J.I. Youn, P. Sweet, G.M. Peavy, V. Venugopalan, Lasers Surg. Med. 38, 218 (2006). https://doi.org/10.1002/lsm.20288

    Article  Google Scholar 

  4. S. Amini-Nik, D. Kraemer, M.L. Cowan, K. Gunaratne, P. Nadesan, B.A. Alman, R.J.D. Miller, PLoS One 5(9), e13053 (2010). https://doi.org/10.1371/journal.pone.0013053

    Article  ADS  Google Scholar 

  5. A. Nierlich, D. Chuchumishev, E. Nagel, K. Marinova, S. Philipov, T. Fiebig, I. Buchvarov, C.P. Richter, Proc. SPIE 8926, Photonic Therapeutics and Diagnostics X, 89262H (2014). https://doi.org/10.1117/12.2049339

  6. G.S. Edwards, M.S. Hutson, S. Hauger, Heat Diffusion and Chemical Kinetics in Mark-III FEL Tissue Ablation. Proc. SPIE 4633, pp. 184–193 (2002). https://doi.org/10.1117/12.461378

  7. J.T. Walsh, T.F. Deutsch, IEEE Trans. Biomed. Eng. 36, 1195 (1989). https://doi.org/10.1109/10.42114

    Article  Google Scholar 

  8. M.L. Wolbarsht, IEEE J. Quantum Electron. 20, 1427 (1984). https://doi.org/10.1109/JQE.1984.1072328

    Article  ADS  Google Scholar 

  9. A. Böttcher, S. Kucher, R. Knecht, N. Jowett, P. Krötz, R. Reimer, U. Schumacher, S. Anders, A. Münscher, C.V. Dalchow, R.J.D. Miller, Eur. Arch. Otorhinolaryngol. 272, 941 (2015). https://doi.org/10.1007/s00405-015-3501-4

    Article  Google Scholar 

  10. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. Oday, Nature 371, 416 (1994). https://doi.org/10.1038/371416a0

    Article  ADS  Google Scholar 

  11. I.T. Sorokina, K.L. Vodopyanov (eds). Solid-State Mid-Infrared Laser Sources (Springer, Berlin Heidelberg, 2003), ISBN 978-3-540-36491-7

    Google Scholar 

  12. N. Dixit, R. Mahendra, O.P. Naraniya, A.N. Kaul, A.K. Gupta, Opt. Laser Technol. 42, 18 (2010). https://doi.org/10.1016/j.optlastec.2009.04.012

    Article  ADS  Google Scholar 

  13. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, T. Taira, Opt. Lett. 33, 1699 (2008). https://doi.org/10.1364/OL.33.001699

    Article  ADS  Google Scholar 

  14. H. Ishizuki, T. Taira, Opt. Express 18, 253 (2010). https://doi.org/10.1364/OE.18.000253

    Article  ADS  Google Scholar 

  15. M. Katz, P. Blau, B. Shulga: Proc. SPIE 6875, p. 687504-14 (2008). https://doi.org/10.1117/12.763190

  16. D. Chuchumishev, A. Gaydardzhiev, T. Fiebig, I. Buchvarov, Opt. Lett. 38, 3347 (2013). https://doi.org/10.1364/OL.38.003347

    Article  ADS  Google Scholar 

  17. V. Evtuhov, A.E. Siegman, Appl. Opt. 4, 142 (1965). https://doi.org/10.1364/AO.4.000142

    Article  ADS  Google Scholar 

  18. M. Ostermeyer, G. Klemz, P. Kubina, R. Menzel, Appl. Opt. 41, 7573 (2002). https://doi.org/10.1364/AO.41.007573

    Article  ADS  Google Scholar 

  19. B. Oreshkov, D. Chuchumishev, H. Iliev, A. Trifonov, T. Fiebig, C.P. Richter, I. Buchvarov, CLEO 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JW2A.84. https://doi.org/10.1364/CLEO_AT.2014.JW2A.84

  20. S. Brosnan, R.L. Byer, IEEE J. Quantum Electron. 15, 415 (1979). https://doi.org/10.1109/JQE.1979.1070027

    Article  ADS  Google Scholar 

  21. A. Siegman, M. Dowley, Proc. Optical Society of America 17, p. MQ1 (1998). https://doi.org/10.1364/DLAI.1998.MQ1

  22. A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. (1978). https://doi.org/10.1016/0030-4018(78)90001-9

    Google Scholar 

  23. R.A. Baumgartner, R.L. Byer, IEEE J. Quantum Electron. 15, 432 (1979). https://doi.org/10.1109/JQE.1979.1070043

    Article  ADS  Google Scholar 

  24. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, G. Gadret, Appl. Phys. B 96, 423 (2009). https://doi.org/10.1007/s00340-009-3502-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Bulgarian National Science Fund under grant number DNTS 01/9/2016, bilateral research project R.Bulgaria–P.R.China. We are grateful to Stuart Samuelson and Dimitar Shumov at Deltronic Crystal Industries NJ, USA for manufacturing of wide-aperture PPSLT elements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Buchvarov.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuchumishev, D., Trifonov, A., Oreshkov, B. et al. High-energy picosecond kHz optical parametric oscillator/amplifier tunable between 3 and 3.5 µm. Appl. Phys. B 124, 147 (2018). https://doi.org/10.1007/s00340-018-7009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7009-7

Navigation