Skip to main content
Log in

Genome stability in the uvh6 mutant of Arabidopsis thaliana

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Plant XPD homolog UVH6 is the protein involved in the repair of strand breaks, and the excision repair and uvh6 mutant is not impaired in transgenerational increase in HRF.

Abstract

While analyzing the transgenerational response to stress in plants, we found that the promoter and gene body of Arabidopsis thaliana (Arabidopsis) XPD homolog UVH6 underwent hypomethylation and showed an increase in the level of transcript. Here, we analyzed the mutant of this gene, uvh6-1, by crossing it to two different reporter lines: one which allows for analysis of homologous recombination frequency (HRF) and another which makes it possible to analyze the frequency of point mutations. We observed that uvh6-1 plants exhibited lower rate of spontaneous homologous recombination but higher frequencies of spontaneous point mutations. The analysis of strand breaks using ROPS and Comet assays showed that the mutant had a much higher level of strand breaks at non-induced conditions. Exposure to stresses such as UVC, heat, cold, flood and drought showed that the mutant was not impaired in an increase in somatic HRF. The analysis of spontaneous HRF in the progeny of control plants compared to that of the progeny of stressed plants demonstrated that uvh6-1 was mildly affected in response to temperature, UV and drought. Our data suggest that UVH6 may be involved in the repair of strand breaks and excision repair, but it is unlikely that UVH6 is required for transgenerational increase in HRF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aloyz R, Xu ZY, Bello V, Bergeron J, Han FY, Yan Y, Malapetsa A, Alaoui-Jamali MA, Duncan AM, Panasci L (2002) Regulation of cisplatin resistance and homologous recombinational repair by the TFIIH subunit XPD. Cancer Res 62:5457–5462

    CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis thaliana. Plant Signal Behav 5:995–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2011a) Genetic and epigenetic effects of plant–pathogen interactions: an evolutionary perspective. Mol Plant 4(6):1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2011b) Genome instability and epigenetic modification-heritable responses to environmental stress? Curr Opin Plant Biol 14(3):260–266

    Article  PubMed  Google Scholar 

  • Boyko A, Greer M, Kovalchuk I (2006a) Acute exposure to UVB has a more profound effect on plant genome stability than chronic exposure. Mutat Res 602:100–109

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Hudson D, Bhomkar P, Kathiria P, Kovalchuk I (2006b) Increase of homologous recombination frequency in vascular tissue of Arabidopsis plants exposed to salt stress. Plant Cell Physiol 47:736–742

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Zemp F, Filkowski J, Kovalchuk I (2006c) Double-strand break repair in plants is developmentally regulated. Plant Physiol 141:488–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I (2010a) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5:e9514

    Article  PubMed Central  PubMed  Google Scholar 

  • Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010b) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51:1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  PubMed  Google Scholar 

  • Costa RM, Morgante PG, Berra CM, Nakabashi M, Bruneau D, Bouchez D, Sweder KS, Van Sluys MA, Menck CF (2001) The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J 28:385–395

    Article  CAS  PubMed  Google Scholar 

  • de Boer J, Hoeijmakers JH (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21:453–460

    Article  PubMed  Google Scholar 

  • Golubov A, Yao Y, Maheshwari P, Bilichak A, Boyko A, Belzile F, Kovalchuk I (2010) Microsatellite instability in Arabidopsis increases with plant development. Plant Physiol 154:1415–1427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall JD, Cobb J, Iqbal M, Abidali M, Liu Z, David W (2009) Mount UVH6, a plant homolog of the human/yeast TFIIH transcription factor subunit XPD/RAD3, regulates cold-stress genes in Arabidopsis thaliana. Plant Mol Biol Rep 27:217–228

    Article  CAS  Google Scholar 

  • Hays JB (2002) Arabidopsis thaliana, a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair (Amst) 1:579–600

    Article  CAS  Google Scholar 

  • Ilnytskyy Y, Boyko A, Kovalchuk I (2004) Luciferase-based transgenic recombination assay is more sensitive than beta-glucoronidase-based. Mutat Res 559:189–197

    Article  CAS  PubMed  Google Scholar 

  • Ilnytskyy Y, Yao Y, Kovalchuk I (2005) Double-strand break repair machinery is sensitive to UV radiation. J Mol Biol 345:707–715

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    Article  CAS  PubMed  Google Scholar 

  • Jenkins ME, Harlow GR, Liu Z, Shotwell MA, Ma J, Mount DW (1995) Radiation-sensitive mutants of Arabidopsis thaliana. Genetics 140:725–732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins ME, Suzuki TC, Mount DW (1997) Evidence that heat and ultraviolet radiation activate a common stress-response program in plants that is altered in the uvh6 mutant of Arabidopsis thaliana. Plant Physiol 115:1351–1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I (2010) Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant Physiol 153:1859–1870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kazimirova A, Barancokova M, Dzupinkova Z, Wsolova L, Dusinska M (2009) Micronuclei and chromosomal aberrations, important markers of ageing: possible association with XPC and XPD polymorphisms. Mutat Res 661:35–40

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2000a) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19:4431–4438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovalchuk O, Arkhipov A, Barylyak I, Karachov I, Titov V, Hohn B, Kovalchuk I (2000b) Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants. Mutat Res 449:47–56

    Article  CAS  PubMed  Google Scholar 

  • Kozak J, West CE, White C, da Costa-Nunes JA, Angelis KJ (2009) Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair 8:413–419

    Article  CAS  PubMed  Google Scholar 

  • Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ (2006) Plant responses to UV radiation and links to pathogen resistance. Int Rev Cytol 255:1–40

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann AR (2001) The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev 15:15–23

    Article  CAS  PubMed  Google Scholar 

  • Li A, Schuermann D, Gallego F, Kovalchuk I, Tinland B (2002) Repair of damaged DNA by Arabidopsis cell extract. Plant Cell 14:263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Hossain GS, Islas-Osuna MA, Mitchell DL, Mount DW (2000) Repair of UV damage in plants by nucleotide excision repair: arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. Plant J 21:519–528

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Hong SW, Escobar M, Vierling E, Mitchell DL, Mount DW, Hall JD (2003) Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth. Plant Physiol 132:1405–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malone RE, Hoekstra MF (1984) Relationships between a hyper-rec mutation (REM1) and other recombination and repair genes in yeast. Genetics 107:33–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montelone BA, Hoekstra MF, Malone RE (1988) Spontaneous mitotic recombination in yeast: the hyper-recombinational rem1 mutations are alleles of the RAD3 gene. Genetics 119:289–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriel-Carretero M, Aguilera A (2010) A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms. Mol Cell 37:690–701

    Article  CAS  PubMed  Google Scholar 

  • Oh KS, Bustin M, Mazur SJ, Appella E, Kraemer KH (2011) UV-induced histone H2AX phosphorylation and DNA damage related proteins accumulate and persist in nucleotide excision repair-deficient XP-B cells. DNA Repair (Amst) 10:5–15

    Article  CAS  Google Scholar 

  • Prakash S, Prakash L (2000) Nucleotide excision repair in yeast. Mutat Res 451:13–24

    Article  CAS  PubMed  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ries G, Buchholz G, Frohnmeyer H, Hohn B (2000) UV-damage-mediated induction of homologous recombination in Arabidopsis is dependent on photosynthetically active radiation. Proc Natl Acad Sci USA 97:13425–13429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savolainen L, Cassel T, Helleday T (2010) The XPD subunit of TFIIH is required for transcription-associated but not DNA double-strand break-induced recombination in mammalian cells. Mutagenesis 25:623–629

    Article  CAS  PubMed  Google Scholar 

  • Swoboda P, Hohn B, Gal S (1993) Somatic homologous recombination in planta: the recombination frequency is dependent on the allelic state of recombining sequences and may be influenced by genomic position effects. Mol Gen Genet 237:33–40

    CAS  PubMed  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  CAS  PubMed  Google Scholar 

  • Van der Auwera G, Baute J, Bauwens M, Peck I, Piette D, Pycke M, Asselman P, Depicker A (2008) Development and application of novel constructs to score C:G-to-T: A transitions and homologous recombination in Arabidopsis. Plant Physiol 146:22–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Vannier JB, Depeiges A, White C, Gallego ME (2009) ERCC1/XPF protects short telomeres from homologous recombination in Arabidopsis thaliana. PLoS Genet 5:e1000380

    Article  PubMed Central  PubMed  Google Scholar 

  • Vonarx EJ, Tabone EK, Osmond MJ, Anderson HJ, Kunz BA (2006) Arabidopsis homologue of human transcription factor IIH/nucleotide excision repair factor p44 can function in transcription and DNA repair and interacts with AtXPD. Plant J 46:512–521

    Article  CAS  PubMed  Google Scholar 

  • Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis Sandwich: a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Yao Y, Kovalchuk I (2011) Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants. Mutat Res 707:61–66

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Bilichak A, Golubov A, Blevins T, Kovalchuk I (2010) Differential sensitivity of Arabidopsis siRNA biogenesis mutants to genotoxic stress. Plant Cell Rep 29:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Bilichak A, Golubov A, Kovalchuk I (2011) Local infection with oilseed rape mosaic virus promotes genetic rearrangements in systemic Arabidopsis tissue. Mutat Res 709–710:7–14

    Article  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Valentina Titova for proofreading the manuscript. IK acknowledges the financial support of National Science and Engineering Research Council of Canada and Alberta Innovates. We thank Jennifer D. Hall for the gift of uvh6-1 seeds.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kovalchuk.

Additional information

Communicated by K. Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2014_1580_MOESM1_ESM.ppt

Fig. S1. Analysis of the number of mesophyll cells, leaf thickness and DNA content in wt and uvh6 plants. A. The average number of mesophyll cells per microscopic view. The data are shown as the average (with SD) calculated from 22 views per each line.B. Representative images of mesophyll cell density in wt and uvh6. C. The average leaf thickness (in μM) calculated from 3 measurements per each view (with SD), with over 20 views measurement per each line. D. Representative images of field views used for measuring leaf thickness in wt and uvh6. E. The average genomic DNA content (with SD)—shown in ug per 20 plants used for extraction (PPT 487 kb)

299_2014_1580_MOESM2_ESM.ppt

Fig. S2. Representative images of recombination events in wild-type plants before (A) and after (B) exposure to UVC (PPT 625 kb)

299_2014_1580_MOESM3_ESM.ppt

Fig. S3. The homologous recombination frequency and recombination rate in the progeny of stressed wild-type and uvh6-1 plants. A. The frequency of homologous recombination was calculated in the 3-week-old progeny of plants exposed to UVC (0.6 J/m2; UV0.6), flood (FL), drought (DR), cold (4 °C) and heat (50 °C). The data are shown as the average recombination frequency (of three independent experiments with SD). B. Recombination rate in wt and uvh6-1 plants (PPT 160 kb)

Supplementary material 4 (DOCX 30 kb)

Supplementary material 5 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilichak, A., Yao, Y., Titov, V. et al. Genome stability in the uvh6 mutant of Arabidopsis thaliana . Plant Cell Rep 33, 979–991 (2014). https://doi.org/10.1007/s00299-014-1580-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1580-0

Keywords

Navigation