
https://doi.org/10.1007/s00224-022-10071-2

Obvious Strategyproofness, Bounded Rationality
and Approximation

Diodato Ferraioli1 ·Carmine Ventre2

Accepted: 10 January 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Obvious strategyproofness (OSP) has recently emerged as the solution concept of
interest to study incentive compatibility in presence of agents with a specific form
of bounded rationality, i.e., those who have no contingent reasoning skill whatso-
ever. We here want to study the relationship between the approximation guarantee of
incentive-compatible mechanisms and the degree of rationality of the agents, intu-
itively measured in terms of the number of contingencies that they can handle in their
reasoning. We weaken the definition of OSP to accommodate for cleverer agents and
study the trade-off between approximation and agents’ rationality for two paradig-
matic problems: machine scheduling and facility location. We prove that, for both
problems, “good” approximations are possible if and only if the agents’ rationality
allows for a significant number of contingencies to be considered, thus showing that
OSP is not too restrictive a notion of bounded rationality from the point of view of
approximation.

Keywords Mechanism design · Machine scheduling · Simple mechanisms ·
Bounded rationality · Lookahead

This article belongs to the Topical Collection: Special Issue on Algorithmic Game Theory (SAGT
2019)
Guest Editors: Dimitris Fotakis and Vangelis Markakis

Some of the results appeared in [1]. An extended abstract also appeared as [2].

Diodato Ferraioli is partially supported by GNCS-INdAM and by the Italian MIUR PRIN 2017
Project ALGADIMAR “Algorithms, Games, and Digital Markets”.

Carmine Ventre is partially supported by EPSRC grant EP/V00784X/1.

� Diodato Ferraioli
dferraioli@unisa.it

Carmine Ventre
carmine.ventre@kcl.ac.uk

1 Università degli Studi di Salerno, Fisciano, SA, Italy

2 King’s College London, London, UK

Theory of Computing Systems (2022) 66:696–720

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-022-10071-2&domain=pdf
http://orcid.org/0000-0002-7962-5200
mailto: dferraioli@unisa.it
mailto: carmine.ventre@kcl.ac.uk

1 Introduction

A large body of work in computer science deals with the design of algorithms
that return “good” (e.g., optimal) solutions. However, there are settings where the
input to the algorithm is not readily available since it is owned by selfish agents.
These agents might misguide the designer’s algorithm if it is profitable for them
to do so. For example, consider the facility location problem where the location
of a facility needs to be chosen, with the goal to serve a group of users and the
choice depending on these users’ private locations. If a user could bring the facility
closer to them by misreporting their location, then they may lie and obtain a bet-
ter solution for themselves (possibly making the solution worse overall). Therefore,
the algorithm needs to be designed to avoid providing such incentives, i.e., to be
incentive compatible.

The tool typically used to deal with these issues is mechanism design — strate-
gyproof (SP) (a.k.a., truthful) mechanisms guaranteeing that the algorithm and the
agents’ incentives are compatible.

Strategyproofness is based on the assumption of full rationality: agents are
assumed to be able to consider all possible strategies and their combinations when
they reason about their incentives. Nevertheless, this assumption is seldom true in
reality and it is often the case that people strategize against mechanisms that are
known to be truthful [3]. One then needs a different notion to ensure that the algo-
rithm is not misguided even in the presence of agents with bounded rationality. The
problem here is twofold: how can we formalize strategyproofness for agents with
(some kind of) bounded rationality? If so, can we quantify this bounded rationality
and relate that to the performance of the mechanisms?

The first question has been recently addressed by Li [4], who defines the concept
of obvious strategyproofness (OSP-ness); this notion has attracted quite a lot of inter-
est in the community [5–15]. According to this notion, the reasoning of each agent
when choosing a strategy is simple:

the worst possible outcome that she can get when behaving well must be at least
as good as the best outcome when misbehaving. Best/Worst are quantified over all
the possible decisions taken by the agents after the decision of i. Li [4] proves that
this solution concept identifies the algorithms that are incentive compatible for agents
that have no contingent reasoning skills, a special model of bounded rationality:
rather than requiring a careful case analysis, OSP mechanisms guarantee that honest
behavior is the best strategy to follow no matter all the contingencies.

In this work we focus on the second question, using the OSP formalization of
bounded rationality. On the one hand, OSP is too restrictive in that people might be
able, within their computational limitations, to consider some contingent reasoning,
that is, a few cases are considered in the agents’ decision making process. On the
other hand, OSP mechanisms appear to be quite limited, with respect to SP ones, in
terms of their approximation guarantee [7, 12]. The question then becomes:

Can we quantify the trade-off between the “degree” of bounded rationality of
the agents and the approximation guarantee of the mechanisms incentivizing
them?

697Theory of Computing Systems (2022) 66:696–720

1.1 Our Contribution

Lookahead can be defined as the ability to anticipate future events (e.g., the moves of
a competitor). This concept is discussed in the literature in the context of (strategies
to play) games, and agents with limited computational capabilities. De Groot [16]
found that all chess players (of whatever standard) used essentially the same thought
process – one based upon a lookahead heuristic. Shannon [17] formally proposed
the lookahead method and considered it a practical way for machines to tackle com-
plex problems, whilst, in his classical book on heuristic search, Pearl [18] described
lookahead as the technique being used by “almost all game-playing programs”.

We propose to consider lookahead as a way to quantify bounded rationality, in
relation to OSP. Whilst in OSP the players have no lookahead at all, we here con-
sider the case in which the agents have lookahead k, k going from 0 (OSP) to n − 1
(SP). Intuitively, k measures the number of players upon which each player rea-
sons about in her decision making. We allow the set of k “lookahead” players to be
player- and time-specific (that is, different players can reason about different com-
petitors, and this set of players is not fixed but may change at different time steps of
the mechanism). So when agent i has to decide upon the strategy to play, she will
consider all the possible cases (strategies) for these k agents at that time (à la SP)
and a no-contingent reasoning (à la OSP) for the others. (A more technical discus-
sion of our notion is deferred to Section 2.) In absence of other formal definitions of
incentive compatibility for different degrees of rationality, we regard our definition
of OSP with k-lookahead (k-OSP, for short) as a major conceptual contribution of
our work.

We then look at the trade-off between the value of k and the approximation
guarantee of k-OSP mechanisms. We focus on two well-studied problems, machine
scheduling and facility location. The former considers n agents who control related
machines (i.e., machines have a private job-independent speed). The objective is to
schedule a set of m (identical) jobs to the machines in order to minimize the makespan
(i.e., the latest machine’s completion time). Our technical contribution consists in

proving a lower bound on the approximation guarantee of τk(n) =
√

k2+4n−k
2 , thus

providing a smooth transition function between the known approximation factors of√
n for OSP mechanisms [12] and 1 for SP mechanisms [19]. We also show that this

bound is tight up to a constant factor, at least for the case in which each machine
can report a speed from a domain of three values. (Such a restriction is common
to the state of the art of OSP mechanisms [12, 14].) Our lower and upper bounds
significantly extend and generalize to k-OSP the analysis done in [12] for OSP mech-
anisms. Specifically, the lower bound needs to identify some basic properties of the
function τk(n) and prove what features the implementation tree of a mechanism (i.e.,
the protocol between the designer and the agents induced by the mechanism) with
good approximation guarantee must have. Our upper bound instead defines a mech-
anism (algorithm, implementation tree and payment function) which combines a
descending auction phase, to identify a certain number of slowest machines, with an
ascending auction to find out the k + 1 fastest machines. The analysis of the approx-
imation guarantee of our k-OSP mechanism is significantly more involved than the
one used in [12] for k = 0.

698 Theory of Computing Systems (2022) 66:696–720

The facility location problem considers n agents who are located on the real line,
and the goal is to place a facility on the line so to minimize the total distance of the
facility to agents. Here, agents have a private location in mind and can misreport it
in the attempt to force the facility to be as close as possible to their own location.
It is well known that a strategy-proof mechanism exists for this problem [20], even
without money, whereas from [7], we know that no OSP mechanisms can perform
better than a dictatorial mechanism. Here we show that the arguments therein can be
generalized to prove a lower bound of n−k−1

k+1 to the approximation ratio of k-OSP
mechanisms, whenever k ≤ ⌈

n
2

⌉ − 2.
The main message of our work is that having more rational agents only slightly

improves the approximation guarantee of incentive-compatible mechanisms, at least for
these two optimization problems. In fact, a constant approximation of the optimum
would require agents with very large lookahead. We can conclude that, in the cases
in which the agents are not that rational, OSP is not that restrictive a solution concept
to study the approximation of mechanisms for agents with bounded rationality.

1.2 RelatedWork

Recent research in algorithmic mechanism design has suggested to focus on “sim-
ple” mechanisms to deal with bounded rationality [21–23]. OSP provides a formal
definition for simple mechanisms, by focusing on imperfect rationality due to no
contingent reasoning (see references above for the body of work on this notion).

Other concepts of simple mechanisms have been recently adopted in literature,
most prominently posted-price mechanisms have received great attention and have
been applied to many different settings [24–28]. In these mechanisms one’s own bid
is immaterial for the price paid to get some goods of interest – this immediately sug-
gests that trying to play the mechanism is worthless no matter the cognitive abilities
of the agents.

A different approach is that of verifiably truthful mechanisms [29], wherein agents
can run some algorithm to effectively check that the mechanism is incentive compat-
ible. However, they seem to transfer the question from the mechanism itself to the
verification algorithm.

The concept of “guided” implementation [30] shares some of the motivations and
philosophy behind OSP. The authors note that the implementation (via normal-form
games) of a social choice function is more obvious if there exists a “simple guide”
that can always be used to discover the strategy combination which survives suc-
cessive elimination of dominated strategies. In this context, backwards induction
implementation via an extensive game is equivalent to such a guided implementation
via a normal-form game.

2 OSP with Lookahead

We have a set N of n agents; each agent i has a domain Di of possible types –
encoding some feature of theirs (e.g., their speed). The actual type of agent i is her
private knowledge.

699Theory of Computing Systems (2022) 66:696–720

An extensive-form mechanism M is a triple (f, p, T), where f is an algorithm
(also called social choice function) that takes as input bid profiles and returns a feasi-
ble solution, p = (p1, . . . , pn) is the payment function, one for each agent, and T is
an extensive-form game, that we call implementation tree1. Intuitively, T represents
the steps that the mechanism will take to determine its outcome. More formally, each
internal node u of T is labelled with a player S(u), and the outgoing edges from u

are labelled with the subset of types in the domain of S(u) that are compatible with
the history leading to u; in particular, the labels of edges going out from u denote
a partition of the domain of S(u) compatible with the history. If at node u there are
multiple outgoing edges, then S(u) is called a divergent agent at u. We denote by
Di(u) the types in the domain of i that are compatible with the history leading to
node u ∈ T . The tree models how M interacts with the agents: at node u the agent
S(u) is queried and asked to choose an action that corresponds to selecting one of u’s
outgoing edges. The chosen action signals that the type of S(u) is in the set of types
labeling the corresponding edge. The leaves of the tree will then be linked to (a set
of) bid profiles; the mechanism will return (f, p) accordingly; in other words, each
leaf corresponds to an outcome of the mechanism. (Observe that this means that the
domain of f and p is effectively given by the leaves of T .)

We use b to denote bid profiles, so that bi stands for the type that i signalled to the
mechanism. For simplicity, we use f (b) and p1(b), . . . , pn(b) to denote the outcome
of (f, p) for the leaf of T to which b belongs. We assume that agents have quasi-
linear utilities, that is, agent i of type t who signals (i.e., plays the game T according
to) bi has utility

ui(bi,b−i) = pi(b) − t (f (b)),

where, with a slight abuse of notation, t (f (b)) is the cost that player i pays to imple-
ment the outcome f (b) when her type is t , and b−i is the declaration vector of (i.e.
types signalled by) all agents except i. (In general, we let bA = (bj)j∈A for A ⊂ N .)

Figure 1 gives an example of an implementation tree where three players have a
two-value domain {L, H }. The root partitions the domain of machine 1 into L and
H . If we let v denote the left child of the root, then D1(v) = {L} as type H is no
longer compatible with the history of v.

We now define OSP with k-lookahead. OSP informally implies that whenever an
agent is asked to diverge, she is better off acting according to her true type in any
possible future scenario: the worst possible outcome after selecting her true type is
at least as good as the best possible outcome after misreporting her type, at that
particular point in the implementation tree. This models agents with no contingent
reasoning, i.e., those unable to think through hypothetical scenarios such as “if player
2 will play L and player 3 will play L, then I prefer L; if they will play L and H

1The literature on mechanism design usually omits T from the definition of mechanism, since it often
focuses only on specific classes of mechanisms defined by a given implementation tree (e.g., direct reve-
lation mechanisms, posted price mechanisms). However, it turns out that for OSP (and k-OSP) the design
of the extensive-form implementation is essential to define the incentive constraints.

700 Theory of Computing Systems (2022) 66:696–720

Fig. 1 An implementation tree with three players with two-value domains {L,H }; each player separates
the domain types upon playing; at each leaf li the mechanism computes f (b) and p(b), b being the bid
vector at li

respectively, then I prefer L, too; and so on”. In OSP, the thinking process of the
agents is not finely-grained: “If I play L, then the outcome will correspond to leaves
l1, . . . , l4, otherwise it will correspond to leaves l5, . . . , l8”.

However, it would be possible for the agents to have some limited ability of
performing contingent reasoning: they can think through hypothetical scenarios cor-
responding to the action profiles of some players, but not all of them. Specifically, we
would like to model a player able to reason as follows: “If player 2 will play L, I know
that by choosing L I will finish either in l1 or in l2, otherwise I will finish in l5 or l6;
if player 2 will play R, then my choice will be between the outcomes corresponding
to l3 and l4 and the one corresponding to l7 and l8”. That is, we here consider a more
finely grained partition of the leaves of the tree, allowing for some steps of contingent
reasoning by the divergent agent. Intuitively, our definition will allow the agent to
reason about the moves of k agents; informally, OSP with k-lookahead then implies
that whenever an agent is asked to diverge, she is better off acting according to her
true type for any fixed choice of strategies of the k agents she reasons about (just like
truthfulness) and any possible future scenario of the actions of the remaining n−k−1
agents.

For the formal definition, we need to introduce some more notation. We call a bid
profile b compatible with u if b is compatible with the history of u for all agents. We
furthermore say that (t,b−i) and (b,b′−i) diverge at u if i = S(u) and t and b are
labels of different edges outgoing u (we sometimes will abuse notation and we also
say that t and b diverge at u). For example, (L, H, H) and (L, L, H) are compatible
with node v on Figure 1 and diverge at that node, whilst (L, L, H) and (L, L, L) are
compatible with v but do not diverge at v.

For every agent i and types t, b ∈ Di , we let ui
t,b denote a vertex u in the imple-

mentation tree T , such that (t,b−i) and (b,b′−i) are compatible with u, but diverge

701Theory of Computing Systems (2022) 66:696–720

at u for some b−i ,b′−i ∈ D−i (u) = ×j �=iDj (u). Note that such a vertex might not
be unique as agent i will be asked to separate t from b in different paths from the
root (but only once for every such path). We call these vertices of T tb-separating
for agent i. For example, the node r in the tree in Fig. 1 is a LH -separating node for
agent 1; while v and w are two LH -separating nodes for agent 2. These nodes are
crucial, as at any point in which an agent distinguishes two different types we will
need to add a (set of) constraints to account for her incentives. We finally denote i’s
lookahead at ui

t,b as Łk(u
i
t,b), that is, a set of (at most) k agents that move in T after

i. (When k is clear from the context, we simply let Ł(u) be the lookahead of agent
S(u) at u.)

Definition 1 (k-OSP) An extensive-form mechanism M = (f, T , p) is OSP with
k-lookahead (k-OSP, for short) given Łk(u

i
t,b), if for all i, t, b ∈ Di , t being i’s true

type, ui
t,b ∈ T , bK ∈ DK(ui

t,b) and bT ,b′
T ∈ DT (ui

t,b), it holds that

ui(t,bK,bT) ≥ ui(b,bK,b′
T),

where K = Łk(u
i
t,b), T = N \ (K ∪ {i}) and DA(u) = ×j∈A⊂NDj (u).

In words, a mechanism is OSP with lookahed if each agent is willing to behave
truthfully at each node of the tree in which she interacts with the mechanism, pro-
vided that she exactly knows the types of agents in K (bK is the same either side of
the inequality) but has no information about the agents in T , except that their types
are compatible with the history.

We remark that with k = 0 we get the definition of OSP – wherein K is empty –
and with k = n − 1 we have truthfulness, T being empty.

Discussion The set Łk(u) in the definition above crucially captures our notion of
lookahead. We highlight the following features of our definition.

– The size of set Łk(u) tells us how many players agent S(u) can contingently
reason about. This means that the boundaries of k indeed go from 0, which cor-
responds to OSP, to n−1, which is equivalent to strategyproofness. In this sense,
our definition represents a smooth transition between the two notions, measur-
ing the degree of rationality of the players. For example, consider Figure 1 and
focus on player 1; when k = 0 then our notion is exactly OSP and the con-
straints require to compare the utility of 1 in the leaves l1, . . . , l4 with her utility
in l5, . . . , l8; when, instead, k = 1 and Ł1(r) = {2} then the constraints com-
pare the utility of 1 in the leaves l1, l2 with that in l5, l6 (this corresponds to the
case in which 2 plays L) and the utility of 1 in the leaves l3, l4 with that in l7, l8
(this corresponds to the case in which 2 plays H); finally, for k = 2 we get truth-
fulness as we need to compare the utility of 1 in lj and l4+j for j = 1, . . . , 4.
We note that intermediate values of k are consistent with the vast literature stat-
ing that human reasoning only has limited depth: for example, it is known that
in chess most professional players are usually able to think ahead few steps only
[16]. We remark that k-OSP differs from k-level reasoning: the latter considers a

702 Theory of Computing Systems (2022) 66:696–720

Nash equilibrium in which an agent plays a best response to what happens in the
next k steps; the former considers a(n obviously) dominant strategy.

– The set Łk(u) depends on u; this means that the number and the identities of
players on which S(u) can reason about can (in principle) adaptively depend
on the actual position in the implementation tree. This in particular allows us
to also capture extensive-form games where the choice of the players to query
is adaptive and a definition of lookahead where the players on which S(u) can
reason about are (a subset of) those who move next: this is for example the case in
many multi-player board games in which the player can take actions that change
who is the next player to play, e.g., by blocking some opponents or reversing the
order of play.

Note that whenever Łk(u) = Łk(v) for S(u) = S(v) then we model the case
in which the lookahead is independent from the actual implementation tree and
only depends on S(u)’s prior knowledge of the other agents.

– Differently from the examples of chess and multi-player board games in which a
player only looks ahead to opponents that play in the next rounds, our definition
of Łk(u) allows this set to contain also players that will play far away in the
future. This clearly makes our definition more general.

Moreover, we observe that this definition of Łk(u) also allows us to overcome
a paradox that would arise if one defined the lookahead set only with respect to
the implementation tree. For the sake of argument, let us fix k = 1. Consider an
adaptive implementation tree, where at node u different actions taken by agent
S(u) correspond to different players taking the next move. As a limit case, one
can imagine that S(u) has n − 1 different available actions and each of them
enables a different opponent to react (e.g., this is the case for those board games
where each player can decide who plays next). Hence, assuming that S(u) can
look ahead to players moving in the next step means that S(u) has the ability to
look ahead to all of them. Hence, in this setting limited look-ahead is not limiting
at all the ability of contingent reasoning of S(u) (that is, in this setting every
mechanism that is 1-OSP according to this tree-only definition of lookahead is
actually SP).

This is not surprising, since in this setting we are giving each agent i the
chance to “reason about” each opponent regardless of the action that i takes. A
more realistic alternative would be to assume that the agent exactly knows the
actions of an opponent j only when i takes an action that enables j to be the
next to play (e.g., in the board game example described above, the current player
i is assumed to know which actions player j will take when i chooses j as the
next player, but i has no hint about the actions of j if she chooses k �= j as the
next player). However, in this case i would have to reason about all the possible
action combinations of all the different players that move after her; this might not
weaken OSP and indeed means that the agent is not more rational at all. In fact,
a careful inspection shows that, in this case, 1-OSP according to this alternative
definition of tree-only lookahead has the same constraints of OSP.

703Theory of Computing Systems (2022) 66:696–720

It must, however, be highlighted that in non-adaptive trees, i.e., trees where the
identity of the next player to move after S(u) is the same irrespectively of S(u)’s
action, tree-only lookahead would indeed weaken OSP and effectively capture a
more rational agent capable of one step of contingent reasoning. Since this is a
special case of our notion, our lower bounds continue to hold.

– Our definition requires that an agent with k-lookahead is capable of exactly
pinpointing the type of the agents in K .

This is in fact the same assumption that is implicitly done in the classical def-
inition of truthfulness. Moreover, this makes our definition of k-OSP mechanism
a special case of mechanisms implementable with partition dominant strategy
as defined in [9]. Consequently, our definition satisfies a natural generalization
of the standard decision theory axioms of monotonicity, continuity and inde-
pendence, necessary to model the reasoning of agents with a knowledge of the
state of nature (e.g., the type profiles) limited only to partitions of the set of
these states (e.g., the type profiles that are compatible with the history of the
mechanism).

We also observe that this requirement only reinforces our lower bounds below
(even if they were so rational to do that, the approximation guarantee would still
be a constant only for non-constant values of k). However, we leave open the
problem of understanding whether our upper bound is tight even for a weaker
notion of rationality where the types of the agents in K are not fully known
but only have further restricted domains (e.g., an agent with k-lookahead only
knows the next � actions, for some � > 0, that will be taken by the agents
in K).

3 The Case of Machine Scheduling

We now study the relationship between lookahead and approximation for the well-
studied problem of machine scheduling. Here, we are given a set of m identical jobs
to execute and the n agents control related machines.

Agent i’s type is a job-independent processing time ti per unit of job (equivalently,
an execution speed 1/ti that is independent from the actual jobs). The algorithm f

must choose a possible schedule f (b) = (f1(b), . . . , fn(b)) of jobs to the machines,
where fi(b) denotes the job load assigned to machine i when agents take actions
signalling b. The cost that agent i faces for the schedule f (b) is ti (f (b)) = ti ·fi(b).
We focus on algorithms f ∗ minimizing the makespan, i.e.,

f ∗(b) ∈ arg min
x

n
max
i=1

bi(x);

We say that f is α-approximate if it returns a solution with cost at most α times the
optimum.

704 Theory of Computing Systems (2022) 66:696–720

3.1 Lower Bound

Let τk(n) =
√

k2+4n−k
2 . That is, τk is the function of n for which it holds that n =

τk(n)(τk(n) + k). Observe that τ0(n) = √
n and τn−1(n) = 1. Henceforth, for sake

of readability, let us denote τ := τk(n). Then, we can prove the following theorem.

Theorem 1 For the machine scheduling problem, no k-OSP mechanism can be better
than τ -approximate, regardless of the value of the sets Łk(·). This even holds for
homogeneous three-value domains, i.e., Di = {L, M, H } for each i.

Proof Consider m = n. Moreover, consider a domain Di = {L, M, H } for every i,

with M ≥ τ
⌈

m
�τ�

⌉
L and H ≥ τ · mM . Intuitively, these values tell us that no τ -

approximate mechanism should put a job on a machine with type M if there are at
least �τ� machines with type L. Similarly, no τ -approximate mechanism should put a
job on a machine with type H if there is at least one machine with type M or smaller.

The proof will work in three steps. First, we prove some algebraic property of τ

(cf. Lemma 1). We then characterize implementation tree and algorithm of a k-OSP
mechanism with approximation better than τ (cf. Lemma 2). Finally, we identify an
instance for which any such mechanism cannot return an approximation better than
τ – a contradiction.

Lemma 1 τ = c + δ, with δ ∈
[
0, k

τ+k−1

]
, where c is the largest integer such that

k ≤ n−c2

c
.

Proof We first show that τ ∈ [c, c + 1). Observe that τ is decreasing in k, since
∂τ
∂k

= − 1
2

(
1 − k√

k2+4n

)
that is negative for every k ≥ 0. Hence, from k ≤ n−c2

c
,

we get that

τ ≥ 1

2

⎛

⎝

√
(n − c2)2

c2
+ 4n − n − c2

c

⎞

⎠ =
√

(n + c2)2 − n + c2

2c
= c.

In a similar way, using that k >
n−(c+1)2

c+1 , we conclude that τ < c + 1.

Next we prove that δ = τ − c ≤ k
τ+k−1 . That is, we need to prove that√

k2+4n−k−2c
2 ≤ 2k√

k2+4n+k−2
. By simple algebraic manipulation, we obtain that this

is equivalent to proving that 2(n − c) − (c + 1)k ≤ (c + 1)
√

k2 + 4n. Since the
r.h.s. is non-negative the claim trivially holds if the l.h.s. is non-positive. If instead
the l.h.s. is positive, then we square both sides. By rearranging, our requirement

705Theory of Computing Systems (2022) 66:696–720

becomes

n2 − ((c + 1)(c + 1 + k) + 2c) n + c ((c + 1)k + c) ≤ 0.

By solving this inequality, we obtain that

c − (c + 1)
λ

2
≤ n ≤ c + (c + 1)

(
c + 1 + k + λ

2

)
, (1)

where λ = √
(c + 1 + k)2 + 4c − (c + 1 + k) > 0. The first inequality in (1) is

always verified. Indeed, since 0 ≤ k ≤ n−c2

c
, we have that c ≤ √

n, and thus c− (c+
1) λ

2 < c ≤ √
n ≤ n. As for the second inequality, we note that it always hold since

k >
n−(c+1)2

c+1 , and thus

c + (c + 1)

(
c + 1 + k + λ

2

)
> c + (c + 1)

(
c + 1 + n − (c + 1)2

c + 1

)
= c + n > n.

This concludes the proof.

Suppose now that a mechanism M with approximation ratio ρ < τ exists for
the setting described above, and let T be its implementation tree. Observe that in
T there is at least one divergent agent, otherwise the mechanism has an approxima-
tion ratio larger than ρ: indeed, such a mechanism must return the same outcome
for the instance where all machines have type H (for which assigning all jobs to the
same machine will surely give an approximation ratio worse than ρ), and the instance
whereone machine has type L and the remaining have type H (for which every allo-
cation that does not assign all the jobs to the machine of type L has approximation
ratio worse than ρ). Let us rename the agents as follows: Agent 1 is the first agent
that diverges in T . We now call agent 2, the first agent different from 1 that diverges
in the subtree of T defined by agent 1 taking an action signalling type H ; if no agent
diverges in this subtree of T we simply call 2 an arbitrary agent different from 1.
More generally, we rename all agents as follows: agent i is the first agent different
from 1, 2, . . . , i − 1 that diverges, if any, in the subtree of T that corresponds to the
case that the actions taken by agents that previously diverged are signalling their type
being H . As above, if no agent diverges in the subtree of interest, we just let i denote
an arbitrary agent different from 1, 2, . . . , i−1. We denote with ui the node in which
i diverges in the subtree in which all the other agents have taken actions signalling
H ; if i does not diverge (i.e., got her id arbitrarily), then we denote with ui a dummy
node. We then have the following lemma.

Lemma 2 Any k-OSP M which is ρ-approximate, with ρ < τ , must satisfy the
following conditions:

1. For every i ≤ n + 1 −
τ� − k, if agent i diverges at node ui , it must diverge on
M and H .

706 Theory of Computing Systems (2022) 66:696–720

2. For every i ≤ n − �τ� − k, if agent i diverges at node ui and takes an action
signalling type H , then M does not assign any job to i whenever the action of
agents in Ł(ui) are all signalling H .

Proof Let us first prove part (1). Suppose that there is i ≤ n + 1 −
τ� − k such
that at node ui i does not diverge on M and H (i.e., any action signalling M is
signalling also H). Then it must diverge on L and M , since ui must have at least two
outgoing edges (since i is assumed to diverge at ui), and the remaining edges can
only be labeled with L. Consider the type profile x such that xi = M , and xj = H

for every j �= i. Observe that, by definition of ui , xj ∈ Dj(ui) for every agent j .
The optimal allocation for the type profile x assigns all jobs to machine i, with cost
OPT (x) = mM . Since M is ρ-approximate, then it also assigns all jobs to machine
i. Indeed, if a job is assigned to a machine j �= i, then the cost of the mechanism
would be at least H ≥ τ · mM > ρ · OPT (x), that contradicts the approximation
bound.

Consider now the profile y such that yi = L, yj = H for every j < i or j ∈ Ł(ui),
and yj = L for every j > i such that j /∈ Ł(ui). (We stress that our lower bound
holds no matter the definition of the sets Ł(ui).) Note that there are n − (i − 1) − k

machines j such that yj = L. Observe that, as for x, we have that yj ∈ Dj(ui) for

every agent j . It is not hard to see that OPT (y) =
⌈

m
n−i−k+1

⌉
L: indeed, the optimal

allocation cannot assign any job to machines j such that yj = H otherwise the
allocation cost would be at least H > τ ·mL; moreover, if m jobs must be assigned to
at most n− (i −1)− k machines, then there must exist at least one of these machines

that receives at least
⌈

m
n−i−k+1

⌉
jobs. Let μ be the number of jobs that M assigns to

machine i in this case. Since M is ρ-approximate, then μ < m. Indeed, if μ = m,
then the cost of the mechanism contradicts the approximation bound, since it would

be mL ≥ τ
⌈

m
n−i−k+1

⌉
L > ρ · OPT (y), where we used that

τ

⌈
m

n − i − k + 1

⌉
≤ τ

⌈
n

τ�
⌉

(since i ≤ n + 1 −
τ� − k)

= τ

⌈
τ(τ + k)

τ + 1 − δ

⌉
(by def. of δ)

≤ τ
τ(τ + k) + (τ − δ)

τ + 1 − δ

= τ

(
(τ + k) − k − δ(τ + k − 1)

τ + 1 − δ

)

≤ τ(τ + k) = m (since, by Lemma 1, δ ≤ k

τ + k − 1
).

Hence, for the mechanism to be k-OSP we need that both the following conditions
are satisfied:

(i) pi(x) − mM ≥ pi(y) − μM, and

(ii) pi(y) − μL ≥ pi(x) − mL,

707Theory of Computing Systems (2022) 66:696–720

where pi(x) and pi(y) denote the payment that i receives from the mechanism M
when agents’ actions are signalling x and y, respectively. Indeed, since both x and
y are compatible with u then condition (i) ensures that when agent i has type M

(xi = M) then she has no incentive to deviate and signal type yi . Similarly, condition
(ii) assumes that the type of agent i is yi = L and thus we should have that i has no
incentive to deviate and signal type xi . However, conditions (i) and (ii) can be both
satisfied only if μ(M − L) ≥ m(M − L) that leads to the contradiction that L ≥ M ,
since μ < m.

Let us now prove part (2). Suppose that there is i ≤ n − �τ� − k and x−i , with
xj ∈ Dj(ui) for every agent j and xj = H for every j ∈ Ł(ui), such that if i takes
an action signalling type H , then M assigns μ ≥ 1 jobs to i. According to part (1),
machine i diverges at node ui on H and M .

Consider then the profile y such that yi = M , yj = H for j < i or j ∈ Ł(ui), and

yj = L for j > i such that j /∈ Ł(ui). Observe that OPT (y) =
⌈

m
n−i−k

⌉
· L. Since

M is ρ-approximate, then it does not assign any job to machine i, otherwise its cost
would be at least

M ≥ τ

⌈
m

�τ�
⌉

L (by definition of M)

≥ τ

⌈
m

n − i − k

⌉
L (sinceı ≤ n −
τ� − k)

> ρ · OPT (y). (since ρ < τ and by def. of OPT (y))

Hence, for the mechanism to be k-OSP we need that both the following conditions
are satisfied:

(i) pi(x) − μH ≥ pi(y) − 0, and

(ii) pi(y) − 0 ≥ pi(x) − μM .

However, this leads to the contradiction that H ≤ M .

Roughly speaking, Lemma 2 states that any k-OSP mechanism must have an
implementation tree such that the first n − �τ� − k agents interacting with the mech-
anism, must be asked if their type is H , and, in the case of affirmative answer, they
must not receive any job.

We next observe that such a mechanism cannot have approximation lower than τ ,
contradicting our hypothesis that M was k-OSP and ρ-approximate.

To this aim, assume first that each agent i ≤ n − �τ� − k diverges at ui , i.e.,
they do not get id arbitrarily. We consider the profile x such that xi = H for every
i. The optimal allocation consists in assigning a job to each machine, and has cost
OPT (x) = H . According to Part (2) of Lemma 2, since M is supposed to be k-
OSP, if machines take actions that signal x, then the mechanism M does not assign
any job to machine i, for every i ≤ n − �τ� − k. Hence, the best outcome that M
can return for x consists in fairly assigning the m jobs to the remaining �τ� + k

machines. Observe that, if δ = 0, i.e., τ is an integer, then each machine receives
τ job, and thus the cost of M is at least τH > ρOPT (x), which contradicts the

708 Theory of Computing Systems (2022) 66:696–720

approximation ratio of M. Otherwise, there is at least one machine that receives at
least
τ� jobs, since �τ� (�τ� + k) < τ (τ + k) = m. In this case, the cost of M is at
least
τ�H > τH = τOPT (x), contradicting again the approximation ratio of M.

Consider now the case that there is 1 < i ≤ n−�τ�−k that does not diverge at ui

(since the mechanism has finite approximation then i > 1). This means that all
the machines j ≥ i will not diverge at ui ; let S denote this set of machines. Note that
the n − i + 1 ≥ �τ� + k + 1 machines in S will have the same outcome no matter
their types when the machines not in S have type H ; in other words, any profile x
where xj = H for j �∈ S is compatible with ui . Consider x such that xj = H for
j �∈ S and xj = L otherwise. Since H ≥ τn2L, to guarantee approximation ρ, the
mechanism must return a solution for x which keeps the machines not in S empty;

then there is a j∗ ∈ S which is allocated at least
⌈

n
|S|

⌉
jobs. Consider now y where

yj = H for j �∈ S ∪{j∗} and xj = L otherwise. For this type profile, the mechanism
must return the same allocation returned when the type profile is x, since it cannot
distinguish x from y. Hence, the allocation returned by the mechanism on type profile

y must have cost at least
⌈

n
|S|

⌉
H ≥ H . However, since |S| < n, then there is at least

one machine with type L, and thus the optimal allocation would have cost at most
mL < 1

τ
H < 1

ρ
H , thus contracting the approximation guarantee.

3.2 Upper Bound

We known that the bound τ is tight for k = n − 1 [19] and for k = 0 [12]. We next
show that for every remaining value of k and every possible choice of lookahead sets
{Łk(u)}u∈T , the bound above is tight up to a constant factor for three-values domains,
i.e., Di = {Li, Mi, Hi} for every i.

To this aim, consider the following mechanism Mk , that consists of a Descending
Phase (Algorithm1) followed by an Ascending Phase (Algorithm 2). The algorithmic
output is augmented with a payment, to agent i, of Mi for each unit of job load
received.

709Theory of Computing Systems (2022) 66:696–720

In case of multiple optimal assignments in line 9 of Algorithm 2, we assume
that the mechanism returns the one that maximizes the number of jobs assigned to
machines in B. This is exactly the solution returned by the optimal greedy algorithm,
and thus can be computed in polynomial time.

Roughly speaking, mechanism Mk works by discovering in the descending phase
the n −
τ� − k slowest machines and discarding them (i.e., no job will be assigned
to these machines).

The ascending phase then serves to select a good assignment to the non-discarded
machines. To this aim, the mechanism discovers in the ascending phase the k + 1
fastest machines. The assignment that is returned is then the optimal assignment to
the non-discarded machines in the case that the type of the k + 1 fastest machines is
as revealed, whereas the type of the remaining non-discarded machines is supposed
to be as high as possible, namely equivalent to the type of the last discarded machine
(i.e., the fastest among the slow machines)2.

Proposition 1 Mechanism Mk is k-OSP if Di = {Li, Mi, Hi} for each i.

Proof We prove that Mi · fi(Mk(x)) − xi · fi(Mk(x)) ≥ Mi · fi(Mk(y)) − xi ·
fi(Mk(y)) for each machine i, for each node u in which the mechanism makes a
query to i, for every zŁ(u) such that zj ∈ Dj(u) for j ∈ Ł(u), for every xi and yi that
diverge at u, for each pair of type profiles x, y such that xj ∈ Dj(u), yj ∈ Dj(u) for
every agent j and xj = yj = zj for every j ∈ Ł(u).

2Note that profile ẑ is not necessarily a feasible profile since minw/∈A tw may not belong to Dj for some
j ∈ A \ B.

710 Theory of Computing Systems (2022) 66:696–720

This is obvious for xi = Mi . Next we prove that fi(Mk(x)) ≤ fi(Mk(y)) if
xi = Hi , that immediately implies the desired claim. Let us first consider a node
u corresponding to the descending phase of the mechanism. In this case, xi = p,
where p is as at node u. Moreover, in all profiles as described above there are at
least
τ� + k machines that either have a type lower than p, or they have type p

but are queried after i. However, for every x−i satisfying this property, we have that
fi(Mk(x)) = 0 ≤ fi(Mk(y)) for every alternative profile y.

Suppose now that node u corresponds to the ascending phase of the mech-
anism. In this case, yi = p, where p is as at node u. Observe that
fi(Mk(y)) = f 	

i (yi, zŁ(u), ẑ−i,Ł(u)), where f 	
i (yi, zŁ(u), ẑ−i,Ł(u)) is the number

of jobs assigned to machine i by the optimal outcome when input consists of pro-
file (yi, zŁ(u), ẑ−i,Ł(u)), ẑ−i,Ł(u) being such that ẑj = maxk∈A tk for every j ∈
A \ ({i} ∪ Ł(u)).

Observe that for every x as described above, it must be the case that xj ≥ yi for
every j ∈ A \ Ł(u). Hence, we distinguish two cases: if minj∈A\Ł(u) xj = xi , then

fi(Mk(x)) = f 	
i (xi, zŁ(u), ẑ−i,Ł(u)) ≤ f 	

i (yi, zŁ(u), ẑ−i,Ł(u)) = fi(Mk(y));
if instead minj∈A\Ł(u) xj = xk , for some k �= i, then

fi(Mk(x)) = f 	
i (xk, zŁ(u), ẑ−k,Ł(u)) ≤ f 	

k (xk, zŁ(u), ẑ−k,Ł(u))

≤ f 	
i (yi, zŁ(u), ẑ−i,Ł(u)) = fi(Mk(y)),

where we used that ẑ−k,Ł(u) = ẑ−i,Ł(u) and the inequalities follow since: (i) in the
optimal outcome the fastest machine must receive at least as many jobs as slower
machines; (ii) in the optimal outcome, given the speeds of other machines, the
number of jobs assigned to machine i decreases as its speeds decreases.

Proposition 2 Mechanism Mk , for 1 ≤ k ≤ n − 2, is
(

2m+2k+
τ�−1
m

τ�
)

-

approximate.

Proof Fix a type profile x. We will denote with OPT (x) the makespan of the assign-
ment returned by the optimal greedy algorithm on input profile x.3 We also denote as
OPTi(x) the number of jobs assigned to machine i in the optimal makespan, so that
OPT (x) = maxi xi · OPTi(x).

The proof proceeds by comparing the makeskan OPT (x) of the optimal alloca-
tion for profile x and the makespan of the allocation returned by the mechanism for
x. Rather than trying to directly characterize these assignments, our proof consid-
ers two simpler instances, each involving only two different types, and two special
allocations for these instances that turn out to be related to OPT (x) and the alloca-
tion returned by the mechanism. These proxy instances and solutions simplify our
analysis.

3We will use the same notation both if the optimal assignment is computed on n machines and if it is
computed and on
τ� + k machines, since these cases are distinguished through the input profile.

711Theory of Computing Systems (2022) 66:696–720

Specifically, let A and B as at the end of the mechanism when agents behave
according to x. Let α be the smallest multiple of |A| such that α ≥ ∑

i∈A OPT i(x).
Moreover, let t = minj /∈A tj . We define the profile y as follows: yi = w for
every i ∈ A and yi = t otherwise, where w is chosen so that α

|A| · w =
maxj∈A

(
xj · OPT j (x)

)
.4 Consider then the assignment a that assigns α jobs equally

split among agents in A and m − α jobs equally split among agents not in A. It is
immediate to see that OPT (x) ≥ MS(a, y), where MS(a, y) is the makespan of the
assignment a with respect to the type profile y: indeed, if MS(a, y) = α

|A|w, then we

have, by our choice of w, that MS(a, y) = maxj∈A

(
xj · OPTj (x)

) ≤ OPT (x); if

MS(a, y) =
⌈

m−α
n−|A|

⌉
t , then, by our choice of α, MS(a, y) ≤

⌈
m−∑

i∈A OPTi(x)
n−|A|

⌉
t ≤

OPT (x), where the last inequality follows since in the optimal assignment there

must be at least one machine not in A that receives at least
⌈

m−∑
i∈A OPTi(x)
n−|A|

⌉
jobs,

and its type is at least t .
Let M(x) be the makespan of the assignment returned by our mechanism if agents

behave according to x. Then, M(x) is equivalent to OPT (ẑ), where ẑ is such that
ẑj = xj for j ∈ B and ẑj = t for j ∈ A \ B. Let β be the largest multiple of
|A \ B| such that β ≤ ∑

i∈B OPT i(ẑ). Moreover, let β be the smallest multiple of
|B| such that β ≥ β. Note that β − β ≤ |B| − 1 = k. We define the profile ŷ as
follows: ŷi = ŵ for every i ∈ B and ŷi = t otherwise, where ŵ is chosen so that
β

|B| · ŵ = maxj∈B

(
xj · OPT j (ẑ)

)
. Consider then the assignment â that assigns β

jobs equally split among agents in B and m − β jobs equally split among agents in

A\B.5 Observe that maxj∈A\B(xj ·OPT j (ẑ)) =
⌈

m−∑
i∈B OPT i(z)
|A\B|

⌉
· t = m−β

|A\B| · t =
maxj∈A\B(ŷj · âj). Moreover, maxj∈B(xj ·OPT j (ẑ)) = β

|B| · ŵ = maxj∈B(ŷj · âj).
Hence, M(x) = OPT (ẑ) = MS(â, ŷ).

The theorem then follows, by proving that MS(â,ŷ)
MS(a,y) ≤ 2m+k+
τ�−1

m

τ�. To this

aim, let us first to prove some useful lemmata.

Lemma 3 MS(â, ŷ) = OPT (ŷ), i.e., â is the optimal assignment for ŷ and
maximizes the number of jobs assigned to machines in B.

Proof Observe that MS(â, ŷ) = max
{

β
k+1 · ŵ,

m−β

τ�−1 · t

}
, and suppose it is not opti-

mal for ŷ. If MS(â, ŷ) = β
k+1 ŵ, then, if â is not optimal for ŷ, it must be that by

moving one job from every machine in B to machines in A \ B we have a smaller

4Note that we do not require that y is feasible: indeed, it is possible that neither w nor t belong to the
domain of machines in A.
5Note that assignment â may assign more than m jobs.

712 Theory of Computing Systems (2022) 66:696–720

makespan, i.e.
(

m−β

τ�−1 +

⌈
k+1

|A\B|
⌉)

· t <
β

k+1 · ŵ = maxj∈B

(
xj · OPTj (ẑ)

) =
maxj∈B

(
ẑj · OPTj (ẑ)

)
. However,

(
m − β

τ� − 1
+

⌈
k + 1

|A \ B|
⌉)

· t =
(⌈

m − ∑
i∈B OPT i(ẑ)

τ� − 1

⌉
+

⌈
k + 1

|A \ B|
⌉)

· t

= max
j∈A\B

(
ẑj ·

(
OPT j (ẑ) +

⌈
k + 1

|A \ B|
⌉))

,

that implies maxj∈A\B
(
ẑj ·

(
OPT j (ẑ) +

⌈
k+1

|A\B|
⌉))

< maxj∈B

(
ẑj · OPTj (ẑ)

)
.

In words, moving one job from any machine in B to machines in A/B will result in
a makespan lower than OPT (ẑ), that contradicts the optimality of OPT (ẑ).

If instead, MS(â, ŷ) = m−β

τ�−1 · t , then, since â is not optimal for ŷ we have:

(
β

k + 1
+ 1

)
ŵ <

m − β

τ� − 1
· t =

⌈
m−∑

i∈B OPT i(ẑ)

τ�−1

⌉
· t

= maxj∈A\B
(
ẑj · OPT j (ẑ)

)
.

However,
(

β
k+1 + 1

)
ŵ = maxj∈B

(
xj · OPT j (ẑ)

)+ ŵ. If ŵ ≥ xj∗ , where j	 is the

agent in B that maximizes xj · OPTj (ẑ), then we conclude that

max
j∈B

(
ẑj · (OPT j (ẑ) + 1)

)
< max

j∈A\B
(
ẑj · OPT j (ẑ)

)
,

that contradicts either the optimality of OPT (ẑ) or the tie-breaking rule of the
optimal algorithm.

Suppose instead that ŵ < xj∗ . Then there must exist j ′ ∈ B with xj ′ ≤ ŵ and
xj ′OPT j ′(ẑ) < xj∗OPT j∗(ẑ).

Hence,

xj ′
(
OPT j ′(ẑ) + 1

)
< max

j∈B

(
xj · OPT j (ẑ)

) + ŵ < max
j∈A\B

(
ẑj · OPT j (ẑ)

)
,

that again proves that moving a job from A \ B to B will produce an assignment
with at least the same makespan and one more job on the fastest machines, by con-
tradicting either the optimality of OPT (ẑ) or the tie-breaking rule of the optimal
algorithm.

Finally, by our assumption on the tie-breaking rule used by the mechanism for
choosing the optimal outcome, and the definition of β, it follows that â is the optimal
assignment for ŷ that maximizes the number of jobs that are assigned to machines
in B.

Lemma 4 MS(â, ŷ) ≤ (m+2k+
τ�−1)ν̂θ̂

ν̂+θ̂
, where ν̂ = ŵ

k+1 and θ̂ = t

τ�−1 .

Proof Recall that MS(â, ŷ) = min
{

β
k+1 · ŵ,

m−β

τ�−1 · t

}
. Suppose first that

MS(â, ŷ) = β
k+1 · ŵ = βν̂. Since, by Lemma 3, â is the optimal assignment for ŷ,

713Theory of Computing Systems (2022) 66:696–720

then it must be the case that by moving a job from every machine in B to machines
in A \ B, the makespan does not decrease. Specifically,

βν̂ ≤
⌈

m − β + k + 1

τ� − 1

⌉

· t = (m − β + k + 1 + δ)θ̂ ,

where δ is the smallest integer such that m − β + k + 1 + δ is a multiple of
τ� − 1.

If β = β, we have that β ≤ (m+k+1+δ)θ̂

ν̂+θ̂
, and, consequently,

MS(â, ŷ) ≤ (m + k + 1 + δ)θ̂ ν̂

ν̂ + θ̂

≤ (m + k +
τ� − 1)θ̂ ν̂

ν̂ + θ̂
≤ (m + 2k +
τ� − 1)θ̂ ν̂

ν̂ + θ̂
,

where the second inequality uses that δ ≤
τ� − 2. If β > β, we have that β ≤
(m+(β−β)+k+1+δ)θ̂

ν̂+θ̂
≤ (m+2k+δ+1)θ̂

ν̂+θ̂
, where we used that β − β ≤ k. Consequently,

MS(â, ŷ) ≤ (m + 2k + δ + 1)θ̂ ν̂

ν̂ + θ̂
≤ (m + 2k +
τ� − 1)θ̂ ν̂

ν̂ + θ̂
,

where the second inequality follows from δ ≤
τ� − 2.
Suppose instead MS(â, ŷ) = m−β

τ�−1 · t = (m − β)θ̂ . Since, by Lemma 3, â is the
optimal assignment for ŷ that maximizes the number of jobs in |B|, then moving one
job from A \ B to a machine in B results in an higher makespan. Specifically,

(m − β)θ̂ <

(
β

k + 1
+ 1

)
· ŵ = (β + k + 1)ν̂

= (β + (β − β) + k + 1)ν̂ ≤ (β + 2k + 1)ν̂.

Hence, we have β >
mθ̂−(2k+1)ν̂

ν̂+θ̂
, and, consequently,

MS(â, ŷ) <

(

m − mθ̂ − (2k + 1)ν̂

ν̂ + θ̂

)

· θ̂ = (m + 2k + 1)θ̂ ν̂

ν̂ + θ̂

≤ (m + 2k +
τ� − 1)θ̂ ν̂

ν̂ + θ̂
,

where the second inequality uses that
τ� − 1 ≥ 1 since k < n − 1.

Lemma 5 MS(a, y) ≥ mνθ
ν+θ

, where ν = w

τ�+k

and θ = t
n−
τ�−k

.

Proof Recall that MS(a, y) = max
{

α

τ�+k

· w,
⌈

m−α
n−
τ�−k

⌉
· t
}

.

If MS(a, y) = α

τ�+k

·w = αν, then αν ≥
⌈

m−α
n−
τ�−k

⌉
· t = m−α+λ

n−
τ�−k
· t = (m−α+

λ)θ , where λ is the smallest integer such that m − α + λ is a multiple of n −
τ� − k.
Hence, we have α ≥ (m+λ)θ

ν+θ
, and, consequently, MS(a, y) ≥ (m+λ)θν

ν+θ
≥ mθν

ν+θ
, since

λ ≥ 0.

714 Theory of Computing Systems (2022) 66:696–720

If MS(a, y) =
⌈

m−α
n−
τ�−k

⌉
· t = m−α+λ

n−
τ�−k
· t = (m−α +λ)θ , then, (m−α +λ)θ ≥

αν. Hence, α ≤ (m+λ)θ
ν+θ

, and, consequently,

MS(a, y) ≥
(

(m + λ) − (m + λ)θ

ν + θ

)
θ = (m + λ)νθ

ν + θ
≥ mνθ

ν + θ
.

Lemma 6 It holds ŵ ≤ 2w.

Proof Throughout this proof, let us denote with γ the number of jobs that the optimal
allocation for x assigns to machines in B.

Consider first the simpler case that γ = m, i.e., the optimal allocation for x assigns
all the jobs to the machines in B. Clearly, in this case OPTi(x) = OPTi(ẑ) for every

i, and thus γ = β. Moreover, by definition of β,
⌈

γ
|B|

⌉
= β

|B| . Finally, if j∗ is the

index of the machine that achieves the makespan in the optimal assignment for type
profile x, i.e., j∗ = arg maxj (xj · OPT j (x)), then j∗ ∈ B and

ŵ =
(

β

|B|
)−1

max
j∈B

(xj · OPT j (ẑ)) =
(

β

|B|
)−1

(xj∗ · OPT j∗(ẑ))

=
⌈

γ

|B|
⌉−1

max
j∈A

(xj · OPT j (x)) ≤ 2 · α|B|
|A|γ · w,

(2)

where the inequality follows since
⌈

γ
|B|

⌉−1 ≤ |B|
γ

.

Suppose now that γ < m. Note that in this case we can write β = cγ + d , where
c ≥ 1 and d ∈ {0, . . . , γ − 1}. Let j∗ be as defined above, and let us, similarly,
define j◦ as the machine in B achieving the highest load in the optimal allocation for
ẑ, i.e., j◦ = arg maxj∈B(xj · OPT j (ẑ)). Finally, we denote with j† a machine in B

that achieves less than c + 1 times the number of jobs that it receives in the optimal
allocation for x, i.e., OPTj†(ẑ) ≤ c · OPTj†(x). Clearly, such a machine must nec-
essarily exist. Note also that, by our tie-breaking rule about optimal assignments, we
have that OPTj†(x) ≥ 1.

Observe that

xj◦ · OPTj◦(ẑ) ≤ xj† · (OPTj†(ẑ) + 1) (by optimality)

≤ xj† · [(c · OPTj†(x) + OPTj†(x) − 1
) + 1

]
(by def. of j†)

≤ 2 · c · xj† · OPTj†(x)

≤ 2 · c · xj∗ · OPTj∗(x). (by def. of j∗)

Moreover, β ≥ c · γ , from which we have that |B|
β

≤ |B|
cγ

. Hence we have that

ŵ ≤ 2 · α|B|
|A|γ · w.

Then, for both cases, it is sufficient to prove that α|B|
|A|γ ≤ 1, or alternatively, that

γ ≥ |B|
|A|α. However this immediately follows from the fact that the machines in B

715Theory of Computing Systems (2022) 66:696–720

are the fastest ones, and our tie-breaking rule among optimal allocations chooses the
allocation that maximizes the number of jobs on these machines.

∑

i∈B

OPT i(ẑ) <
k + 1

τ� + k
β.

According to Lemma 4, and Lemma 5, we then have that

MS(â, ŷ)
MS(a, y)

≤ m + 2k +
τ� − 1

m
· ν̂θ̂

ν̂ + θ̂
· ν + θ

νθ

= m + 2k +
τ� − 1

m
· ŵ

w
· w(n − k −
τ�) + t (k +
τ�)

ŵ(
τ� − 1) + t (k + 1)
.

(3)

Observe that
ŵ

w
· w(n − k −
τ�) + t (k +
τ�)

ŵ(
τ� − 1) + t (k + 1)
= ŵ

w
· w(τ(k + τ) − (k +
τ�)) + t (k +
τ�)

ŵ(
τ� − 1) + t (k + 1)

≤ (k +
τ�) · ŵ

w
· w(
τ� − 1) + t

ŵ(
τ� − 1) + t (k + 1)
.

(4)
Moreover, the function w(
τ�−1)+t

ŵ(
τ�−1)+t (k+1)
turns out to be non-increasing in t , given that,

by Lemma 6, ŵ ≤ 2 · w ≤ (k + 1) · w, where the last inequality follows since k ≥ 1.
Hence, since t ≥ w,

ŵ

w
· w(
τ� − 1) + t

ŵ(
τ� − 1) + t (k + 1)
≤ ŵ

w
· w(
τ� − 1) + w

ŵ(
τ� − 1) + w(k + 1)

=
τ�ŵ
ŵ(
τ� − 1) + w(k + 1)

≤
τ�ŵ
ŵ(
τ� − 1) + ŵ(k + 1)/2

=
τ�

τ� + k/2−1/2

≤ 2
τ�

τ� + k

,

(5)

where the last inequality follows since
τ� + k/2 − 1/2 ≥ 1
2 (
τ� + k). By merging

(3), (4), and (5), we achieve the desired bound.

The next corollary follows by simple algebraic manipulations from Proposition 2.

Corollary 1 Mechanism Mk , for 1 ≤ k ≤ n − 2, is 2 (
τ� + 1)-approximate for
m >
τ� (2k +
τ�).

4 The Case of Facility Location

Let us now consider the facility location problem. Here, the type ti of each agent
consists of her position on the real line. The algorithm f must choose a position
z ∈ R for the facility. The cost that agent i pays for having the facility in position z is

716 Theory of Computing Systems (2022) 66:696–720

ti (z) = d(ti , z) = |ti − z|. So, ti (z) denotes the distance between ti and the location
of the facility.

We focus on mechanisms implementing a social choice function f ∗ that optimizes
the social cost, i.e.,

f ∗(b) ∈ arg min
z∈R cost(z,)

¯
, cost(z,)

¯
=

n∑

i=1

bi(z).

As above, we say that the mechanism M is α-approximate if the solution z returned
by the mechanism has a social cost that is at most a factor α away from the cost of
the solution returned by f ∗ for any input.

Let τ = τk(n) = max
{

1, n−k−1
k+1

}
. Observe that τ0(n) = n − 1 and τn−1(n) = 1.

More specifically, τ = 1 for every k ≥ n
2 − 1 and τ = O(1) if and only if k = �(n).

We now show that there is no k-OSP mechanism for the facility location problem
with an approximation ratio better than τ . The proof extends a similar argument given
for OSP mechanisms in [7]. Let us first prove the following lemma.

Lemma 7 Fix k ∈ {
0, . . . ,

⌈
n
2

⌉ − 2
}
. For every α, β, with α < β, no ρ-approximate

mechanism M for the facility location problem, with ρ < τk(n), sets f (b) ≤ α, if
bj = α for k + 1 agents j and bj = β for every remaining agent, where f is the
social choice function used by M.

Proof The optimal facility location for the given setting consists in placing the
facility in position β. The total cost in this case is (k + 1)(β − α).

If f (b) ≤ α, then the total cost is larger than (n − k − 1)(β − α), and thus the
approximation ratio of the mechanism would be n−k−1

k+1 = τk(n) > ρ.

With the same argument one can prove also the following lemma.

Lemma 8 For every α, β, with α < β, no ρ-approximate mechanism M for the
facility location problem, with ρ < n − 1, sets f (b) ≥ β, if bj = β for one single
agent and bj = α for every remaining agent, where f is the social choice function
used by M.

Theorem 2 For every ε > 0, there is no (τ − ε)-approximate mechanism for the
facility location problem that is k-OSP.

Proof For k ≥ ⌈
n
2

⌉ − 1, we have τ = 1, and thus the claim is obvious.
Suppose then k ≤ ⌈

n
2

⌉ − 2 and let M = (f, T , p) be a (τ − ε)-approximate
mechanism for the facility location problem that is k-OSP. Let us consider the domain
of every agent to be D = {a, a+δ, . . . , b−δ, b}, where δ ≤ (k+1)ε

n−2k−2 · b−a
2 . The proof

essentially works by proving that there are instances in which any k-OSP mechanism
must place the facility either in x or in x + δ, for some x ∈ D. Setting δ to be a small
value, as described above, implies that the choice among x and x + δ essentially does
not influence the approximation ratio of the mechanism. Note also that it is w.l.o.g. to

717Theory of Computing Systems (2022) 66:696–720

consider only this domain, since any k-OSP mechanism returning a ρ-approximation
in a larger domain must necessarily have the same properties when applied on a
smaller domain.

Then, let i be the first divergent agent of M (such a divergent agent must exist,
otherwise the mechanism must return the same solution when all agents are in a,
and when they are all in b, which is impossible without violating the approximation
guarantee of the mechanism) and let ui be the node of T at which it diverges. Note
that, by definition of divergent agent, there must be two types ti , t

′
i of agent i such

that t ′i = ti + δ and i takes an action in M when her type is ti that is different from
the action taken when her type is t ′i . We denote as c and d the smallest ti and the
largest t ′i , respectively, for which this occurs, i.e., c is the smallest type in D′ such
that i diverges on c and c + δ, and d is the largest type in D′ such that i diverges on
d and d − δ.

Note that either c < b+a
2 or d > b+a

2 . Indeed, if c ≥ b+a
2 , then d ≥ c + δ > b+a

2 .
In the rest of the proof we will assume that c < a+b

2 . The proof for the case that
d > a+b

2 simply requires to replace c with d , c + δ with d − δ, and b with a, and
invert the direction of the inequalities in the next claims.

The proof fixes an agent i and uses two profiles x and y, that are defined as follows:

– xi = c + δ, and xj = c for every j �= i;
– yi = c, yj = c for j ∈ Ł(ui), and yk = b for every remaining agent j .

We begin by using k-OSP to relate payments and outcomes of the mechanism M on
input x and y. Specifically, we note that if the real location of i is ti = xi = c+δ then

ui(x) = pi(x) − d(c + δ, f (x)), and ui(y) = pi(y) − d(c + δ, f (y)).
Since i diverges at ui on c and c + δ, agents in Ł(ui) play the same actions in x

and y, and M is k-OSP, we have that
ui(x) ≥ ui(y). Hence, it follows that

pi(x) ≥ pi(y) − d(c + δ, f (y)) + d(c + δ, f (x)). (6)

If the real location of i is t ′i = yi = c, then
ui(x) = pi(x) − d(c, f (x)), and ui(y) = pi(y) − d(c, f (y)). As above, since i

diverges on c and c + δ, agents in Ł(ui) play the same actions in x and y, and M is
k-OSP, we have that

ui(y) ≥ ui(x). Hence, it follows that

pi(x) ≤ pi(y) − d(c, f (y)) + d(c, f (x)). (7)

Therefore, in order to satisfy both (6) and (7), we need that

d(c + δ, f (y)) − d(c, f (y)) ≥ d(c + δ, f (x)) − d(c, f (x)). (8)

Using (8) above, we first show that f (x) must be at least c and then that f (y) ≤
c+δ. Finally, we prove how this last fact contradicts the desired approximation ratio.

Let us first show that f (x) ≥ c. Suppose instead that f (x) < c. Since f (x) < c,
then the r.h.s. of (8) is δ. As for the l.h.s., we distinguish two cases. If f (y) ≤ c + δ,
then, since f (y) > c according to Lemma 7, we have (c + δ − f (y))− (f (y)− c) =
δ − 2(f (y) − c) < δ. If f (y) > c + δ, we have (f (y) − (c + δ)) − (f (y) − c) = −δ.
Hence, in both cases we reach a contradiction.

718 Theory of Computing Systems (2022) 66:696–720

We now show that f (y) ≤ c + δ. Assume by contradiction that f (y) > c + δ.
Since f (x) ≥ c, and f (x) < c + δ by Lemma 8, we can rewrite (8) as

(f (y)−(c+δ))−(f (y)−c) ≥ ((c+δ)−f (x))−(f (x)−c) ⇒ −δ ≥ δ−2(f (x)−c).

However, this is impossible since f (x) < c + δ.
Finally, we prove that, given that f (y) ≤ c+δ, then the mechanism is not (τ −ε)-

approximate. Indeed, since by Lemma 7 f (y) > c, the total cost of mechanism M
on input y is

(k + 1)(f (y) − c) + (n − k − 1) (b − f (y))

= (n − k − 1)b − (k + 1)c − (n − 2k − 2)f (y)

= (n − k − 1)(b − c) − (n − 2k − 2)(f (y) − c)

≥ (n − k − 1)(b − c) − (n − 2k − 2)δ

≥ (n − k − 1)(b − c) − (n − 2k − 2)
(k + 1)ε

n − 2k − 2
· b − a

2
> (n − k − 1 − (k + 1)ε)(b − c),

where we used that b − c > b − b+a
2 = b−a

2 . However, this is absurd, since M is
(τ −ε)-approximate, where τ = n−k−1

k+1 and the optimal mechanism on input y places
the facility in b and has total cost (k + 1)(b − c).

5 Conclusions

We have studied the relationship between the bounded rationality of the agents and
the approximation guarantee of mechanisms incentivizing these agents. We have
relaxed the popular notion of OSP [4] to allow for more fine grained notions of ratio-
nality. For machine scheduling and facility location, we proved that more rational
agents do not help in getting close to the optimum, unless the level of rationality is
significant to a point where the meaning of bounded becomes questionable.

On one hand, our findings motivate the focus on OSP for future work on the
approximation guarantee of mechanisms for agents with bounded rationality. On the
other hand, one might wonder whether similar results hold also for different opti-
mization problems. However, we highlight that no approximation result is known
even for OSP mechanisms.

Funding Open access funding provided by Università degli Studi di Salerno within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

719Theory of Computing Systems (2022) 66:696–720

http://creativecommons.org/licenses/by/4.0/

References

1. Ferraioli, D., Ventre, C.: Obvious strategyproofness, bounded rationality and approximation: The case
of machine scheduling. In: SAGT 2019 (2019)

2. Ferraioli, D., Ventre, C.: Obvious strategyproofness, bounded rationality and approximation. In:
AAMAS 2019 (2019)

3. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. Amer. Econ. Rev. 94(5),
1452–1475 (2004)

4. Li, S.: Obviously strategy-proof mechanisms. Amer. Econ. Rev. 107(11), 3257–87 (2017)
5. Ashlagi, I., Gonczarowski, Y.A.: Stable matching mechanisms are not obviously strategy-proof. J.

Econ. Theory 177, 405–425 (2018)
6. Pycia, M., Troyan, P.: Obvious dominance and random priority. In: EC 2019 (2019)
7. Ferraioli, D., Ventre, C.: Obvious strategyproofness needs monitoring for good approximations. In:

AAAI 2017, pp. 516–522 (2017)
8. Mackenzie, A.: A revelation principle for obviously strategy-proof implementation. Research Memo-

randum 014, (GSBE) (2017)
9. Zhang, L., Levin, D.: Bounded rationality and robust mechanism design: An axiomatic approach.

Amer. Econ. Rev. 107(5), 235–39 (2017)
10. Bade, S., Gonczarowski, Y.A.: Gibbard-Satterthwaite success stories and obvious strategyproofness.

In: EC 2017, p. 565 (2017)
11. Ferraioli, D., Ventre, C.: Probabilistic verification for obviously strategyproof mechanisms. In: IJCAI

2018 (2018)
12. Ferraioli, D., Meier, A., Penna, P., Ventre, C.: Obviously strategyproof mechanisms for machine

scheduling. In: ESA 2019 (2019)
13. Kyropoulou, M., Ventre, C.: Obviously strategyproof mechanisms without money for scheduling. In:

AAMAS 2019 (2019)
14. Ferraioli, D., Meier, A., Penna, P., Ventre, C.: Automated optimal osp mechanisms for set systems:

The case of small domains. In: WINE 2019 (2019)
15. Ferraioli, D., Penna, P., Ventre, C.: Two-way greedy: Algorithms for imperfect rationality. In: WINE

2021 (2021)
16. De Groot, A.: Thought and choice in chess. Mouton (1978)
17. Shannon, C.: Programming a computer for playing chess. Philos. Mag. 41(314), 256–275 (1950)
18. Pearl, J.: Heuristics: Intelligent search strategies for computer problem solving. Addison-Wesley

(1984)
19. Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: FOCS 2001, pp. 482–491

(2001)
20. Moulin, H.: On strategy-proofness and single-peakedness. Public Choice 35, 437–455 (1980)
21. Sandholm, T., Gilpin, A.: Sequences of take-it-or-leave-it offers: Near-optimal auctions without full

valuation revelation. In: AMEC 2003, pp. 73–91 (2003)
22. Hartline, J., Roughgarden, T.: Simple versus optimal mechanisms. In: EC 2009, pp. 225–234 (2009)
23. Chawla, S., Hartline, J., Malec, D., Sivan, B.: Multi-parameter mechanism design and sequential

posted pricing. In: STOC 2010, pp. 311–320 (2010)
24. Babaioff, M., Immorlica, N., Lucier, B., Weinberg, S.M.: A simple and approximately optimal

mechanism for an additive buyer. In: FOCS 2014, pp. 21–30 (2014)
25. Adamczyk, M., Borodin, A., Ferraioli, D., de Keijzer, B., Leonardi, S.: Sequential posted price

mechanisms with correlated valuations. In: WINE 2015, pp. 1–15 (2015)
26. Feldman, M., Fiat, A., Roytman, A.: Makespan minimization via posted prices. In: EC 2017, pp. 405–

422 (2017)
27. Eden, A., Feldman, M., Friedler, O., Talgam-Cohen, I., Weinberg, S.M.: A simple and approximately

optimal mechanism for a buyer with complements. In: EC 2017, pp. 323–323 (2017)
28. Correa, J., Foncea, P., Hoeksma, R., Oosterwijk, T., Vredeveld, T.: Posted price mechanisms for a

random stream of customers. In: EC 2017, pp. 169–186 (2017)
29. Brânzei, S., Procaccia, A.D.: Verifiably truthful mechanisms. In: ITCS 2015, pp. 297–306 (2015)
30. Glazer, J., Rubinstein, A.: An extensive game as a guide for solving a normal game. J. Econ. Theory

70, 32–42 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

720 Theory of Computing Systems (2022) 66:696–720

	Obvious Strategyproofness, Bounded Rationality and Approximation
	Abstract
	Introduction
	Our Contribution
	Related Work

	OSP with Lookahead
	Discussion

	The Case of Machine Scheduling
	Lower Bound
	Upper Bound

	The Case of Facility Location
	Conclusions
	References

