Skip to main content
Log in

Enrichment and properties of an anaerobic mixed culture that reductively deiodinates 5-amino-2,4,6-triiodoisophthalic acid, an X-ray contrast agent precursor

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

5-Amino-2,4,6-triiodoisophthalic acid (ATIA), both a precursor and a degradative intermediate of triiodinated contrast media, was anaerobically converted by sludge from a wastewater treatment plant. ATIA conversion took place only when an electron donor such as ethanol was added. A stable mixed culture was established by transfer to a defined synthetic mineral medium with ATIA and ethanol. It could be maintained for 1 year when the sulfate concentration was kept below 30 µM. Transient appearance of 5-amino-2,4-diiodoisophthalic acid, iodide release (2.7 mol iodide/mol ATIA) and accumulation of 5-aminoisophthalic acid indicated that ATIA was reductively dehalogenated. The enriched mixed culture also dehalogenated ATIA derivatives but deiodination remained incomplete. ATIA was the sole terminal electron acceptor used by the mixed culture during deiodination. The ratio of electrons transferred to ATIA, 0.83, was consistent with a respiratory metabolism. Formate, acetate, lactate, butyrate and hydrogen were also used as electron donors. Deiodination was inhibited by a headspace of air or by addition of nitrate, sulfite or thiosulfate. The reaction was 2.6 times slower with sulfate than without.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3. A
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Adrian L, Manz W, Szewzyk U, Görisch H (1998) Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64:496–503

    CAS  PubMed  Google Scholar 

  • Borraccino R (1997) PhD thesis. Université de Technologie de Compiègne, France

  • Bouchard B, Beaudet R, Villemur R, McSween G, Lepine F, Bisaillon JG (1996) Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Syst Bacteriol 46:1010–1015

    CAS  PubMed  Google Scholar 

  • Boyle AW, Knight VK, Häggblom MM, Young LY (1999a) Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments: effects of sulfate, hydrogen and acetate on dehalogenation and side-chain cleavage. FEMS Microbiol Ecol 29:105–113

    Article  CAS  Google Scholar 

  • Boyle AW, Phelps CD, Young LY (1999b) Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl Environ Microbiol 65:1133–1140

    CAS  PubMed  Google Scholar 

  • Commandeur LCM, Parsons JR (1990) Degradation of halogenated aromatic compounds. Biodegradation 1:207–220

    CAS  PubMed  Google Scholar 

  • DeWeerd KA, Suflita JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of "Desulfomonile tiedjei". Appl Environ Microbiol 56:2999–3005

    CAS  Google Scholar 

  • Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153:264–266

    CAS  PubMed  Google Scholar 

  • Erbe T, Kümmerer K, Gartiser S, Brinker L (1998) Röntgenkontrastmittel, Quelle für die AOX-Belastung des Abwassers durch Krankenhäuser. Fortschr Roentgenst 169:420–423

    CAS  Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microb Rev 58:641–685

    CAS  Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72

    Article  Google Scholar 

  • Häggblom MM, Rivera MD, Young LY (1993) Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol 59:1162–1167

    PubMed  Google Scholar 

  • Häggblom MM, Rivera MD, Young LY (1996) Anaerobic degradation of halogenated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples. FEMS Microbiol Lett 144:213–219

    Article  PubMed  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

    CAS  Google Scholar 

  • Horowitz A, Suflita JM, Tiedje JM (1983) Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl Environ Microbiol 45:1459–1465

    CAS  Google Scholar 

  • Juteau P, Beaudet R, McSween G, Lépine F, Milot S, Bisaillon J-G (1995) Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium. Appl Microbiol Biotechnol 44:218–224

    Article  CAS  Google Scholar 

  • Kalsch W (1999) Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide. Sci Total Environ 225:143–153

    Article  CAS  PubMed  Google Scholar 

  • Kazumi J, Häggblom MM, Young LY (1995) Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors. Appl Microbiol Biotechnol 43:929–936

    Google Scholar 

  • Kleerebezem R, Hulshoff Pol LW, Lettinga G (1999) Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65:1152–1160

    CAS  PubMed  Google Scholar 

  • Knackmuss H-J (1997) Integrated anaerobic/aerobic processes for the elimination of electron deficient xenobiotic compounds. Int Symp Environ Biotechnol 1:89–93

    Google Scholar 

  • Kohring GW, Zhang X, Wiegel J (1989) Anaerobic dechlorination of 2,4-dichlorophenol in fresh water sediments in the presence of sulfate. Appl Environ Microbiol 55:2735–2737

    CAS  PubMed  Google Scholar 

  • Kuhn EP, Townsend GT, Suflita JM (1990) Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl Environ Microbiol 56:2630–2637

    CAS  Google Scholar 

  • Linkfield TG, Suflita JM, Tiedje JM (1989) Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Appl Environ Microbiol 55:2773–2778

    CAS  PubMed  Google Scholar 

  • Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056

    PubMed  Google Scholar 

  • Madsen T, Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol 57:2453–2458

    CAS  Google Scholar 

  • Madsen T, Licht D (1992) Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol 58:2874–2878

    CAS  PubMed  Google Scholar 

  • Mikesell MD, Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol 52:861–865

    CAS  PubMed  Google Scholar 

  • Mohn WW, Kennedy KJ (1992) Limited degradation of chlorophenols by anaerobic sludge granules. Appl Environ Microbiol 58:2131–2136

    CAS  PubMed  Google Scholar 

  • Olesky-Frenzel J, Wischnack S, Jekel M (1995) Bestimmung der organischen Gruppenparameter AOCl, AOBr und AOI in Kommunalabwasser. Vom Wasser 85:59–67

    CAS  Google Scholar 

  • Peterson, GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    CAS  PubMed  Google Scholar 

  • Putschew A, Wischnack S, Jekel M (2000) Occurrence of triiodinated X-ray contrast agents in the aquatic environment. Sci Total Environ 255:129–134

    Article  CAS  PubMed  Google Scholar 

  • Razo-Flores E, Luijten M, Donlon BA, Lettinga G, Field JA (1997) Complete biodegradation of the azo dye azodisalicylate under anaerobic conditions. Environ Sci Technol 31:2098–2103

    Article  CAS  Google Scholar 

  • Rode U, Müller R (1998) Transformation of ionic X-ray contrast agent diatrizoate and related triiodinated benzoates by Trametes versicolor. Appl Environ Microbiol 64:3114–3117

    CAS  PubMed  Google Scholar 

  • Sahm H, Brunner M, Schoberth SM (1986) Anaerobic degradation of halogenated aromatic compounds. Microb Ecol 12:147–153

    CAS  Google Scholar 

  • Sanford RA, Cole JR, Löffler FE, Tiedje JM (1996) Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808

    CAS  PubMed  Google Scholar 

  • Sharak Genthner, BR, Allen Price II W, Pritchard PH (1989) Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl Environ Microbiol 55:1466–1471

    CAS  Google Scholar 

  • Slater JH, Bull AT, Hardman DJ (1995) Microbial dehalogenation. Biodegradation 6:181–189

    CAS  Google Scholar 

  • Steger-Hartmann T, Länge R, Schweinfurth H (1999) Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide (Ultravist). Ecotoxicol Environ Saf 42:274–281

    Article  CAS  PubMed  Google Scholar 

  • Steger-Hartmann T, Länge R, Schweinfurth H, Tschampel M, Rehmann I (2002) Investigations into the environmental fate and effects of iopromide (ultravist), a widely used iodinated X-ray contrast medium. Water Res 36:266–274

    Article  CAS  PubMed  Google Scholar 

  • Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation for haloaromatic compounds. Science 218:1115–1117

    CAS  Google Scholar 

  • Suflita JM, Robinson JA, Tiedje JM (1983) Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl Environ Microbiol 45:1466–1473

    CAS  Google Scholar 

  • Ternes T, Hirsch R (2000) Occurrence and behaviour of X-ray contrast media in sewage facilities and the aquatic environment. Environ Sci Technol 34:2741–2748

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Microbiol Rev 41:100–180

    CAS  Google Scholar 

  • Townsend GT, Ramanet K, Suflita JM (1997) Reductive dehalogenation and mineralization of 3-chlorobenzoate in the presence of sulfate by microorganisms from a methanogenic aquifer. Appl Environ Microbiol 63:2785–2791

    CAS  Google Scholar 

  • Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619

    CAS  PubMed  Google Scholar 

  • Van der Woude BJ, Gerittse J, Prins RA, Gottschal JC (1996) Extent of reductive dechlorination of chlorobenzoates in anoxic sediment slurries depends on the sequence of chlorine removal. Environ Sci Technol 30:1352–1357

    Article  Google Scholar 

  • Xun L, Orser CS (1991) Biodegradation of triiodophenol by cell-free extracts of a pentachlorophenol-degrading Flavobacterium sp. Biochem Biophys Res Commun 174:43–48

    CAS  PubMed  Google Scholar 

  • Zhang X, Wiegel J (1990) Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl Environ Microbiol 56:1119–1127

    CAS  PubMed  Google Scholar 

  • Ziegler M, Schulze-Karal C, Steiof M, Rüden H (1997) Reduzierung des AOX-Fracht von Krankenhäusern durch Minimierung des Eintrags iodorganischer Röntgenkontrastmittel. Korrespondenz Abwasser 44:1404–1408

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Guerbet Group and ANVAR. We thank the Guerbet Group for technical assistance and for providing standard compounds. The experiments comply with the current laws of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Lebeault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecouturier, D., Rochex, A. & Lebeault, JM. Enrichment and properties of an anaerobic mixed culture that reductively deiodinates 5-amino-2,4,6-triiodoisophthalic acid, an X-ray contrast agent precursor. Appl Microbiol Biotechnol 62, 550–556 (2003). https://doi.org/10.1007/s00253-003-1296-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1296-5

Keywords

Navigation