Skip to main content
Log in

The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h−1, which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8 %, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1 % more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  • Alshawabkeh AN, Shen Y, Maillacheruvu KY (2004) Effect of DC electric fields on COD in aerobic mixed sludge processes. Environ Eng Sci 21(3):321–329

    Article  CAS  Google Scholar 

  • Cardenas-Robles A, Martinez E, Rendon-Alcantar I, Frontana C, Gonzalez-Gutierrez L (2013) Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation. Bioresour Technol 127:37–43

    Article  CAS  PubMed  Google Scholar 

  • Elias M, Wieczorek G, Rosenne S, Tawfik DS (2013) The universality of enzymatic rate–temperature dependency. Trends Biochem Sci 39:1–7

    Article  PubMed  Google Scholar 

  • Feng HJ, Zhang XQ, Liang YX, Wang MZ, Shen DS, Ding YC, Huang BC, Shentu JL (2014) Enhanced removal of p-fluoronitrobenzene using bioelectrochemical system. Water Res 60:54–63

    Article  CAS  PubMed  Google Scholar 

  • Finne G, Matches JR (1974) Low-temperature-growing clostridia from marine sediments. Can J Microbiol 20(12):1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Fukumori F, Sain CP (1997) Nucleotide, sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). J Bacteriol 179(2):399–408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harder W, Veldkamp H (1967) A continuous culture study of an obligately psychrophilic Pseudomonas species. Arch Mikrobiol 59(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243(3):577–596

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Cheng S, Chen G (2011) Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86:481–491

    Article  CAS  Google Scholar 

  • Kim GT, Webster G, Wimpenny JW, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101:698–710

    Article  CAS  PubMed  Google Scholar 

  • Lewis TA, Goszczynski S, Crawford RL, Koru RA, Admassu RA (1996) Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62:4669–4674

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li T, Farrell J (2000) Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ Sci Technol 34:173–179

    Article  CAS  Google Scholar 

  • Liang B, Cheng HY, Kong DY, Gao SH, Sun F, Cui D, Kong FY, Liu L, Tsyganova O, Lee DJ, Su A, Chang JS, Wang AJ, Ren LQ (2012) Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures. Int J Hydrog Energy 37:15792–15800

    Article  Google Scholar 

  • Liu L, Tsyganova O, Lee DJ, Su A, Chang JS, Wang AJ, Ren LQ (2013) Double-chamber microbial fuel cells started up under room and low temperatures. Int J Hydrog Energy 38:15574–15579

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Maidana M, Carlis V, Galhardi FG, Yunes JS, Geracitano LA, Monserrat JM, Barros DM (2006) Effects of microcystins over short and long-term memory and oxidative stress generation in hippocampus of rats. Chem Biol Interact 159:223–234

    Article  CAS  PubMed  Google Scholar 

  • Masoud W, Takamiya M, Vogensen FK, Lillevang S, Al-Soud WA, Sørensen SJ, Jakobsen M (2011) Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. Int Dairy J 21(3):142–148

    Article  CAS  Google Scholar 

  • Mu Y, Radjenovic J, Shen J, Rozendal RA, Rabaey K, Keller J (2011) Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environ Sci Technol 45:782–788

    Article  CAS  PubMed  Google Scholar 

  • Murphy CD (2010) Biodegradation and biotransformation of organofluorine compounds. Biotechnol Lett 32:351–359

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev 37:308–319

    Article  PubMed  Google Scholar 

  • Papazi A, Kotzabasis K (2008) Inductive and resonance effects of substituents adjust the microalgal biodegradation of toxical phenolic compounds. J Biotechnol 135:366–373

    Article  CAS  PubMed  Google Scholar 

  • Sevda S, Dominguez-Benettonb X, Vanbroekhovenb K, De Weverb H, Sreekrishnana TR, Pant D (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194–206

    Article  CAS  Google Scholar 

  • She P, Song B, Xing XH, van Loosdrecht M, Liu Z (2006) Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current. Biochem Eng J 28:23–29

    Article  CAS  Google Scholar 

  • Shen DS, Zhang XQ, Feng HJ, Zhang K, Wang K, Long YY, Wang MZ, Wang YF (2014) Stimulative mineralization of p-fluoronitrobenzene in biocathode microbial electrolysis cell with an oxygen-limited environment. Bioresour Technol 172:104–111

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  CAS  PubMed  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. IJSEM 53(4):1019–1029

    CAS  PubMed  Google Scholar 

  • Sudarno U, Winter J, Gallert C (2011) Effect of varying salinity, temperature, ammonia and nitrous acid concentrations on nitrification of saline wastewater in fixed-bed reactors. Bioresour Technol 102:5665–5673

    Article  CAS  PubMed  Google Scholar 

  • Tanisho S, Kamiya N, Wakao N (1989) Microbial fuel cell using Enterobacter aerogenes. Bioelectrochem Bioenerg 275(1):25–32

    Article  Google Scholar 

  • Thrash JC, Coates J (2008) Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42:3921–3931

    Article  CAS  PubMed  Google Scholar 

  • Vargas C, Song B, Camps M, Häggblom MM (2000) Anaerobic degradation of fluorinated aromatic compounds. Appl Microbiol Biotechnol 53(3):342–347

    Article  CAS  PubMed  Google Scholar 

  • Wang AJ, Cheng HY, Liang B, Ren NQ, Cui D, Lin N, Kim BH, Rabaey K (2011) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 45:10186–10193

    Article  CAS  PubMed  Google Scholar 

  • Wu HZ, Wei CZ, Wang YQ, He QC, Liang SZ (2009) Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1. J Environ Sci 21:89–95

    Article  CAS  Google Scholar 

  • Zhang CJ, Zhou Q, Ling CZ, Wu C, Xu B (2007) Biodegradation of meta-fluorophenol by an acclimated activated sludge. J Hazard Mater 141:295–300

    Article  CAS  Google Scholar 

  • Zhang J, Cao Z, Zhang H, Zhao L, Sun X, Mei F (2013) Degradation characteristics of 2, 4-dichlorophenoxyacetic acid in electro-biological system. J Hazard Mater 262:137–142

    Article  CAS  PubMed  Google Scholar 

  • Zhang XQ, Feng HJ, Wang MZ, Ying J, Wan HZ, Shen DS, Huang BC, Ding YC (2014) The effect of electricity on 2-fluoroaniline removal in a bioelectrochemically assisted microbial system (BEAMS). Electrochim Acta 135:439–446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (51478431), a Science and Technology Planning Project from the Science and Technology Department in Zhejiang Province (2013C33004 and 2014C33028), a Postgraduate Technology Innovation Project from Zhejiang Gongshang University (1260XJ1513144), and a project from the Zhejiang Province education department (2014R408087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Feng, H., Liang, Y. et al. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures. Appl Microbiol Biotechnol 99, 4485–4494 (2015). https://doi.org/10.1007/s00253-014-6357-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6357-4

Keywords

Navigation