Skip to main content
Log in

Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the design and operation of a nonlinear intersubband polaritonic metasurface for mid-infrared second harmonic generation. The metasurface is made of plasmonic nanoresonators filled with a multiple-quantum-well semiconductor heterostructure. Unlike the previously reported nonlinear intersubband polaritonic metasurfaces that employ full-metal backplanes below the etched metal–semiconductor nanoresonators, the metasurface reported here employs an incomplete backplane that is complementary to the pattern of the top metallization of the etched semiconductor heterostructure nanoresonators. The new approach produces high-electric-field localization and enhancement in the nanoresonators, while requiring simplified fabrication and allowing the metasurface to operate in both transmission and reflection regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Corcoran, C. Monat, C. Grillet, D.J. Moss, B.J. Eggleton, T.P. White, L. O’Faolain, T.F. Krauss, Nat. Photonics 3, 206 (2009)

    Article  ADS  Google Scholar 

  2. C. Wang, Z. Li, M.H. Kim, X. Xiong, X.F. Ren, G.C. Guo, N. Yu, M. Lončar, Nat. Commun. 8, (2017)

  3. P.S. Kuo, J. Bravo-Abad, G.S. Solomon, Nat. Commun. 5, (2014)

  4. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, M. Finazzi, Nat. Nanotechnol. 10, 412 (2015)

    Article  ADS  Google Scholar 

  5. N. Yu, F. Capasso, Nat. Mater. 13, 139 (2014)

    Article  ADS  Google Scholar 

  6. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 339, 1289 (2013)

    Article  Google Scholar 

  7. J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Nature 511, 65 (2014)

    Article  ADS  Google Scholar 

  8. J. Lee, N. Nookala, J.S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M.-C. Amann, A. Alù, M.A. Belkin, Adv. Opt. Mater. 4, 664 (2016)

    Article  Google Scholar 

  9. N. Nookala, J. Lee, M. Tymchenko, J. Sebastian Gomez-Diaz, F. Demmerle, G. Boehm, K. Lai, G. Shvets, M.-C. Amann, A. Alù, M.A. Belkin, Optica 3, 283 (2016)

    Article  Google Scholar 

  10. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2008)

    Google Scholar 

  11. G. Li, S. Chen, N. Pholchai, B. Reineke, P.W.H. Wong, E.Y.B. Pun, K.W. Cheah, T. Zentgraf, S. Zhang, Nat. Mater. 14, 607 (2015)

    Article  ADS  Google Scholar 

  12. N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen, Nat. Photonics 9, 180 (2015)

    Article  ADS  Google Scholar 

  13. O. Wolf, S. Campione, A. Benz, A.P. Ravikumar, S. Liu, T.S. Luk, E.A. Kadlec, E.A. Shaner, J.F. Klem, M.B. Sinclair, I. Brener, Nat. Commun. 6, 7667 (2015)

    Article  ADS  Google Scholar 

  14. O. Wolf, A.A. Allerman, X. Ma, J.R. Wendt, A.Y. Song, E.A. Shaner, I. Brener, Appl. Phys. Lett. 107, 151108 (2015)

    Article  ADS  Google Scholar 

  15. M. Tymchenko, J.S. Gomez-Diaz, J. Lee, N. Nookala, M.A. Belkin, A. Alù, Phys. Rev. Lett. 115, 207403 (2015)

    Article  ADS  Google Scholar 

  16. Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 2002)

    Google Scholar 

  17. F.B.P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, M. Wegener, Opt. Lett. 34, 1997 (2009)

    Article  ADS  Google Scholar 

  18. W. Fan, S. Zhang, K.J. Malloy, S.R.J. Brueck, N.C. Panoiu, R.M. Osgood, Opt. Express 14, 9570 (2006)

    Article  ADS  Google Scholar 

  19. J.S. Gomez-Diaz, M. Tymchenko, J. Lee, M.A. Belkin, A. Alù, Phys. Rev. B 92, 125429 (2015)

    Article  ADS  Google Scholar 

  20. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  21. M. Beeler, E. Trichas, E. Monroy, Semicond. Sci. Technol. 28, 74022 (2013)

    Article  Google Scholar 

  22. E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, J. Nagle, Science 271, 168 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Parts of this work were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Belkin.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale, and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nookala, N., Xu, J., Wolf, O. et al. Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane. Appl. Phys. B 124, 132 (2018). https://doi.org/10.1007/s00340-018-7005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7005-y

Navigation