Skip to main content

Advertisement

Log in

Preparation and characterisation of poly(hydroxyalkanoate)/Ganoderma lucidum fibre composites: mechanical and biological properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Composite materials made from Ganoderma lucidum fibre (GLF) and poly(hydroxyalkanoate) (PHA) or acrylic acid-grafted PHA (PHA-g-AA) were characterised with regard to biocompatibility. GLF was homogeneously dispersed in the PHA-g-AA matrix as a result of condensation reactions. Mechanical characterisation indicated that the improved adhesion between GLF and PHA-g-AA enhanced the tensile strength of the composite compared with that of PHA/GLF. The PHA-g-AA/GLF composites were also more water resistant than the PHA/GLF composites. Human foreskin fibroblasts (FBs) were seeded on two series of these composites to assess biocompatibility. FB proliferation, collagen production, and the percentage of normal cells growing on the PHA/GLF composites were greater than those for the PHA-g-AA/GLF composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kealey CP, Whelan SA, Chun YJ, Soojung CH, Tulloch AW, Mohanchandra KP, Carlo DD, Levi DS, Carman GP, Rigberg DA (2010) In vitro hemocompatibility of thin film nitinol in stenotic flow conditions. Biomaterials 31:8864–8871

    Article  CAS  Google Scholar 

  2. Belair DG, Murphy WL (2013) Specific VEGF sequestering to biomaterials: influence of serum stability. Acta Biomater 9:8823–8831

    Article  CAS  Google Scholar 

  3. Julca I, Alaminos M, González JL, Manzanera M (2012) Xeroprotectants for the stabilization of biomaterials. Biotechnol Adv 30:1641–1654

    Article  CAS  Google Scholar 

  4. Khaing ZZ, Schmidt CE (2012) Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 519:103–114

    Article  CAS  Google Scholar 

  5. Chen Q, Liang S, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38:584–671

    Article  CAS  Google Scholar 

  6. Burnouf T, Goubran HA, Chen TM, Ou KL, Magdy EE, Radosevic M (2013) Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev 27:77–89

    Article  CAS  Google Scholar 

  7. Matsushima R, Nam K, Shimatsu Y, Kimura T, Fujisato T, Kishida A (2014) Decellularized dermis–polymer complex provides a platform for soft-to-hard tissue interfaces. Mater Sci Eng C 35:354–362

    Article  CAS  Google Scholar 

  8. Ahmed EF, Lee JH, Lee EJ, Kim HW (2013) Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater 9:9508–9521

    Article  Google Scholar 

  9. Lake SP, Barocas VH (2012) Mechanics and kinematics of soft tissue under indentation are determined by the degree of initial collagen fiber alignment. J Mech Behav Biomed Mater 13:25–35

    Article  CAS  Google Scholar 

  10. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Manchado MAL, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  CAS  Google Scholar 

  11. Modi S, Koelling K, Vodovotz Y (2013) Assessing the mechanical, phase inversion, and rheological properties of poly-[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) blended with poly-(l-lactic acid) (PLA). Eur Polym J 49:3681–3690

    Article  CAS  Google Scholar 

  12. Xie H, Li J, Li L, Dong Y, Chen GQ, Chen KC (2013) Enhanced proliferation and differentiation of neural stem cells grown on PHA films coated with recombinant fusion proteins. Acta Biomater 9:7845–7854

    Article  CAS  Google Scholar 

  13. Girdhar A, Bhatia M, Nagpal S, Kanampalliwar A, Tiwari A (2013) Process parameters for influencing polyhydroxyalkanoate producing bacterial factories: an overview. J Pet Environ Biotechnol 4:1–8

    Article  Google Scholar 

  14. Numata K, Abe H, Iwata T (2009) Biodegradability of poly(hydroxyalkanoate) materials. Materials 2:1104–1126

    Article  CAS  Google Scholar 

  15. Tsou CH, Suen MC, Yao WH, Wu CS, Yeh JT, Tsou CY, Chen JC, Lin SM, Hung WS, Guzman MD, Hu CC, Lee KR (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as plasticizer. Materials 7:5617–5632

    Article  CAS  Google Scholar 

  16. Tsou CH, Kao BJ, Suen MC, Yang MC, Wu TY, Tsou CY, Chen JC, Yao WH, Chu CK, Tuan XM, Hwang JZ, Hong WS, Lee KR, Lai JY (2014) Crystallisation behaviour and biocompatibility of poly(butylene succinate)/poly(lactic acid) composites. Mat Res Innovat 18:372–376

    Article  Google Scholar 

  17. Tsou CH, Hung WS, Wu CS, Chen JC, Huang CY, Chiu SH, Tsou CY, Lin SM, Chu CK, Hu CC, Lee KR, Suen MC (2015) New Composition of maleic-anhydride-grafted poly(lactic acid)/rice husk with methylenediphenyl diisocyanate. Mater Sci (medzg) in press

  18. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344

    Article  CAS  Google Scholar 

  19. Chan CH, Kammer HW (2009) Thermal properties of blends comprising poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and epoxidized natural rubber. Polym Bull 63:673–686

    Article  CAS  Google Scholar 

  20. Shah M, Naseer MI, Choi MH, Kim MO, Yoon SC (2010) Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: preparation, characterization and in vitro evaluation. Int J Pharmaceut 400:165–175

    Article  CAS  Google Scholar 

  21. McChalicher CWJ, Srienc F (2007) Investigating the structure–property relationship of bacterial PHA block copolymers. J Biotechnol 132:296–302

    Article  CAS  Google Scholar 

  22. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  23. An B, DesRochers TM, Qin G, Xia X, Thiagarajan G, Brodsky B, Kaplan DL (2013) The influence of specific binding of collagen–silk chimeras to silk biomaterials on hMSC behavior. Biomaterials 34:402–412

    Article  CAS  Google Scholar 

  24. Peng XR, Liu JQ, Han ZH, Yuan XX, Luo HR, Qiu MH (2013) Protective effects of triterpenoids from Ganoderma resinaceum on H2O2-induced toxicity in HepG2 cells. Food Chem 141:920–926

    Article  CAS  Google Scholar 

  25. Pi CC, Chu CL, Lu CY, Zhuang YJ, Wang CL, Yu YH, Wang HY, Lin CC, Chen CJ (2014) Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine 32:401–408

    Article  CAS  Google Scholar 

  26. Lin CH, Sheu GT, Lin YW, Yeh CS, Huang YH, Lai YC, Chang JG, Ko JL (2010) A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process Biochem 45:1537–1542

    Article  CAS  Google Scholar 

  27. Calviño E, Manjón JL, Sancho P, Tejedor MC, Herráez A, Diez JC (2010) Ganoderma lucidum induced apoptosis in NB4 human leukemia cells: involvement of Akt and ERK. J Ethnopharmacol 128:71–78

    Article  Google Scholar 

  28. Wu CS, Lai SM, Liao HT (2002) Graft reaction of acrylic acid onto metallocene based polyethylene–octene elastomer. J Appl Polym Sci 85:2905–2912

    Article  CAS  Google Scholar 

  29. Ye DZ, Jiang L, Ma C, Zhang MH, Zhang X (2014) The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study. Int J Biol Macromol 63:43–48

    Article  CAS  Google Scholar 

  30. Bessadok A, Roudesl S, Marais S, Follain N, Lebrun L (2009) Alfa fibres for unsaturated polyester composites reinforcement: effects of chemical treatments on mechanical and permeation properties. Compos Part A 40:184–195

    Article  Google Scholar 

  31. Dai Y, Lambert L, Yuan Z, Keller J (2008) Microstructure of copolymers of polyhydroxyalkanoates produced by glycogen accumulating organisms with acetate as the sole carbon source. Process Biochem 43:968–977

    Article  CAS  Google Scholar 

  32. Rämänen P, Maunu SL (2014) Structure of tall oil fatty acid-based alkyd resins and alkyd–acrylic copolymers studied by NMR spectroscopy. Prog Org Coat 77:361–368

    Article  Google Scholar 

  33. Mustata F, Bicu I (2010) A novel route for synthesizing esters and polyesters from the Diels–Alder adduct of levopimaric acid and acrylic acid. Eur Polym J 46:1316–1327

    Article  CAS  Google Scholar 

  34. Sever K, Sarikanat M, Seki Y, Erkan G, Erdogan UH, Erden S (2012) Surface treatments of jute fabric: the influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Ind Crop Prod 35:22–30

    Article  CAS  Google Scholar 

  35. Blaauboer ME, Emson CL, Verschuren L, van Erk M, Turner SM, Everts V, Hanemaaijer R, Stoop R (2013) Novel combination of collagen dynamics analysis and transcriptional profiling reveals fibrosis-relevant genes and pathways. Matrix Biol 32:424–431

    Article  CAS  Google Scholar 

  36. Zhao C, Tan A, Pastorin G, Ho HK (2013) Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv 31:654–668

    Article  Google Scholar 

  37. Medberry CJ, Crapo PM, Siu BF, Carruthers CA, Wolf MT, Nagarkar SP, Agrawal V, Jones KE, Kelly J, Johnson SA, Velankar SS, Watkins SC, Modo M, Badylak SF (2013) Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34:1033–1040

    Article  CAS  Google Scholar 

  38. Yunoki S, Matsuda T (2008) Simultaneous processing of fibril formation and cross-linking improves mechanical properties of collagen. Biomacromolecules 9:879–885

    Article  CAS  Google Scholar 

  39. Yang L, Meng L, Zhang X, Chen Y, Zhu G, Liu H, Xiong X, Sefah K, Tan W (2011) Engineering polymeric aptamers for selective cytotoxicity. J Am Chem Soc 133:13380–13386

    Article  CAS  Google Scholar 

  40. Hsu CL, Huang SL, Yen GC (2006) Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity. J Agric Food Chem 54:4191–4197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Ministry of Science and Technology (Taipei City, Taiwan, R.O.C.) for financial support (MOST-103-2621-M-244 -001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-San Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CS. Preparation and characterisation of poly(hydroxyalkanoate)/Ganoderma lucidum fibre composites: mechanical and biological properties. Polym. Bull. 72, 821–837 (2015). https://doi.org/10.1007/s00289-015-1307-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1307-6

Keywords

Navigation