Skip to main content
Log in

Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We introduce the concept of localizable solutions of parabolic obstacle problems of p-Laplace-type with highly irregular obstacles and provide corresponding existence results. The main new feature of the constructed solutions is that they solve the problem locally, which is the appropriate notion for the examination of local properties like regularity. As an application, we derive Calderón–Zygmund estimates for the spatial gradient of localizable solutions to parabolic obstacle problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt H., Luckhaus S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Lions, J.: Applications of Variational Inequalities in Stochastic Control. Studies in Mathematics and its Applications, vol. 12. North-Holland, Amsterdam–New York (1982)

  4. Boccardo L., Cirmi G.: Existence and uniqueness of solution of unilateral problems with L 1 data. J. Convex Anal. 6(1), 195–206 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Bögelein V.: Higher integrability for weak solutions of higher order degenerate parabolic systems. Ann. Acad. Sci. Fenn. Math. 33(2), 387–412 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Bögelein, V., Duzaar, F., Mingione, G.: Degenerate problems with irregular obstacles. J. Reine Angew. Math. (Crelles J.) 650, 107–160 (2011). doi:10.1515/CRELLE.2011.006

  7. Bögelein V., Parviainen M.: Self-improving property of nonlinear higher order parabolic systems near the boundary. NoDEA, Nonlinear Differ. Equ. Appl. 17(1), 21–54 (2010)

    Article  MATH  Google Scholar 

  8. Bögelein, V., Scheven, C.: Higher integrability in parabolic obstacle problems. Forum Math. 24(5), 931–972 (2012). doi:10.1515/form.2011.091

  9. Brézis H.: Problèmes unilatéraux. J. Math. Pures Appl. 51(9), 1–168 (1972)

    MathSciNet  MATH  Google Scholar 

  10. Brézis H.: Un problème d’evolution avec contraintes unilatérales dépendant du temps. C. R. Acad. Sci. Paris 274, A310–A312 (1972)

    Google Scholar 

  11. Byun S., Wang L.: Elliptic equations with measurable coefficients in Reifenberg domains. Adv. Math. 225(5), 2648–2673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byun S., Ok J., Ryu S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Byun S., Cho Y., Wang L.: Calderón–Zygmund theory for nonlinear elliptic problems with irregular obstacles. J. Funct. Anal. 263(10), 3117–3143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli L., Peral I.: On W 1,p estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Calderón, A.: Lebesgue spaces of differentiable functions and distributions. In: Proc. Symp. Pure Math. vol. 4, pp. 33–49, AMS, Providence (1961)

  16. Charrier P., Troianiello G.: On strong solutions to parabolic unilateral problems with obstacle dependent on time. J. Math. Anal. Appl. 65, 110–125 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext, Springer, New York (1993)

  18. DiBenedetto E., Friedman A.: Regularity of solutions of nonlinear degenerate parabolic systems. J. Reine Angew. Math. 349, 83–128 (1984)

    MathSciNet  MATH  Google Scholar 

  19. DiBenedetto E., Manfredi J.: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115(5), 1107–1134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duzaar, F., Mingione, G., Steffen, K.: Parabolic systems with polynomial growth and regularity. Mem. Am. Math. Soc. 214(1005) (2011)

  21. Elcrat A., Meyers N.: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. Duke Math. J. 42, 121–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gehring F.W.: The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. In: Annals of Mathematical Studies, vol. 105. Princeton University Press, Princeton (1983)

  24. Giusti E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  25. Hajłasz P., Martio O.: Traces of Sobolev functions on fractal type sets and characterization of extension domains. J. Funct. Anal. 143, 221–246 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Oxford University Press, New York (1993)

  27. Iwaniec T.: Projections onto gradient fields and L p-estimates for degenerated elliptic operators. Stud. Math. 75, 293–312 (1983)

    MathSciNet  MATH  Google Scholar 

  28. Jones P.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kilpeläinen T., Lindqvist P.: On the Dirichlet boundary value problem for a degenerate parabolic equation. SIAM J. Math. Anal. 27(3), 661–683 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Pure and Applied Mathematics, vol. 88. Academic Press, New York–London (1980)

  31. Kinnunen J., Lewis J.: Higher integrability for parabolic systems of p-Laplacian type. Duke Math. J. 102, 253–271 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kinnunen J., Lindqvist P.: Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. IV 185(3), 411–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kinnunen J., Zhou S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equ. 24(11–12), 2043–2068 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kinnunen J., Zhou S.: A boundary estimate for nonlinear equations with discontinuous coefficients. Differ. Int. Equ. 14(4), 475–492 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Lewy H., Stampacchia G.: On existence and smoothness of solutions of some non-coercive variational inequalities. Arch. Rat. Mech. Anal. 41, 241–253 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions J.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  37. Lions J., Stampacchia G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meyers N., Serrin J.: H = W. Proc. Natl. Acad. Sci. USA 51, 1055–1056 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mignot F., Puel J.: Inéquations d’évolution paraboliques avec convexes dépendant du temps. Applications aux inéquations quasi variationnelles d’évolution. Arch. Rational Mech. Anal. 64(1), 59–91 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  40. Naumann J.: Einführung in die Theorie parabolischer Variationsungleichungen. Teubner, Leipzig (1984)

    MATH  Google Scholar 

  41. Parviainen M.: Global gradient estimates for degenerate parabolic equations in nonsmooth domains. Ann. Mat. Pura Appl. IV 188(2), 333–358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Scheven, C.: Potential estimates in parabolic obstacle problems. Ann. Acad. Sci. Fenn. Math. 37, 415–443 (2012). doi:10.5186/aasfm.2012.3730

  43. Scheven C.: Regularity for subquadratic parabolic systems: higher integrability and dimension estimates. Proc. R. Soc. Edinb. 140, 1269–1308 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Scheven C.: Nonlinear Calderón–Zygmund theory for parabolic systems with subquadratic growth. J. Evol. Equ. 10(3), 597–622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Scheven C., Schmidt T.: Asymptotically regular problems I: higher integrability. J. Differ. Equ. 248(4), 745–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Showalter R.: Monotone Operators in Banach space and Nonlinear Partial differential Equations. Teubner, Providence, RI (1997)

  47. Stein E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Scheven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheven, C. Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles. manuscripta math. 146, 7–63 (2015). https://doi.org/10.1007/s00229-014-0684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0684-8

Mathematics Subject Classification (2010)

Navigation