Skip to main content
Log in

Ultrafast heat transfer on nanoscale in thin gold films

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Heat transfer processes, induced by ultrashort laser pulses in thin gold films, were studied with a time resolution of 50 fs. It is demonstrated that in thin gold films heat is transmitted by means of electron–phonon and phonon–phonon interactions, and dissipated on nanoscale within 800 fs. Measurements show that the electron–phonon relaxation time varies versus the probe wavelength from 1.6 to 0.8 ps for λ=560–630 nm. The applied mathematical model is a result of transforming the two-temperature model to the hyperbolic heat equation, based on assumptions that the electron gas is heated up instantaneously and applying Cattaneo’s law to the phonon subsystem, agrees well with the experimental results. This model allows us to define time of electron–phonon scattering as the ratio of the heat penetration depth to the speed of sound in the bulk material that, in turn, provides an explanation of experimental results that show the dependence of the electron–phonon relaxation time on the wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Cahill, W. Ford, K. Goodson, G. Mahan, A. Majumdar, H. Maris, R. Merlin, S. Phillpot, J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  2. A. Dietzel, R. Berger, P. Mächtle, M. Despont, W. Häberle, R. Stutz, G. Binnig, P. Vettiger, Sens. Actuators A, Phys. 100, 123 (2002)

    Article  Google Scholar 

  3. Y. Sun, D. Fangb, M. Sakaa, A.K. Soh, Int. J. Solids Struct. 45, 1993 (2008)

    Article  MATH  Google Scholar 

  4. S. Anisimov, B. Kapeliovich, T. Perel’man, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  5. N. Singh, Int. J. Mod. Phys. B 24, 1141 (2010)

    Article  ADS  MATH  Google Scholar 

  6. D.Y. Tzou, Macro to Microscale Heat Transfer: The Lagging Behavior (Taylor & Francis, New York, 1997)

    Google Scholar 

  7. G. Eesley, Phys. Rev. B 33, 2144 (1986)

    Article  ADS  Google Scholar 

  8. W. Fann, R. Storz, H. Tom, J. Bokor, Phys. Rev. B 46, 13592 (1992)

    Article  ADS  Google Scholar 

  9. W. Fann, R. Storz, H. Tom, J. Bokor, Phys. Rev. Lett. 68, 2834 (1992)

    Article  ADS  Google Scholar 

  10. C. Sun, F. Vallee, L. Acioli, E. Ippen, J. Fujimoto, Phys. Rev. B 48, 12365 (1993)

    Article  ADS  Google Scholar 

  11. T.Q. Qiu, T. Juhasz, C. Suarez, W.E. Bron, C.L. Tien, Int. J. Heat Mass Transf. 37, 2799 (1994)

    Article  Google Scholar 

  12. R. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)

    Article  ADS  Google Scholar 

  13. Z. Lin, L. Zhigilei, V. Celli, Phys. Rev. B 77, 75133 (2008)

    Article  ADS  Google Scholar 

  14. H. Sim, S. Park, T. Kim, Y. Choi, J. Lee, S. Lee, Mater. Trans. 51, 1156 (2010)

    Article  Google Scholar 

  15. T.Q. Qiu, C.L. Tien, Int. J. Heat Mass Transf. 37, 2789 (1994)

    Article  Google Scholar 

  16. J.J. Klossika, U. Gratzke, M. Vicanek, G. Simon, Phys. Rev. B 54, 10277 (1996)

    Article  ADS  Google Scholar 

  17. J. Chen, J. Beraun, Numer. Heat Transf., Part A, Appl. 40, 1 (2001)

    ADS  MATH  Google Scholar 

  18. H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, Phys. Rev. B 57, 11334 (1998)

    Article  ADS  Google Scholar 

  19. H. Hirori, T. Tachizaki, O. Matsuda, O. Wright, Phys. Rev. B 68, 113102 (2003)

    Article  ADS  Google Scholar 

  20. D.W. Tang, N. Araki, J. Phys. D, Appl. Phys. 29, 2527 (1996)

    Article  ADS  Google Scholar 

  21. S. Link, C. Burda, M. Mohamed, B. Nikoobakht, M. El-Sayed, Phys. Rev. B 61, 6086 (2000)

    Article  ADS  Google Scholar 

  22. J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, G. Gurzadyan, Appl. Phys. Lett. 97, 163103 (2010)

    Article  ADS  Google Scholar 

  23. R. Rosei, D. Lynch, Phys. Rev. B 5, 3883 (1972)

    Article  ADS  Google Scholar 

  24. V.V. Kulish, L.J. Lage, J. Heat Transf. 122, 372 (2000)

    Article  Google Scholar 

  25. J.I. Frankel, J. Thermophys. Heat Transf. 20, 945 (2006)

    Article  Google Scholar 

  26. V.V. Kulish, L.J. Lage, L.P. Komarov, P.E. Raad, J. Heat Transf. 123, 1133 (2001)

    Article  Google Scholar 

  27. D. Joseph, L. Preziosi, Rev. Mod. Phys. 61, 41 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (US Government Printing Office, Washington, 2010)

    Google Scholar 

  29. V.V. Kulish, B.V. Novozhilov, Math. Probl. Eng. 4, 173 (2003)

    Article  Google Scholar 

  30. J. Hohlfeld, D. Grosenick, U. Conrad, E. Matthias, Appl. Phys. A Mater. 60, 137 (1995). 129th WE-Heraeus-Seminar on Surface Studies by Nonlinear Laser Spectroscopies, Kassel, Germany, 30 May–1 June, 1994

    Article  ADS  Google Scholar 

  31. J. Hohlfeld, J. Muller, S. Wellershoff, E. Matthias, Appl. Phys. B, Lasers Opt. 64, 387 (1997)

    Article  ADS  Google Scholar 

  32. W. Rohsenow, J. Hartnett, E. Ganic, Handbook of Heat Transfer Fundamentals (McGraw-Hill, New York, 1985)

    Google Scholar 

  33. G. Kaye, T. Laby, Tables of Physical and Chemical Constants and Some Mathematical Functions (Harlow, Longman, 1995)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. M.E. Michel-Beyerle for continuous support. This work is supported by the Singapore Agency for Science, Technology and Research (A*STAR), under research grant SERC GRANT No. 092 156 0123.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. G. Gurzadyan or V. Kulish.

Appendix

Appendix

Following the solution procedure from [26], let us take the Laplace transform of (9). Taking into account that, initially, the system described by (9) is at thermal equilibrium and so \(\frac{\partial\theta}{\partial \xi}|_{\xi=0}=0\) and θ| ξ=0=0, we have

$$ \frac{d^2 \varTheta}{d \eta^2}-\bigl(2s+s^2\bigr)\varTheta +\biggl[1+\frac{1}{2}s\biggr]\tilde{Q}=0,$$
(19)

where Θ(η;s) and \(\tilde{Q}(\eta;s)\) are the Laplace transforms of θ(η,ξ) and \(\tilde{q}(\eta,\xi)\), respectively. The general solution of the nonhomogeneous equation (19) is

$$ Q(\eta;s)=C_1(s)e^{\lambda(s)\eta}+C_2(s)e^{-\lambda(s)\eta}+P(\eta;s),$$
(20)

where \(\lambda(s)=\sqrt{2s+s^{2}}\). The two first terms on the right side of (20) are the general solution of the associated homogeneous equation with \(\tilde{Q}(\eta;s)=0\), and P(η;s) is a particular solution of (19).

For the problem in question and taking into account the fact that the surface heat flux is induced by the electron gas after absorbing the laser energy, the boundary conditions become

$$ \frac{\partial\theta}{\partial \eta}\bigg|_{\eta=0}=-\tilde{q}''-\frac{1}{2}\frac{\partial \tilde{q}''}{\partial \xi},\qquad \lim_{\eta\rightarrow\infty} \theta=0,$$
(21)

where \(\tilde{q}''=\frac{1}{\xi_{p}}\exp{(-a[\frac{\xi-\xi_{b}}{\xi_{p}}]^{2})}\) is the dimensionless form of the surface heat flux. Hence, the parameter C 1(s) must be zero, and (20) is simplified into

$$ Q(\eta;s)=C(s)e^{-\lambda(s)\eta}+P(\eta;s).$$
(22)

To eliminate C(s) from (22), the derivative of Θ(η;s) with respect to η is used:

$$ \frac{d Q(\eta;s)}{d \eta}=-\lambda(s)C(s)e^{-\lambda(s)\eta}+\frac{d P(\eta;s)}{d \eta}.$$
(23)

Then, combining (22) and (23), and taking into account the relationship between the temperature gradient and the surface heat flux (21), the general solution of (20) can be written as

$$ Q(\eta;s)=\frac{1+\frac{1}{2}s}{\lambda(s)}\tilde{Q}''(s)+P(\eta;s)+\frac{1}{\lambda(s)}\frac{d P(\eta;s)}{d \eta},$$
(24)

where \(\tilde{Q}''(s)\) is the Laplace transform of \(\tilde{q}''(s)\). The right part of (24) consists of the sum of two terms which are responsible for the temperature responses due to the surface heat flux and volumetric heating, respectively. Taking into account that the function \(\tilde{Q}(\eta;s)\) can be represented as a product of two functions, one of which depends on the complex variable s only, and the other is exp(−η/Δη), the particular solution of (20) can be written as follows:

$$ P(\eta;s)=\varDelta \eta^2\frac{1+\frac{1}{2}s}{\varDelta \eta^2s^2+2\varDelta \eta^2s-1}\tilde{Q}(\eta;s).$$
(25)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poletkin, K.V., Gurzadyan, G.G., Shang, J. et al. Ultrafast heat transfer on nanoscale in thin gold films. Appl. Phys. B 107, 137–143 (2012). https://doi.org/10.1007/s00340-011-4862-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4862-z

Keywords

Navigation