Skip to main content

Advertisement

Log in

Physician centred imaging interpretation is dying out — why should I be a nuclear medicine physician?

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Radiomics, machine learning, and, more generally, artificial intelligence (AI) provide unique tools to improve the performances of nuclear medicine in all aspects. They may help rationalise the operational organisation of imaging departments, optimise resource allocations, and improve image quality while decreasing radiation exposure and maintaining qualitative accuracy. There is already convincing data that show AI detection, and interpretation algorithms can perform with equal or higher diagnostic accuracy in various specific indications than experts in the field. Preliminary data strongly suggest that AI will be able to process imaging data and information well beyond what is visible to the human eye, and it will be able to integrate features to provide signatures that may further drive personalised medicine. As exciting as these prospects are, they currently remain essentially projects with a long way to go before full validation and routine clinical implementation. AI uses a language that is totally unfamiliar to nuclear medicine physicians, who have not been trained to manage the highly complex concepts that rely primarily on mathematics, computer sciences, and engineering. Nuclear medicine physicians are mostly familiar with biology, pharmacology, and physics, yet, considering the disruptive nature of AI in medicine, we need to start acquiring the knowledge that will keep us in the position of being actors and not merely witnesses of the wonders developed by other stakeholders in front of our incredulous eyes. This will allow us to remain a useful and valid interface between the image, the data, and the patients and free us to pursue other, one might say nobler tasks, such as treating, caring and communicating with our patients or conducting research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harvey HB, Liu C, Ai J, Jaworsky C, Guerrier CE, Flores E, et al. Predicting no-shows in radiology using regression modeling of data available in the electronic medical record. J Am Coll Radiol. 2017;14:1303–9.

    PubMed  Google Scholar 

  2. Li X, Wang J, Fung RYK. Approximate dynamic programming approaches for appointment scheduling with patient preferences. Artif Intell Med. 2018;85:16–25.

    PubMed  Google Scholar 

  3. Marella WM, Sparnon E, Finley E. Screening electronic health record-related patient safety reports using machine learning. J Patient Saf. 2017;13:31–6.

    PubMed  Google Scholar 

  4. Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.

    PubMed  Google Scholar 

  5. Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learning approach for (18)F-FDG PET attenuation correction. EJNMMI Phys. 2018;5:24.

    PubMed  PubMed Central  Google Scholar 

  6. Petersen H, Holdgaard PC, Madsen PH, Knudsen LM, Gad D, Gravergaard AE, et al. FDG PET/CT in cancer: comparison of actual use with literature-based recommendations. Eur J Nucl Med Mol Imaging. 2016;43:695–706.

    PubMed  Google Scholar 

  7. Schmidt-Hansen M, Baldwin DR, Hasler E, Zamora J, Abraira V, Roque IFM. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. Cochrane Database Syst Rev. 2014:CD009519.

  8. Helsen N, Van den Wyngaert T, Carp L, Stroobants S. FDG-PET/CT for treatment response assessment in head and neck squamous cell carcinoma: a systematic review and meta-analysis of diagnostic performance. Eur J Nucl Med Mol Imaging. 2018;45:1063–71.

    PubMed  Google Scholar 

  9. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59:1719–28.

    PubMed  Google Scholar 

  10. Huang JY, Huang CK, Yen RF, Wu HY, Tu YK, Cheng MF, et al. Diagnostic performance of attenuation-corrected myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. J Nucl Med. 2016;57:1893–8.

    PubMed  Google Scholar 

  11. Nudi F, Iskandrian AE, Schillaci O, Peruzzi M, Frati G, Biondi-Zoccai G. Diagnostic accuracy of myocardial perfusion imaging with CZT technology: systemic review and meta-analysis of comparison with invasive coronary angiography. JACC Cardiovasc Imaging. 2017;10:787–94.

    PubMed  Google Scholar 

  12. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast Cancer. JAMA. 2017;318:2199–210.

    PubMed  PubMed Central  Google Scholar 

  13. Nishio M, Sugiyama O, Yakami M, Ueno S, Kubo T, Kuroda T, et al. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One. 2018;13:e0200721.

    PubMed  PubMed Central  Google Scholar 

  14. Artzi M, Bressler I, Ben Bashat D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging. 2019. https://doi.org/10.1002/jmri.26643.

    PubMed  Google Scholar 

  15. Gao X, Chu C, Li Y, Lu P, Wang W, Liu W, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol. 2015;84:312–7.

    PubMed  Google Scholar 

  16. Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS One. 2018;13:e0195798.

    PubMed  PubMed Central  Google Scholar 

  17. Choi H, Jin KH. Alzheimer’s disease neuroimaging I. predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.

    CAS  PubMed  Google Scholar 

  18. Kim DH, Wit H, Thurston M. Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nucl Med Commun. 2018;39:887–93.

    PubMed  Google Scholar 

  19. Shibutani T, Nakajima K, Wakabayashi H, Mori H, Matsuo S, Yoneyama H, et al. Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT. Ann Nucl Med. 2019;33:86–92.

    PubMed  Google Scholar 

  20. Cronin P, Dwamena BA, Kelly AM, Carlos RC. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology. 2008;246:772–82.

    PubMed  Google Scholar 

  21. Ruilong Z, Daohai X, Li G, Xiaohong W, Chunjie W, Lei T. Diagnostic value of 18F-FDG-PET/CT for the evaluation of solitary pulmonary nodules: a systematic review and meta-analysis. Nucl Med Commun. 2017;38:67–75.

    PubMed  Google Scholar 

  22. Schwyzer M, Ferraro DA, Muehlematter UJ, Curioni-Fontecedro A, Huellner MW, von Schulthess GK, et al. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks - initial results. Lung Cancer. 2018;126:170–3.

    PubMed  Google Scholar 

  23. Karantanis D, Kalkanis D, Czernin J, Herrmann K, Pomykala KL, Bogsrud TV, et al. Perceived misinterpretation rates in oncologic 18F-FDG PET/CT studies: a survey of referring physicians. J Nucl Med. 2014;55:1925–9.

    CAS  PubMed  Google Scholar 

  24. Wu AW, Cavanaugh TA, McPhee SJ, Lo B, Micco GP. To tell the truth: ethical and practical issues in disclosing medical mistakes to patients. J Gen Intern Med. 1997;12:770–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pinto A, Brunese L, Pinto F, Reali R, Daniele S, Romano L. The concept of error and malpractice in radiology. Semin Ultrasound CT MR. 2012;33:275–9.

    PubMed  Google Scholar 

  26. Degnan AJ, Ghobadi EH, Hardy P, Krupinski E, Scali EP, Stratchko L, et al. Perceptual and interpretive error in diagnostic radiology-causes and potential solutions. Acad Radiol. 2019;26(6):833–845. https://doi.org/10.1016/j.acra.2018.11.006.

    PubMed  Google Scholar 

  27. Balint BJ, Steenburg SD, Lin H, Shen C, Steele JL, Gunderman RB. Do telephone call interruptions have an impact on radiology resident diagnostic accuracy? Acad Radiol. 2014;21:1623–8.

    PubMed  Google Scholar 

  28. Nishikawa RM, Schmidt RA, Linver MN, Edwards AV, Papaioannou J, Stull MA. Clinically missed cancer: how effectively can radiologists use computer-aided detection? AJR Am J Roentgenol. 2012;198:708–16.

    PubMed  Google Scholar 

  29. Iyer RS, Swanson JO, Otto RK, Weinberger E. Peer review comments augment diagnostic error characterization and departmental quality assurance: 1-year experience from a children’s hospital. AJR Am J Roentgenol. 2013;200:132–7.

    PubMed  Google Scholar 

  30. Wolf M, Krause J, Carney PA, Bogart A, Kurvers RH. Collective intelligence meets medical decision-making: the collective outperforms the best radiologist. PLoS One. 2015;10:e0134269.

    PubMed  PubMed Central  Google Scholar 

  31. Geijer H, Geijer M. Added value of double reading in diagnostic radiology, a systematic review. Insights Imaging. 2018;9:287–301.

    PubMed  PubMed Central  Google Scholar 

  32. Ulaner GA, Mannelli L, Dunphy M. Value of second-opinion review of outside institution PET-CT examinations. Nucl Med Commun. 2017;38:306–11.

    PubMed  PubMed Central  Google Scholar 

  33. Kuhl CK, Alparslan Y, Schmoee J, Sequeira B, Keulers A, Brummendorf TH, et al. Validity of RECIST version 1.1 for response assessment in metastatic cancer: a prospective, multireader study. Radiology. 2019;290:349–56.

    PubMed  Google Scholar 

  34. Garcia EV, Klein JL, Moncayo V, Cooke CD, Del’Aune C, Folks R, et al. Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system for myocardial perfusion SPECT imaging. J Nucl Cardiol. 2018. https://doi.org/10.1007/s12350-018-1432-3.

  35. Panayides AS, Pattichis M, Leandrou S, Pitris C, Constantinidou A, Pattichis CS. Radiogenomics for precision medicine with a big data analytics perspective. IEEE J Biomed Health Inform. 2018. https://doi.org/10.1109/JBHI.2018.2879381.

    PubMed  Google Scholar 

  36. Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology. 2018;287:732–47.

    PubMed  Google Scholar 

  37. Jackson P, Hardcastle N, Dawe N, Kron T, Hofman MS, Hicks RJ. Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front Oncol. 2018;8:215.

    PubMed  PubMed Central  Google Scholar 

  38. Kirienko M, Cozzi L, Rossi A, Voulaz E, Antunovic L, Fogliata A, et al. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur J Nucl Med Mol Imaging. 2018;45:1649–60.

    PubMed  Google Scholar 

  39. Hsu CY, Doubrovin M, Hua CH, Mohammed O, Shulkin BL, Kaste S, et al. Radiomics features differentiate between normal and tumoral high-Fdg uptake. Sci Rep. 2018;8:3913.

    PubMed  PubMed Central  Google Scholar 

  40. Deist TM, Dankers F, Valdes G, Wijsman R, Hsu IC, Oberije C, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45:3449–59.

    PubMed  Google Scholar 

  41. Callister ME, Baldwin DR, Akram AR, Barnard S, Cane P, Draffan J, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax. 2015;70(Suppl 2):ii1–ii54.

    PubMed  Google Scholar 

  42. Herder GJ, van Tinteren H, Golding RP, Kostense PJ, Comans EF, Smit EF, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest. 2005;128:2490–6.

    PubMed  Google Scholar 

  43. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369:910–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hainc N, Federau C, Stieltjes B, Blatow M, Bink A, Stippich C. The bright, artificial intelligence-augmented future of neuroimaging reading. Front Neurol. 2017;8:489.

    PubMed  PubMed Central  Google Scholar 

  45. Chan S, Siegel EL. Will machine learning end the viability of radiology as a thriving medical specialty? Br J Radiol. 2019;92:20180416.

    PubMed  Google Scholar 

  46. Hall M. Artificial intelligence and nuclear medicine. Nucl Med Commun. 2019;40:1–2.

    PubMed  Google Scholar 

  47. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6:26094.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude toward Dr. Nadia Withofs for fruitful discussion, and John Bean, for text editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Hustinx.

Ethics declarations

Conflict of interest

The author has received a speaker honorarium from GE Healthcare, outside the scope of this manuscript.

There is no other conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advanced Image Analyses (Radiomics and Artificial Intelligence).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hustinx, R. Physician centred imaging interpretation is dying out — why should I be a nuclear medicine physician?. Eur J Nucl Med Mol Imaging 46, 2708–2714 (2019). https://doi.org/10.1007/s00259-019-04371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04371-y

Keywords

Navigation