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Abstract
We consider a setting with agents that have preferences over alternatives and are parti-
tioned into disjoint districts. The goal is to choose one alternative as the winner using
a mechanism which first decides a representative alternative for each district based on
a local election with the agents therein as participants, and then chooses one of the dis-
trict representatives as the winner. Previous work showed bounds on the distortion of a
specific class of deterministic plurality-based mechanisms depending on the available
information about the preferences of the agents in the districts. In this paper, we first
consider the whole class of deterministic mechanisms and show asymptotically tight
bounds on their distortion. We then initiate the study of the distortion of randomized
mechanisms in distributed voting and show bounds based on several informational
assumptions, which in many cases turn out to be tight. Finally, we also experimentally
compare the distortion of many different mechanisms of interest using synthetic and
real-world data.

Keywords Distortion · Districts · Mechanism design · Randomization

1 Introduction

Voting is a ubiquitous method for making decisions with a large number of applica-
tions, such as electing political representatives, deciding how to split a public budget
between projects, or choosing which services (restaurants, hotels, etc) to recommend
to new users based on past user experiences. As such, it has been at the epicenter of
research within multiple disciplines including political sciences, economics and com-
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puter science [1]. The most prominent question in this research agenda is to identify
the best voting rule to use to collectively aggregate the preferences of agents over
alternative options into a single winning alternative, with most of the earlier literature
focusing on axiomatic properties that good voting rules should have. An alternative
way to tackle this question that has been proposed in computer science is through the
distortion framework [2] which allows to compare different voting rules based on how
well they approximate the optimal choice as measured in terms of a social objective
function like the utilitarian social welfare.

Since its inception in 2006 by [3], the distortion framework has been applied to
several utilitarian social choice settings (e.g., [4–6]). The lion’s share of previous work
has focused on centralized models with a single pool of agents whose preferences are
directly given as input to a voting rule, which thus can utilize all the given informa-
tion at once to make a decision. However, there are many applications with multiple
pools of agents which make independent local decisions that can be thought of as
recommendations for the final decision. To give a concrete example, in many political
election systems, the citizens are partitioned into districts based on geographic or other
criteria, and vote within their districts to propose the candidate (party) they would like
to be selected as the winner.

Inspired by situations like the one described above, [7] initiated the study of the
distortion of mechanisms in a distributed single-winner setting where a set of n agents
with normalized cardinal values (summingup to1) over a set ofm alternatives are parti-
tioned into k disjoint districts. The authors focused on deterministicmechanisms of the
formPlurality- of- f , whichfirst choose a representative alternative for each district
according to some rule f , by holding a local election with the agents of the district as
the voters, and then picking the winner to be the alternative that is representative of the
most districts (i.e., using the Plurality rule). [7] considered mechanisms for which
the rule f can be cardinal or ordinal, i.e., it may use the actual numerical information
about the preferences of the agents within the districts or just consistent rankings. The
authors showed that, when the districts are symmetric (that is, each of themcontains the
same number of agents), the distortion of a cardinal mechanism, namely Plurality-
of- Range- Voting is O(km), and provided an asymptoticallymatching lower bound
of �(km) on the distortion of any Plurality- of- f mechanism. For ordinal mecha-
nisms, they showed that Plurality- of- Plurality achieves a distortion of O(km2),
and that this is asymptotically best among all ordinal Plurality- of- f mechanisms.

1.1 Revisiting the Distortion of DistributedVoting

A first observation about the results of [7] is that there is a-priori no reason to
restrict our attention to only mechanisms in the class Plurality- of- f , as using
other over-districts rules could potentially lead to better distortion. Indeed, follow-
up work considered distributed social choice settings with metric preferences [8–11]
without such restrictions on the over-districts rule. In addition, all of the previous work
on these settings only considered deterministic mechanisms that use deterministic in-
district and over-districts rules. Randomization has proven out to be a very useful tool
in achieving better (expected) distortion bounds in the centralized setting (see [4, 12]),
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so it is only natural to consider randomized mechanisms in the distributed setting as
well. Finally, an important question is how the distortion bounds are affected in case
the participants act selfishly, and whether there are strategyproof mechanisms with
good distortion bounds. This question has been considered in the centralized setting
[12–15] and also in the distributed metric setting [9]; we consider it in the context of
the normalized setting of [7] as well.

1.2 Our Contributions

We consider the class of all mechanisms for distributed voting in the setting of [7]. In
particular, we consider the fover-of- fin class of mechanisms, where fin is an in-district
rule that takes as input the preferences of the agents within each district and outputs
a representative alternative for the district, while fover is a rule that takes as input
the representative alternatives of all districts and chooses one of them as the overall
winner. We consider several different cases depending on the nature of fover and fin
(deterministic or randomized), and the type of information they can utilize (cardinal
or ordinal). We show the following results; see Table 1 for an overview.

Deterministic Mechanisms When fover and fin are both deterministic and the districts
are symmetric, we show that the best possible distortion is �(km) when the valuation
functions of the agents are accessible (cardinal mechanisms), and is �(km2) when
only ordinal information about the preferences of the agents is available (ordinalmech-
anisms). The upper bounds were shown by [7] and here we provide asymptotically
tight lower bounds. These results show that for general, unstructured (normalized) val-
uations, employing different over-district rules in fact does not result in improvements
on the distortion. We present these results in Section 3.

Randomized Mechanisms In Section 4, we consider for the first time the distortion
of randomized mechanisms in distributed voting. We first prove a simple composition
theorem, which shows that using an in-district rule with known distortion δ in the
centralized setting and then selecting the winner uniformly at random from the set
of representatives, defines a distributed mechanism with distortion O(kδ). Using this,
complemented with new lower bounds, we show that the best possible distortion for
cardinal unanimous mechanisms is �(k); in fact, this is true even when the districts
are asymmetric and when fover is randomized but fin is deterministic.

Table 1 An overview of our results. Specific details can be found in the appropriate sections

Deterministic Randomized-of-Deterministic Randomized-of-Randomized

Cardinal �(km) �(k) �(k)

Ordinal �(km2) �(km2) �(
√
m), O(

√
m logm)

Strategyproof �(nm) �(nm) �(
√
m), O(

√
m logm)
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For ordinal mechanisms, we consider two cases: (a) mechanisms that use determin-
istic in-district rules fin, and (b) fully-randomized mechanisms, where both fover and
fin are randomized rules. For (a), we show that the best possible distortion is�(km2).
The upper bound follows from the bound on Plurality- of- Plurality proven in
[7]; here, we provide an asymptotically matching lower bound assuming a natural uni-
versal tie-breaking rule. For (b), we prove a simple but very interesting result: For a
well-studied class of randomized centralized voting rules called point-voting schemes
(e.g., see [16, 17]), there exists a distributed implementation so that there is no effect on
the induced probability distribution, even for asymmetric districts. Simply put, using
such rules it is possible to escape the ill effects of districts in terms of the distortion,
even when the districts are asymmetric. From this result, it follows that there exists a
distributed implementation of a well-known mechanism of [4] that achieves distortion
O(

√
m logm), almost matching the best possible lower bound of �(

√
m).

StrategyproofMechanisms For strategyproof mechanisms, which are resilient to pos-
sible strategic manipulations, we show that a best-possible distortion bound of�(nm)

for deterministic mechanisms (and more generally mechanisms with a deterministic
in-district rule) is easy to achieve by a variation of a dictatorship rule. For randomized
mechanisms, since point-voting schemes are strategyproof, the bound O(

√
m logm)

carries over to this class as well. Results about deterministic strategyproof mecha-
nisms are presented in Section 3, and about randomized strategyproof mechanisms in
Section 4. Interestingly, these bounds match the best possible ones for strategyproof
centralized mechanisms.

Experiments Finally, in Section 5, we perform indicative experiments using real-
world data and synthetic data to evaluate the effect of distributed decision making to
the distortion in settings closer to practice. The main conclusions of our experimental
results mirror that of our theoretical results in Sections 3 and 4.

1.3 Further RelatedWork

The distortion literature is by now rather extensive, including topics such as single-
winner voting [4–6, 18], multi-winner voting [19, 20], matching problems [21, 22],
and participatory budgeting [23]. Generally speaking, to avoid unbounded distortion
when the cardinal preferences are highly unstructured, most works can be categorized
as either studying a normalized utilitarian setting (e.g., [3, 4, 12, 21, 23]) or a metric
preference setting (e.g., [5, 6, 18, 20, 24]). Some more recent works have also studied
the interplay between information and distortion [22, 25–30], and there have also been
several works on strategyproofness in the context of distortion [12–15, 21]. We refer
the reader to the survey of [2] for a detailed overview of the related literature.

Besides the aforementioned works on distributed voting, [31] studied a related two-
stage setting in which the voters participate in a central election, but the candidates
themselves come from local elections within the political parties’ electorates. Beyond
distortion, in the context of district-based elections, there have also been other works
that have considered the degree of deviation from proportional representation (e.g.,
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see [32] and references therein), and some works that have studied the complexity of
manipulation (e.g., see [33–36]).

2 Preliminaries

An instance I of our problem is given by a tuple I = (N , A, v, D). There is a
set N of n agents (or voters) that have preferences over a set A of m alternatives
(or candidates). The preferences of each agent i ∈ N are captured by a valuation
function vi : A → R≥0 that maps every alternative a ∈ A to a real non-negative
value vi (a) = via . Following previous work, we assume that the valuation functions
are normalized such that

∑
a∈A via = 1 for every i ∈ N (unit-sum assumption). Let

v = (vi )i∈N be the valuation profile consisting of the valuation functions of all agents.
The agents are also partitioned into a set D of k disjoint districts.

For every districtd ∈ D, let Nd be the set of agents it contains, such that
⋃

d∈D Nd =
N . In the symmetric case, each district d contains exactly λ = n/k agents. In the
asymmetric case, each district d contains a number nd of agents. All our lower bounds
follow by instances consisting of symmetric districts, whereas our upper bounds in
Section 4 hold for asymmetric districts.

2.1 Mechanisms

Our goal is to choose an alternative to satisfy several criteria of interest. This choice
must be done using a distributed mechanism that uses an in-district voting rule fin and
an over-districts voting rule fover to implement the following two independent steps:

• Step 1: For each district d, choose a representative alternative ad ∈ A by holding
a local election based on fin.

• Step 2: Choose a district representative as the winner based on fover by considering
the districts as voters and their representatives as the candidates they approve.

For simplicity we refer to such mechanisms as fover -of- fin . Different choices of
fin and fover lead to different distributed mechanisms. Note that the in-district rule
can in general use various types of information about the preferences of the agents.
For instance, it may be able to use exact cardinal information about the valuation
functions, or only ordinal information that is induced by the values (i.e., rankings of
alternatives that are consistent to the values of the agents for them). In the latter case,
we will use σi to denote the preference ranking of agent i ∈ N so that σi (a) is the
rank of alternative a ∈ A in the ranking of i , and σi (a) < σi (b) if vi (a) ≥ vi (b);
let σ = (σi )i∈N be the ordinal profile consisting of the preference rankings of all
agents. To be concise in the definitions below, let δ(I ) be the information about the
preferences of the agents in instance I = (N , A, v, D) that is used by a mechanism;
that is, δ(I ) = v in case of cardinal information, or δ(I ) = σ in case of ordinal
information.
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We will focus on different classes of distributed mechanisms depending on the
available information about the preferences of the agents at the district level (cardinal or
ordinal), and also onwhether their decision is deterministic or randomized (that is, they
choose the district representatives or final winner based on probability distributions).

2.2 SocialWelfare and Distortion

Given an instance I , the social welfare of an alternative a ∈ A is the total value that
the agents have for a, that is, SW(a|I ) = ∑

i∈N via . So, the expected social welfare
achieved by a randomized distributed mechanism M that chooses alternative a ∈ A
as the winner w with probability PrM [w = a] is

E[SW(M(I ))] =
∑

a∈A

Pr
M

[w = a] · SW(a|I ).

The efficiency of a distributed mechanism is measured by the notion of distortion.
The distortion of a distributed mechanism M is the worst-case ratio (over all possible
instances with n agents,m alternatives, and k districts) of the maximum social welfare
achieved by any alternative over the (expected) social welfare of the alternative chosen
by the mechanism as the winner w, that is,

dist(M) = sup
I

maxa∈A SW(a|I )
E[SW(M(δ(I ))] .

Clearly, dist(M) ≥ 1.When the denominator in the definition of the distortion tends
to 0, we will say that the distortion is infinite or unbounded. Our goal is to identify the
best possible distributed mechanisms in terms of distortion.

2.3 Strategyproofness

Another important property that we would like our mechanisms to satisfy is that of
strategyproofness. A strategyproof mechanism makes decisions such that providing
false information never leads to the selection of an alternative that an agent prefers
over the alternative chosen when the agent provides truthful information. In particular,
for any instance I , it must be the case that vi (M(δ(I ))) ≥ vi (M(δ(I ′))) for any agent
i ∈ N , where I ′ is the instance obtainedwhen only agent i reports information different
than that in I .

2.4 Some Useful Observations and Properties

Before we present our technical results, let us briefly discuss some useful properties.

Locality of Distributed Mechanisms First, observe that any distributed mechanism
fover-of- fin satisfies a locality property in the following sense. A district d (that is, the
preferences of a number of agents) appears in different instances if in each of these
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instances there is a district with the same number of agents and the same information
about their preferences as ind (dependingonwhat is requiredby themechanism). Since
the information is the same, the in-district rule fin must decide the same alternative as
the representative of the district in all these instances. Similarly, in all instances where
the mechanism has decided the same set of district representatives, the over-districts
rule fover must decide the same final winner.

Distortion of Distributed vs Centralized Another useful observation is that the dis-
tortion of a distributed mechanism fover-of- fin is at least as much as the distortion
of the in-district centralized voting rule fin. Indeed, when k = 1, there is only one
representative alternative chosen by fin, and thus this alternative must be chosen as the
winner by fover; this is also true for instances with k ≥ 2 districts which are all copies
of one district. Consequently, the distortion of fin is a lower bound on the distortion
of fover-of- fin.

Strategyproofness Observe that for a distributed mechanism fover-of- fin to be strate-
gyproof it is necessary that the in-district rule fin is strategyproof. This again follows
by how the mechanism would work in instances with a single district, in which case
the over-districts rule fover does not play any role in the selection of the final winner.

Unanimity A few of our results will require the in-district rules fin to be unanimous.
Unanimity stipulates that if all of the agents have the same alternative as the top prefer-
ence, that alternative must be selected (with probability 1). Unanimity is a very natural
property of “reasonable” voting rules, especially deterministic ones. For randomized
rules, there might be reasons to consider non-unanimous choices, e.g., see [13, 16].

3 Deterministic Mechanisms

We start with deterministic distributed mechanisms and focus explicitly on the case
of symmetric districts in this section (that is, the size of each district is λ). When full
information about the valuations of the agents is known at the district level, [7] showed
that the mechanism Plurality- of- Range- Voting, which chooses the representa-
tive of each district to be the alternative with maximum social welfare for the agents in
the district, has distortion O(km). We show that this mechanism is asymptotically best
possible over all possible deterministic distributed mechanisms that use unanimous
in-district rules (but may not use Plurality as the over-districts rule).

Theorem 3.1 The distortion of any deterministic distributed mechanism with a unan-
imous in-district rule is �(km).

Proof Let M be some deterministic distributed mechanism with a unanimous in-
district rule. Without loss of generality, whenever there are k distinct district
representatives {a1, . . . , ak}, we assume that M chooses a1 as the overall winner.
Let ε > 0 be some positive infinitesimal and consider the following instance with k
districts {d1, . . . , dk} and m > k alternatives:
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• In district d1, all agents have value 1/m + ε for alternative a1, and value 1/m −
ε/(m − 1) for any other alternative.

• For any � ∈ {2, . . . , k}, in district d�, all agents have value 1/2+ ε for alternative
a�, value 1/2 − ε for alternative x , and value 0 for any other alternative.

Since the in-district rule is unanimous, the district representatives are alternatives
{a1, . . . , ak}, and the overall winner is thus a1. The social welfare of alternative a1
is approximately λ/m, whereas the social welfare of alternative x is approximately
k · λ/2, leading to distortion �(km). �

When only ordinal information about the preferences of the agents is available,
[7] showed that Plurality- of- Plurality, which chooses the favorite alternative
of most of the agents in a district as its representative and then the alternative that
represents the most districts as the winner, has distortion O(km2). We show that this
mechanism is asymptotically best possible among all ordinal distributed mechanisms
(without any restrictions), thus improving upon the result of [7] who showed that
Plurality- of- Plurality is best possible only within the class of mechanisms they
studied.

We first prove an easy but important lemma showing that when only ordinal infor-
mation is available, to achieve finite distortion, it is necessary the representative of
each district to be some alternative that is the favorite of at least one agent in the
district.

Lemma 3.2 The representative of any district must be some top-ranked alternative,
otherwise the distortion is infinite.

Proof Let d be a district and let T be the set of top-ranked alternatives. Suppose that
the representative of d is chosen to be some alternative x /∈ T . Then, in any instance
consisting of copies of d, the winner must be x . However, the valuation profile might
be such that all agents have value 1 for their favorite alternative and 0 for any other
alternative.Consequently, the socialwelfare of x might be 0,whereas the socialwelfare
of any top-ranked alternative is positive, leading to infinite distortion.

We say that a district is divided if its λ agents are partitioned into m/2 equal-
sized sets such that all the 2λ/m agents in each set rank the same alternative first
and different sets of agents have different top-ranked alternatives. By Lemma 3.2,
the representative of such a district must be one of the top-ranked alternatives. The
following lemma shows that choosing the representative of a divided district as the
winner is, under some circumstances, a bad choice.

Lemma 3.3 Suppose that somealternative y1 is chosen as thewinner by a deterministic
ordinal distributed mechanism when the set of representatives is {y1, . . . , yk}. If there
exists a divided district that is represented by y1, then there are k − 1 districts with
representatives y2, . . . , yk , and altogether these k districts define an instance such
that the distortion of the mechanism is �(km2).

Proof Let M be a deterministic ordinal distributed mechanism that selects y1 as the
winner when the set of representatives is {y1, . . . , yk}, and let d be the divided district
that is represented by y1. Consider the following k districts:
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• The first district is a copy of d.
• For every � ∈ {2, . . . , k}, the �-th district is such that all agents therein rank y� first,
x /∈ {y1, . . . , yk} second, and then all other alternatives. By Lemma 3.2, M must
choose y� as the representative of the �-th district, as this is the only top-ranked
alternative.

So, indeed the set of representatives is {y1, . . . , yk} and M chooses y1 as the winner
by assumption. One possible valuation profile is the following:

• In the first, divided district, the 2λ/m agents that rank y1 first have value 1/m
for all alternatives, and the remaining agents all have value 1 for their favorite
alternative.

• For every � ∈ {2, . . . , k}, all agents in the �-th district have value 1/2 for their two
favorite alternatives (y� and x).

Consequently, the social welfare of y1 is λ/m2 whereas the social welfare of x is
approximately k · λ/2, and thus the distortion is �(km2). �

Lemma 3.3 shows that deterministic ordinal distributedmechanismswith distortion
o(km2) must not output the representative of a divided district as the winner when it
is given a set of districts with different representatives. However, as we show in the
proof of the next theorem, there are instances where such a choice is inevitable, and
thus the distortion is �(km2).

Theorem 3.4 The distortion of any deterministic ordinal distributed mechanism is
�(km2).

Proof Let M be a deterministic ordinal distributed mechanism. We focus on instances
with k districts and sets of alternatives A∪ B∪C ∪{x}, where A = {a1, . . . , ak}, B =
{b1, . . . , bm/2+k−1}, and C = {c1, . . . , cm−2k}. Without loss of generality, suppose
that when the district representatives are {a1, . . . , ak}, M chooses a1 as the overall
winner.

Let d1 be a divided district with set of top-ranked alternatives {a1, b1, . . . , bm/2−1}.
By Lemma 3.3, if a1 is the representative of d1, then there exists an instance such
that the distortion of M is �(km2). So, suppose that the representative of d1 is some
other top-ranked alternative, say b1. Again by Lemma 3.3, if b1 is chosen as the
winner whenever she is part of a representative set consisting of k distinct alternatives,
then the distortion of M would be �(km2). So, let us assume that when the district
representatives are {b1, a2, . . . , ak}, the winner is an alternative different than b1, say
a2.

We can now repeat this argument step by step for each alternative a�, � ∈
{2, . . . , k}. In particular, let d� be a divided district with top-ranked alternatives
{a�, b�, . . . , bm/2+�−2} (note that alternativesb1, . . . , b�−1 do not appear as top-ranked
alternatives in d�). By Lemma 3.3, if a� is the representative of d� then the dis-
tortion of M is �(km2), so the representative is some other alternative from the
set {b�, . . . , bm/2+�−2}, say b�. Again by Lemma 3.3, if b� is chosen as the win-
ner whenever she is part of a representative set consisting of k distinct alternatives,
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then the distortion of M would be �(km2). So, when the district representatives are
{b1, . . . , b�, a�+1, . . . , ak}, the winner is an alternative not in {b1, . . . , b�}, say a�.

The last step of this repeated argument leads to the lower bound of �(km2): We
have reached an instance with set of representatives {b1, . . . , bk} all of whom are
representative of some divided district, and thus no matter who of them is chosen as
the winner, by Lemma 3.3 there exists an instance that includes the corresponding
divided district and k − 1 unanimous districts (like in the proof of the lemma) such
that the distortion is �(km2). �

Finally, let us discuss the case of deterministic strategyproof distributed mecha-
nisms. [14] showed that the distortion of any deterministic centralized strategyproof
voting rule (including those that have access to the valuation functions) is �(nm).
From the discussion Section 2.4, we directly obtain a lower bound of �(nm) for the
distributed setting as well. A tight upper bound is also not hard to derive by considering
the straightforward First- of- First mechanism which works as follows:

• For each district d, choose the favorite alternative of the first agent therein as the
representative.

• Choose the representative of the first district as the winner.

Theorem 3.5 First- of- First is strategyproof and achieves an asymptotically best
possible distortion of�(nm)within the class of deterministic strategyproof distributed
mechanisms.

Proof The mechanism is clearly strategyproof since the winner is the favorite alter-
native of the first agent of the first district who acts as a dictator. Since the winner
is ranked first by an agent, the social welfare of the mechanism is at least 1/m. The
maximum possible social welfare is n, and thus the distortion is O(nm). �

4 RandomizedMechanisms

We start our discussion on randomized distributed mechanisms by analyzing a general
class of mechanisms that we call Uniform- of- δ- Approximate. A mechanism M
in this class works as follows:

• For each district d, M chooses the representative ad according to some centralized
voting rule fin that has distortion at most δ.

• M chooses the winner uniformly at random from the set of representatives.

Picking the winner uniformly at random from the representatives that have been
selected seems to be the most natural choice as there is not much information about
the preferences of the agents in the districts, and essentially all we can do is assign
higher proportional probability to an alternative that is representative of more districts.
We have the following result.

Theorem 4.1 The distortion of any Uniform- of- δ- Approximate mechanism is
O(kδ).
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Proof Consider an arbitrary instance. Let o be the optimal alternative, ad the repre-
sentative of district d, and w the final winner. Denote by SWd(x) the social welfare
of alternative x only from the agents in d; clearly, SW(x) = ∑

d∈D SWd(x). The
expected social welfare of the mechanism is

E[SW(M)] =
∑

a∈A

Pr[w = a] · SW(a)

= 1

k

∑

a∈A

(
∑

d∈D
Pr[ad = a]

)

SW(a)

= 1

k

∑

d∈D

∑

a∈A

Pr[ad = a] · SW(a)

= 1

k

∑

d∈D
E[SWd(ad)]

≥ 1

k

∑

d∈D
E[SWd(ad)]

Since ad is chosen based on a voting rule with distortion at most δ, we have that
E[SW(ad)] ≥ 1

δ
· SWd(o). Combining this together with the fact that SW(o) =∑

d∈D SWd(o), and using the linearity of expectation, we obtain

E[SW(M)] ≥ 1

k

∑

d∈D
E[SWd(ad)]

≥ 1

k

∑

d∈D

1

δ
· SWd(o)

= 1

kδ
· SW(o).

Hence, the distortion of the mechanism is at most kδ. �

Theorem 4.1 is a simple composition theorem, analogous to the one presented by
[8] for the metric setting. Based on it, we can define randomized distributed mecha-
nisms with proven distortion guarantees by appropriately choosing the in-district rule.
Before we continue, observe that the sizes of the districts do not appear in the proof of
Theorem 4.1, and thus the distortion of any Uniform- of- δ- Approximate mecha-
nism is O(kδ) even if the districts are asymmetric. So, the distortion of the mechanism
depends on the number of agents only if the distortion δ of the in-district rule depends
on the number of agents.

If cardinal information is available at the district level, by using Range- Voting
with δ = 1 as the in-district rule, we obtain the following.

Corollary 4.2 The distortion of Uniform- of- Range- Voting is O(k).

If only ordinal information about the preferences of the agents is given at the district
level, then we can use Pluralitywith δ = O(m2) and the randomized rule Stable-
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Lottery mechanism of [12] with δ = O(
√
m) as the in-district rule to obtain the

following results.

Corollary 4.3 The distortion of Uniform- of- Plurality is O(km2).

Corollary 4.4 The distortion of Uniform- of- Stable- Lottery is O(k
√
m).

An important question to ask next is under what circumstances the aforementioned
upper bounds of Corollaries 4.2, 4.3 and 4.4 are tight. First, we show that Uniform-
of- Range- Voting is the best among mechanisms with unanimous in-district rules
which may even use cardinal information.

Theorem 4.5 The distortion of any randomized distributed mechanism with a unani-
mous in-district rule is �(k).

Proof Let ε > 0 be a positive infinitesimal. Consider an instance with the following k
symmetric districts: For any � ∈ [k], in districtd�, allλ agents therein havevalue 1/2+ε

for alternative a�, 1/2−ε for alternative x , and 0 for any other alternative. Since, the in-
district rule is unanimous, the representative of district d� must be a� with probability
1. Hence, no matter what the probability of choosing a district representative as the
winner is, the expected social welfare of the mechanism is λ · (1/2+ ε). However, the
social welfare of alternative x is k · λ · (1/2 − ε), and thus the distortion is �(k). �

If we consider non-unanimous in-district rules, but require the in-district rule to
be deterministic, then we can show a weaker lower bound of �(

√
k); notice that the

theorem also implies the same bound for fully deterministic distributed mechanisms
without unanimous in-district rules.

Theorem 4.6 The distortion of any randomized distributed mechanism with a deter-
ministic in-district rule is �(

√
k).

Proof Consider a district d� in which all agents have value 1/2 for alternative a�,
value 1/(2

√
k) for each alternative in {b1, . . . , b√

k}, and 0 for any other alternative.
If the representative of this district is not a�, then in instances consisting of copies of
this district, the distortion is at least

√
k; in particular, it is at least that much if some

alternative in {b1, . . . , b√
k} is chosen and infinite if any other alternative is chosen.

So, suppose that the representative of d� is a�.
Next, consider an instance with k symmetric districts d1, . . . , dk . By the above

discussion, for any � ∈ [k], the representative of d� is alternative a� with social
welfare λ/2 (note that only the agents of d� have positive value, equal to 1/2, for
a�). Hence, no matter which district representative is chosen as the winner (or the
probability distribution over the representatives), the (expected) social welfare of the
mechanism is λ/2. In contrast, the social welfare of any alternative in {b1, . . . , b√

k}
is k · λ/(2

√
k) = √

k · λ/2, and thus the distortion is
√
k. �

Next, we show that Uniform- of- Plurality is the best possible among ordinal
randomized distributed mechanisms with deterministic in-district rules, assuming an
arbitrary but fixed ordering of the alternatives. This is quite surprising, as it shows
that randomization over the districts is not better than just choosing an arbitrary
alternative that is representative of the most districts (i.e., not better than Plurality-
of- Plurality).
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Theorem 4.7 The distortion of any ordinal distributed mechanism with a determin-
istic in-district rule is �(km2), when there exists an arbitrary but fixed tie-breaking
ordering of the alternatives.

Proof Without loss of generality, suppose that the tie-breaking ordering of the alterna-
tives is a1 � . . . � ak � b1 � . . . � bm/2−1 � x � c1 � . . . � cm/2−k ; the naming
of the alternatives is arbitrary but is assumed to be known and can be exploited. For
simplicity, for any set of alternatives X , denote by [X ] an arbitrary ordering of the
alternatives in X .

Consider an instance with k symmetric districts such that in district d� there is a
set of 2λ/m agents with preference ordering a� � x � [A \ {a�, x}], a set of 2λ/m
agents with preference ordering b1 � x � [A \ {b1, x}], . . ., and a set of 2λ/m
agents with preference ordering bm/2−1 � x � [A \ {bm/2−1, x}]. By Lemma 3.2, the
representative of d� must be one of the top-ranked alternatives (otherwise the distortion
of the mechanism would be infinite). Since a� is ranked above the other alternatives in
the tie-breaking ordering, she is chosen as the representative of d�. Hence, the set of
representatives is {a1, . . . , ak}, and the winner is chosen according to some probability
distribution over this set.

The valuation profile may be such that the 2λ/m agents in district d� that rank a�

first have value 1/m for all alternatives, while all other agents in d� have value 1/2
for their two favorite alternatives. Consequently, the social welfare of alternative a� is
2λ/m2, and thus the social welfare of the mechanism is also this much, no matter the
probability distribution over the district representatives. In contrast, the social welfare
of x is approximately kλ/2, leading to a distortion of �(km2). �

When randomization at the district level can be leveraged by ordinal distributed
mechanisms, then we achieve distortion much better than what is implied by Corol-
lary 4.4, while also achieving strategyproofness. In particular, there are several
centralized voting rules that can be implemented as distributed mechanisms, in the
sense that they define the same probability distribution over the alternatives. One such
important class of voting rules is that of point-voting schemes, which is part of a larger
class of strategyproof mechanisms [16, 17, 37] and includes rules with almost best
possible distortion guarantees [4, 12].

4.1 Point-Voting Schemes

Apoint-voting scheme chooses an agent uniformly at random and then outputs her t-th
favorite alternative with probability pt , where p1 ≥ . . . ≥ pm ≥ 0 and

∑m
t=1 pt = 1.

Hence, the probability according to which the point-voting scheme using the prob-
ability vector p = (p1, . . . , pm) chooses alternative a ∈ A as the winner w is
Pr[w = a] = 1

n

∑
i∈N pσi (a), where σi (a) is the position that i ranks a in her prefer-

ence ranking σ .
There are many point-voting schemes of interest. For every positional scoring rule

using the scoring vector s = (s1, . . . , sm), we can define a point-voting scheme f (s)

by normalizing the scoring vector, that is, define pt = st/
(∑

j∈[m] s j
)
for every
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t ∈ [m] so that the winning probability of alternative a is

Pr[w = a] = 1

n

∑

i∈N

sσi (a)
∑

j∈[m] s j

=
∑

i∈N sσi (a)

n · ∑
j∈[m] s j

.

Another important point-voting scheme is the rule that chooses each alternative uni-
formly at random; in this case, we have pt = 1/m for every t ∈ [m] so that
Pr[w = a] = 1

n

∑
i∈N 1

m = 1
m .

For any point-voting scheme f that uses a probability vector p, we consider the
distributed mechanism Proportional- of- f - Point- Voting, which works as fol-
lows:

• For every district d, choose the representative ad to be alternative a ∈ A with
probability 1

nd

∑
i∈Nd

pσi (a).
• Choose the winner to be the representative of district d with probability nd/n.

Theorem 4.8 Proportional- of- f - Point- Voting defines the same probability
distribution as the point-voting scheme f .

Proof The probability that alternative a is chosen as the winner by Proportional-
of- f - Point- Voting is

Pr[w = a] =
∑

d∈D
Pr[w = ad ] · Pr[ad = a]

=
∑

d∈D

nd
n

· 1

nd

∑

i∈Nd

pσi (a)

= 1

n

∑

i∈N
pσi (a),

that is, Proportional- of- f - Point- Voting chooses a with the same probability
as f . �

Theorem 4.8 shows that Proportional- of- f - Point- Voting achieves the same
distortion bound as the point-voting scheme f it uses as the in-district rule, and also
that it inherits its strategyproofness property. This is extremely useful, as there are
centralized voting rules that are based on point-voting schemes and achieve almost
the best possible distortion.

[4] considered a voting rule that is a convex combination of two point-voting
schemes: With probability 1/2 choose an alternative uniformly at random, and with
probability 1/2 run the point-voting scheme defined by normalizing the harmonic
scoring rule H = (1, 1/2, . . . , 1/m). We will refer to this mechanism as BCHLPS.
[4] showed that this voting rule has distortion O(

√
m logm). An important property

of point-voting schemes is that any rule that is a convex combination of point-voting
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schemes is also a point-voting scheme. The following lemma is similar to lemmas
proved before in the literature (e.g., see [13, 17]); we provide a proof for complete-
ness.

Lemma 4.9 Let f1, . . . , fκ be point-voting schemes defined by the probability vectors
p1, . . . ,pκ . For any non-negative numbers q1, . . . , qκ such that

∑
j∈[κ] q j = 1, the

voting rule f that chooses the outcome of f j with probability q j is a point-voting
scheme.

Proof Let σ be an arbitrary preference profile. For any j ∈ [κ], denote the t-th coor-
dinate of p j as p j,t , and let Pj (a) = Pr[a = f j (σ )] be the probability of choosing a
as the winner according to point-voting scheme f j . Then, the voting rule f chooses
alternative a as the winner w with probability

Pr[w = a] =
∑

j∈[κ]
q j · Pj (a)

=
∑

j∈[κ]
q j ·

(
1

n

∑

i∈N
p j,σi (a)

)

= 1

n

∑

i∈N

∑

j∈[κ]
q j · p j,σi (a).

Hence, f is a point-voting scheme defined by the probability vector p with pt =∑
j∈[κ] q j · p j,t . �

Consequently, by Theorem 4.8 and Lemma 4.9, we can construct a randomized
ordinal distributed mechanism based on the point-voting scheme of [4] that achieves
the same distortion bound and is strategyproof.

Corollary 4.10 There exists a randomized ordinal strategyproof distributedmechanism
with distortion O(

√
m logm).

This distortion bound is almost best possible as the lower bound of �(
√
m) for

randomized centralized rules holds trivially for distributedmechanisms by considering
single-district instances.

5 Experiments

In this section, we perform experiments with real and synthetic datasets, aiming to
identify patterns in the distortion of several well-known voting rules and examine
whether these support our theoretical findings. It is well-documented in the literature
(e.g., see [4, 7]) that when working with real or realistic preferences, it often is the
case that the distortions bounds are small numbers quite close to 1. In this sense,
our goal is not primarily to demonstrate the distortion bounds themselves, but rather
the dependence of these bounds on the distributed decision-making process, in par-
ticular the number of districts, as well as the use of randomization. We perform two
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main experiments, one with real-world preferences and valuation data, and one with
synthetic data. All our experiments are with symmetric districts.

5.1 Experiments with the Jester Dataset

For our first experiment, we use the Jester Joke Dataset [38]. The dataset contains
ratings for 100 different jokes in the range [−10, 10], provided by 70000 users. We
chose to work with this dataset as it has also been employed by [4] in the context
of centralized distortion bounds, and also by [7] for the distortion of deterministic
distributed mechanisms that use plurality as the over-district rule.

Following the methodology developed in these works, we construct inputs consist-
ing of ratings for the 8 most-rated jokes. In particular, we perform 1000 random runs
in which we sample 100 users from the set of all (approximately 50, 000) users that
have provided rankings for all eight jokes, and then partition them into k equal-sized
districts uniformly at random, for k ∈ {1, 2, 5, 10, 20, 25}. Clearly, the case of k = 1
corresponds to the centralized setting andwill be used as a reference point.We interpret
the ratings of the jokes as cardinal valuations: to be consistent with our setting (and
with the experiments of [4, 7]), we add 10 to each user’s rating vector, to ensure that
the values are positive and then apply the unit-sum normalization. For these inputs,
we compute the average distortion of a set of 20 voting rules over the 1000 runs of the
experiment. In particular, we consider distributed mechanisms fover-of- fin, where for
fover we use Plurality or Uniform, whereas for fin we have:

Deterministic Rules We use simple voting scoring rules, namely Plurality (PL),
Veto, Borda and Harmonic, as well as Range- Voting (RV), which in the case
of k = 1 finds the optimal alternative.

Randomized Rules Here we use several natural point-voting schemes with probability
vectors that are proportional to the aforementioned scoring rules (recall the definition
from Section 4), namely

• Proportional to Plurality Score (PropPL);
• Proportional to Borda Score (PropBorda);
• Proportional to Veto Score (PropVeto);
• Proportional to Harmonic Score (PropHarmonic).

We also use the rule of [4] (we refer to it as BCHLPS in the following); recall that
this is a point-voting scheme that with probability 1/2 selects an alternative at random
and with probability 1/2 runs the PropHarmonic rule defined above. As established in
Corollary 4.10 (and the discussion before the statement of the corollary), this is best
possible in terms of the worst-case distortion.

The results of our experiments can be seen in Table 2. In the table we only present
the results where as fover, we used Plurality for deterministic rules and Uniform
for randomized rules. This is in accordance to our approach in the theoretical results
in previous sections. The bounds for the cases not shown are quite similar, and slightly
larger in general. For each of the randomized rules, we perform 300 runs and calculate
their expected social welfare, which we then use to calculate the distortion.
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From the results of Table 2 we observe that, as expected, the existence of multiple
districts has an adverse effect on the distortion of deterministic mechanisms, which
becomes worse compared to the centralized case k = 1. For these rules, we can also
observe that the distortion generally increases as k increases. In contrast, the distortion
of randomized rules remains virtually unchanged for any value of k. This is in complete
accordance with our theoretical findings, where we established that these rules induce
the same probability distribution.

Another crucial observation is that, in terms of the absolute distortion numbers,
randomization does not seem to help; if anything, it makes the distortion bounds
worse! This can be justified by the fact that real-world instances like those from
the Jester dataset display a large degree of homogeneity, which results in the simple
deterministic rules performing quite well. On the other hand, randomization often
leads to suboptimal choices even on such “well-behaved” instances, demeaning the
distortion bounds on average. Surprisingly, among ordinal voting rules, Borda seems
to perform best across the board even though the theoretical distortion of Borda is in
fact unbounded.

5.2 Experiments with Synthetic Datasets

We also perform experiments with datasets that are generated from probability distri-
butions. In particular, and to be consistent with the Jester experiment presented above,
we create instances with 100 agents and 8 alternatives, by first drawing the values
of the agents from a certain distribution, and then constructing the induced ordinal
preference profile from those values. We use the following distributions:

• Uniformdistribution in [1, 100]. This is the simplest case,where all possible values
are equally likely.

• Beta distributionwith α = 1/10 and β = 1/10. This distribution has a symmetric
convex pdf function centered around a mean of 1/2, assigning higher probabilities
to values very close to 1 or 0.

• Exponential distribution with exponent 4, i.e., the pdf is f (x) = 4e4 for x ≥ 0
and f (x) = 0 otherwise. This distribution generates values close to 0 with high
probability, and as the values increase, the probability of them being generated
decreases exponentially.

For the rest of the experiment, we perform similar steps as in the case of the
Jester dataset: We normalize the values to sum up to 1, and run the set of mechanisms
described above. For each randomizedmechanismwenowperform150 individual runs
and calculate its expected welfare. We calculate the average distortions over 500 runs
of the experiment for k symmetric districts, where k ∈ {1, 2, 5, 20, 25}. Note that the
number of runs and the number of district sizes is slightly smaller in this experiment,
because it is more computationally intensive (as we need to calculate bounds for
3 different distributions). Again, we use Plurality as fover for deterministic and
Uniform for randomized mechanisms; the results for the other cases were similar and
are not reported.
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The results can be found in Table 3. Similarly to the Jester experiment, it is evident
that the distortion of the deterministic mechanisms becomes worse for k ≥ 2, whereas
it remains pretty much the same for randomized mechanisms. Again, we observe that
randomization results in worse distortion bounds overall, and that Borda performs
best amongdeterministicmechanisms. Interestingly, contrary to the Jester dataset, here
we do not see a clear pattern of the distortion increasing as k increases for deterministic
mechanisms (other than the jump from k = 1 to k = 2). This is probably due to the
fact that the synthetic instances are highly homogeneous, and with uniform random
district partitions, the districts end up being quite uniform, regardless of their number
and size.

The role of Unit-Sum We remark here that normalizing the values to sum up to 1
effectively makes the Uniform and Exponential distributions pretty similar, and this
is reflected in the results. To get a sense of the effect of normalization, we also ran the
experiments without it. We observe that the distortions for the exponential distribution
are now larger than those of the uniform distribution. In general, the distortion bounds
still lie in the range [1.03, 1.15] for all distributions, but their average values (over
all documented distortion bounds) are larger for all distributions except Uniform. It is
also the case that for the Beta distribution, the bounds of deterministic mechanisms are
much closer to those of randomized ones. The distortion of randomized mechanisms
is still almost the same for any number of districts.

6 Open Problems

From our results, an interesting technical challenge is to remove the requirement for
a consistent tie-breaking ordering from the statement of Theorem 4.7. Similarly, we
could attempt to remove unanimity from the lower bound of Theorem 3.1; although
unanimity is usually pretty natural, removing it would make the theorem stronger.
More interestingly, our result about point-voting schemes in Theorem 4.8 crucially
does not depend on the normalization of the valuations, and hence also could be
applied verbatim to the metric distributed social choice setting studied by [8], where
randomized mechanisms have never been considered; this seems like a natural starting
point for such an investigation. Another direction could be to investigate whether using
different rules for choosing the representatives of different districts (rather than using
the same rule for all districts) could lead to improved distortion bounds.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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