Skip to main content
Log in

Mycobacterium hippocampi sp. nov., a Rapidly Growing Scotochromogenic Species Isolated from a Seahorse with Tail Rot

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-positive, aerobic, non-motile, non-sporulating, acid-fast, and rod-shaped bacterium (BFLP-6T), previously isolated from a seahorse (Hippocampus guttulatus) with tail rot, was studied using a polyphasic taxonomic approach. Growth occurred at 15–35 °C (optimum 25 °C), at pH 5.0–10.0 (optimum pH 7.0) and at NaCl concentrations between 0 and 6 % (w/v). The G+C content of DNA was 66.7 mol%. The predominant fatty acids were C18:1 ω9c, C16:0 and C16:1 ω6c. A mycolic acid pattern of alpha-mycolates and keto-mycolates was detected. Analysis of concatenated sequences (16S rRNA, rpoB, ssrA and tuf genes), and chemotaxonomic and phenotypic features indicated that strain BFLP-6T represents a novel species within the genus Mycobacterium, for which the name Mycobacterium hippocampi sp. nov. is proposed. The type strain is BFLP-6T (=DSM 45391T =LMG 25372T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adékambi T, Colson P, Drancourt M (2003) rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41:5699–5708

    Article  PubMed Central  PubMed  Google Scholar 

  2. Balcázar JL, Planas M, Pintado J (2011) Novel Mycobacterium species in seahorses with tail rot. Emerg Infect Dis 17:1770–1772

    Article  PubMed Central  PubMed  Google Scholar 

  3. Balcázar JL, Pintado J, Planas M (2010) Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol 60:892–895

    Article  PubMed  Google Scholar 

  4. Belas R, Faloon P, Hannaford A (1995) Potential applications of molecular biology to the study of fish mycobacteriosis. Annu Rev Fish Dis 5:133–173

    Article  Google Scholar 

  5. Decostere A, Hermans K, Haesebrouck F (2004) Piscine mycobacteriosis: a literature review covering the agent and the disease it causes in fish and humans. Vet Microbiol 99:159–166

    Article  CAS  PubMed  Google Scholar 

  6. Devulder G, Pérouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302

    Article  CAS  PubMed  Google Scholar 

  7. Falkinham JO III (1996) Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 9:177–215

    PubMed Central  PubMed  Google Scholar 

  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  9. Lambert MA, Moss CW, Silcox VA, Good RC (1986) Analysis of mycolic acid cleavage products and cellular fatty acids of Mycobacterium species by capillary gas chromatography. J Clin Microbiol 23:731–736

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Lee HK, Lee SA, Lee IK, Yu HK, Park YG, Hyun JW, Kim K, Kook YH, Kim BJ (2010) Mycobacterium paraseoulense sp. nov., a slowly growing, scotochromogenic species related genetically to Mycobacterium seoulense. Int J Syst Evol Microbiol 60:439–443

    Article  CAS  PubMed  Google Scholar 

  11. Lévy-Frébault VV, Portaels F (1992) Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species. Int J Syst Bacteriol 42:315–323

    Article  PubMed  Google Scholar 

  12. Mandel M, Igambi L, Bergendahl J, Dodson ML, Scheltgen E (1970) Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Mignard S, Flandrois JP (2007) Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J Med Microbiol 56:1033–1041

    Article  CAS  PubMed  Google Scholar 

  14. Planas M, Chamorro A, Quintas P, Vilar A (2008) Establishment and maintenance of threatened long-snouted seahorse, Hippocampus guttulatus, broodstock in captivity. Aquaculture 283:18–28

    Article  Google Scholar 

  15. Schröder KH, Naumann L, Kroppenstedt RM, Reischl U (1997) Mycobacterium hassiacum sp. nov., a new rapidly growing thermophilic mycobacterium. Int J Syst Bacteriol 47:86–91

    Article  PubMed  Google Scholar 

  16. Springer B, Tortoli E, Richter I, Grünewald R, Rüsch-Gerdes S, Uschmann K, Suter F, Collins MD, Kroppenstedt RM, Böttger EC (1995) Mycobacterium conspicuum sp. nov., a new species isolated from patients with disseminated infections. J Clin Microbiol 33:2805–2811

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Takeuchi M, Hatano K (1998) Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere. Int J Syst Bacteriol 48:907–912

    Article  CAS  PubMed  Google Scholar 

  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. van Ingen J, Boeree MJ, Dekhuijzen PNR, van Soolingen D (2009) Environmental sources of rapid growing nontuberculous mycobacteria causing disease in humans. Clin Microbiol Infect 15:888–893

    Article  PubMed  Google Scholar 

  20. Wallace RJ, Silcox VA, Tsukamura M, Brown BA, Kilburn JO, Butler WR, Onyi G (1993) Clinical significance, biochemical features, and susceptibility patterns of sporadic isolates of the Mycobacterium chelonae-like organism. J Clin Microbiol 31:3231–3239

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by the Spanish Ministry of Science and Innovation (Projects CGL2005-05927-C03-01 and CGL2009-08386) and by the Regional Government Xunta de Galicia (09MDS022402PR). J.L.B. acknowledges receipt of an I3P postdoctoral contract from the Spanish National Research Council (CSIC), co-financed by the European Social Fund. We thank P. Quintas, A. Chamorro, M. Cueto and S. Otero for skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Balcázar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balcázar, J.L., Planas, M. & Pintado, J. Mycobacterium hippocampi sp. nov., a Rapidly Growing Scotochromogenic Species Isolated from a Seahorse with Tail Rot. Curr Microbiol 69, 329–333 (2014). https://doi.org/10.1007/s00284-014-0588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0588-6

Keywords

Navigation