Theory of Computing Systems
https://doi.org/10.1007/500224-021-10049-6

®

Check for
updates

Finite Sequentiality of Finitely Ambiguous Max-Plus
Tree Automata

Erik Paul’

Accepted: 22 May 2021Published online: 28 October 2021
© The Author(s) 2021

Abstract

We show that the finite sequentiality problem is decidable for finitely ambiguous
max-plus tree automata. A max-plus tree automaton is a weighted tree automaton
over the max-plus semiring. A max-plus tree automaton is called finitely ambiguous
if the number of accepting runs on every tree is bounded by a global constant. The
finite sequentiality problem asks whether for a given max-plus tree automaton, there
exist finitely many deterministic max-plus tree automata whose pointwise maximum
is equivalent to the given automaton.

Keywords Weighted tree automata - Max-plus tree automata - Finite sequentiality -
Decidability - Finite ambiguity

1 Introduction

A max-plus automaton is a finite automaton whose transitions are weighted by real
numbers. A max-plus automaton assigns a weight to each of its runs by adding the
weights of the transitions which constitute the run and it assigns a weight to every
word by taking the maximum over the weights of all runs on the given word. Max-
plus automata are weighted automata [1-5] over the max-plus semiring. In the form
of min-plus automata, they were originally introduced by Imre Simon as a means to
show the decidability of the finite power property [6, 7] and they enjoy a continuing
interest [§—14]. They have found applications in many different contexts, for example

This article belongs to the Topical Collection: Special Issue on International Colloquium on
Automata, Languages and Programming (ICALP 2020)
Guest Editors: Artur Czumaj and Anuj Dawar

This work was partially supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg
1763 (QuantLA).

P4 Erik Paul
epaul @informatik.uni-leipzig.de

I Institute of Computer Science, Leipzig University, Augustusplatz 10, Leipzig, 04109, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10049-6&domain=pdf
http://orcid.org/0000-0002-0814-598X
mailto: epaul@informatik.uni-leipzig.de

Theory of Computing Systems

to determine the star height of a language [15], to prove the termination of certain
string rewriting systems [16], and to model discrete event systems [17]. They also
appear in the context of natural language processing [18], where probabilities are
often computed in the min-plus semiring as negative log-likelihoods for reasons of
numerical stability.

Like finite automata, max-plus automata are by definition non-deterministic
devices. However, while every finite automaton can be determinized [19], the same
is in general not true for max-plus automata [10]. In fact, it is a long-standing
open question whether given a max-plus automaton, the existence of an equivalent
deterministic automaton can be decided. This problem is commonly known as the
sequentiality problem and is one of the most prominent open questions about max-
plus automata. For practical applications, the execution of a deterministic automaton
is of course much more efficient than the execution of a non-deterministic one, so
being able to decide whether a given automaton can be determinized is very much
desirable. While open in general, the sequentiality problem has been shown to be
decidable for some important subclasses of max-plus automata, namely for unam-
biguous [18], finitely ambiguous [10], and polynomially ambiguous [20] max-plus
automata. Here, we call a max-plus automaton unambiguous if there exists at most
one run on every word, finitely ambiguous if the number of runs on each word is
bounded by a global constant, and polynomially ambiguous if the number of runs on
each word is bounded polynomially in the length of the word. Note that the classes
of deterministic, unambiguous, finitely ambiguous, polynomially ambiguous, and
arbitrary max-plus automata form a strictly ascending hierarchy [10, 14, 21]. Also,
deciding the degree of ambiguity of a max-plus automaton can easily be reduced to
deciding the degree of ambiguity of a finite automaton. It is trivial to decide whether
a finite automaton is deterministic. Polynomial time algorithms to decide whether
a finite automaton is unambiguous, finitely ambiguous, or polynomially ambiguous
can be found in [22-24].

While a given max-plus automaton may not be equivalent to a single determin-
istic max-plus automaton, this does not exclude the possibility that it is equivalent
to the pointwise maximum of finitely many deterministic automata. The problem of
deciding whether a max-plus automaton possesses such a finitely sequential repre-
sentation is known as the finite sequentiality problem. The decidability of the finite
sequentiality problem was posed as an open question in [9] and has been solved
only recently for unambiguous [25] and finitely ambiguous [26] max-plus automata.
Note that the class of max-plus automata which possess a finitely sequential rep-
resentation lies strictly between the classes of deterministic and finitely ambiguous
max-plus automata, and it is incomparable to the class of unambiguous max-plus
automata [10].

In this paper, we show that the finite sequentiality problem is decidable for finitely
ambiguous max-plus tree automata. Operating on trees instead of words, max-plus
tree automata are a generalization of max-plus word automata and more generally,
they are weighted tree automata [27-30] over the max-plus semiring. Applications
of max-plus tree automata include proving the termination of certain term rewrit-
ing systems [31] and they are commonly employed in natural language processing
[32] in the form of probabilistic context-free grammars. Our approach to proving the

@ Springer

Theory of Computing Systems

decidability of the finite sequentiality problem for finitely ambiguous max-plus tree
automata employs ideas from Bala’s proof of the corresponding result for finitely
ambiguous max-plus word automata [26]. However, due to lack of space, formal
proofs had to be omitted in [26] and Bala’s informal description of his methods does
not suffice for reconstruction. Also, no other published version of [26] exists. We pro-
vide an honest attempt to compare our approach to his but note that our interpretation
might not be accurate.

In his proof for max-plus word automata, Bala first introduces the A-Fork property
and then proceeds to show that this property is a decidable criterion characterizing the
finite sequentiality of a finitely ambiguous max-plus automaton. More precisely, he
shows that a finitely ambiguous max-plus automaton possesses a finitely sequential
representation if and only if the A-Fork property is not satisfied. To show the decid-
ability of the A-Fork property, he shows its expressibility in a decidable fragment of
Presburger arithmetic. To show that an automaton is not finitely sequential if the A-
Fork property is satisfied, he uses pumping techniques similar to those employed in
[25] for the finite sequentiality problem of unambiguous max-plus word automata.
This part of his proof most likely employs Ramsey’s Theorem [33] as it involves
“colorings of finite hypercubes’. His proof for the existence of a finitely sequential
representation in case that the A-Fork property is not satisfied employs transducers
and the notions of critical pairs and close approximations, none of which occur in our
approach. We are thus unsure about the nature of this particular part of the proof, but
it most likely uses a reduction to the decidability of the finite sequentiality problem
for unambiguous automata.

Our approach is as follows. First, we introduce the separation property, a twofold
modification of the A-Fork property. On the one hand, we endow our new property
with a criterion accounting for the non-linear structure of trees. This new criterion
is inspired by the criterion we added in [34] to the fork property [25], the prop-
erty characterizing finite sequentiality of unambiguous max-plus word automata, in
order to obtain the tree fork property, the property characterizing finite sequentiality
of unambiguous max-plus tree automata. On the other hand, we strengthen the A-
Fork property as with only the first modification, our new property would wrongly
characterize some finitely sequential automata as not being finitely sequential. We
then show that the separation property is decidable by employing Parikh s Theorem
[35, 36] for a reduction to the decidability of the satisfiability of systems of linear
inequalities over the rational numbers with integer solutions [37, 38]. This means in
particular that we show the decidability of the finite sequentiality problem only for
automata with weights in the rationals. Then we employ Ramsey’s Theorem to show
that no finitely sequential representation exists whenever the separation property is
satisfied. Due to the criterion accounting for the non-linearity of trees, this is con-
siderably more difficult than in [26] and it is in fact the most technical and the most
challenging aspect of our result. Finally, we show that if the separation property is not
satisfied for a given max-plus tree automaton, then we can construct finitely many
unambiguous max-plus tree automata which all do not satisfy the tree fork property
and whose pointwise maximum is equivalent to the automaton. By [34], these unam-
biguous automata then possess finitely sequential representations. Combining these,
we obtain a finitely sequential representation of the original automaton.

@ Springer

Theory of Computing Systems

An extended abstract of this paper appeared as [39]. Here, we provide full proofs
together with detailed illustrations for these.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by | X|.
For two sets X and Y and a mapping f: X — Y, we call X the domain of f, denoted
by dom(f), and Y the range of f, denoted by range(f). For a subset X’ C X, we
call the set f(X') = {y € Y | 3x € X': f(x) = y} the image or range of X’
under f. The restriction of f to X', denoted by f[x, is the mapping f]x: X' — Y
defined by flx (x) = f(x) for every x € X’. For an element y € Y, we call the set
fYy) = {x € X | f(x) = y} the preimage of y under f. For a second mapping
g: X — Y,wewrite f = gifforall x € X we have f(x) = g(x).

An alphabet X is a non-empty finite set. By X*, we denote the set of all finite
words over X'. The empty word is denoted by ¢, and the length of a word w € X* by
|w]|. The number of occurrences of a letter @ € ¥ in a word w is denoted by |w|,. A
subset L C X* is called a language over X.

Welet N = {0, 1, 2, ...}. By N* we denote the set of all finite words over N. The
set N* is partially ordered by the prefix relation <p and totally ordered with respect
to the lexicographic ordering <;. Two words from N* are called prefix-dependent if
they are in prefix relation, and otherwise they are called prefix-independent.

A ranked alphabet is a pair (I', k), often abbreviated by I", where I is a non-
empty finite set and rk;: I" — N a mapping which assigns a rank to every symbol.
For every m > 0 we define I"™) = rk;l (m) as the set of all symbols of rank m. The
rank of I" is defined as rk(I") = max{rkr(a) | a € T'}.

The set of (finite, labeled, and ordered) I -trees, denoted by T, is the set of all
pairs ¢ = (pos(?), label;), where pos(r) C N* is a finite non-empty prefix-closed
set of positions, label; : pos(t) — I is a mapping, and for every w € pos(z) we
have wi € pos(¢) iff 1 < i < rkr(label;(w)). We write ¢ (w) for label;(w) and |¢|
for |pos(r)|. We also refer to the elements of pos(¢) as nodes, to ¢ as the root of ¢,
and to prefix-maximal nodes as leaves. The height of ¢ is defined as height(¢) =
maXyepos(r) |w]. For a leaf w € pos(z), the set {v € pos(t) | v <p w} is called a
branch of t. A subset L C T is called a tree language over I'.

Now let s,t € Tr and w € pos(t). The subtree of t at w, denoted by ¢ [, is
a I'-tree defined as follows. We let pos(t [,) = {v € N* | wv € pos(¢)} and for
v € pos(t[y), we let labely, (v) = t(wv).

The substitution of s into w of t, denoted by 7(s — w), is a I'-tree defined as
follows. We let pos(¢(s — w)) = (pos(¢) \ {v € pos(?) | w <p v}) U{wv | v €
pos(s)}. For u € pos(t(s — w)), we let label; 5,) (1) = s(v) if u = wv for some
v € pos(s), and otherwise label; (s,) (1) = 1 (u).

Fora € I'™ and trees t,...,ty € Tr, we also write a(ty, ..., t,,) to denote the
tree ¢ with pos(t) = {e} U {iw | i € {1,...,m}, w € pos(t;)}, label;(¢) = a, and
label, (iw) = t;(w). For a € 'Y, the tree a() is abbreviated by a.

@ Springer

Theory of Computing Systems

For a ranked alphabet I", a tree over the alphabet I, = (I" U {0}, kU {¢ — 0})
is called a I'-context. Let t € Tr, be a I'-context and let wy, ..., w, € pos(t) be
a lexicographically ordered enumeration of all leaves of ¢ labeled ¢. Then we call
t an n-I"-context and define ¢;(t) = w; fori € {1,...,n}. For an n-I"-context ¢
and contexts 71, ...,t, € Tr,, we define 7(t1, ..., t,) = t{t1 = O1(8))---{tn —
Qn(2)) by substitution of 71, ..., f,, into the o-leaves of . We also call a 1-I"-context
a I'-word. For a I'-word s, we define s° = ¢ and s"T! = s(s") forn > 0.

A commutative semiring is a tuple (K, ®,©,0,1), abbreviated by K, with
operations sum @ and product ® and constants 0 and 1 such that (K, @, 0) and
(K, ®, 1) are commutative monoids, multiplication distributes over addition, and
k ©0 = 00k = 0 for every x € K. In this paper, we mainly consider the
following two semirings.

— The Boolean semiring B = ({0, 1}, v, A, 0, 1) with disjunction Vv and conjunc-
tion A.

— The max-plus semiring Qmax = (Q U {—o0}, max, +, —o0, 0) where the sum
and the product operations are max and +, respectively, extended to Q U {—oo}
in the usual way.

For a commutative semiring (K, @, ©, 0, 1) and an integer n > 1, the product semir-
ing (K", @n, On, On, 1) is defined by componentwise operations and the constants
0n=(0,...,0) and 1» = (1, ..., 1), We will usually denote &, and ©, simply by
@ and O.

Let (K, ®. ©, 0, 1) be a commutative semiring. A weighted bottom-up finite state
tree automaton (short: WTA) over K and I is a tuple A = (Q, I, u, v) where Q is
a finite set (of states), I" is a ranked alphabet (of input symbols), w: U;li(:f)) om x
'™ x Q — K (the function of transition weights), and v: Q — K (the function
of final weights). We define A 4 = dom(u). A tuple d € A 4 is called a transition
and d is called valid if 1(d) # 0. A state g € Q is called final if v(g) # 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over
the Boolean semiring a finite tree automaton (FTA). We also write a WTA A =
(Q, T, u,v)overBasatuple A’ = (Q, I,68, F) where § = {d € A4 | u(d) = 1}
and F ={q € Q| v(g) =1}.

For a tree t € T, a mapping r: pos(t) — Q is called a quasi-run of A on t. For
a quasi-run 7 on ¢ and a position w € pos(t) with (w) = a € '™, the tuple

tt,r,w) = (r(wl),...,r(wm),a, r(w))

is called the transition at w. The quasi-run r is called a (valid) run if for every w €

pos(¢) the transition t(¢, r, w) is valid with respect to A. We call a run r accepting if

r(¢) is final. By Run 4 (#) and Acc 4 (¢) we denote the sets of all runs and all accepting

runs of A on 7, respectively. For a state ¢ € O, we denote by Run 4(z, ¢) the set of

all runs r € Run 4(¢) such that r(¢) = ¢g. For a position w € pos(t), we define the

restriction r [, € Run 4(¢[,) of r to w by r[,, (v) = r(wv) for every v € pos(t[y).
For a run r € Run 4(¢), the weight of r is defined by

wta(t,r) = O u(t(t, r, w)).

wepos(t)

@ Springer

Theory of Computing Systems

The behavior of A, denoted by [A], is the mapping defined for every 7 € Tr by

[Al0) = P wta.r) ©veE.

reAcc (1)

where the sum over the empty set is O by convention. The support of a WTA A is
the set supp(A) = {t € T | [A](t) # O}. The support of an FTA A is also called
the language accepted by A and denoted by L(A). A subset L C Tr is called
recognizable if there exists an FTA A with L = L(A).

Fora WTA A = (Q, I, i, v), arun of A on a I'-context 7 is a run of the WTA
A" = (0, T, 1/, v) ont, where £/ (¢,q) = 1 forallg € Q and u/(d) = u(d)
for all d € A4. We denote Runf4(t) = Runy(?) and for r € Runf4(t) define
Wtf4(t, r) = wt (¢, r). For an n-I"-context t € T, and states qo, . . ., g,, we denote
by Runf4(q1, -+++qns 1, qo) the set of all runs r € Run% (¢) such that r(e) = go and
r(Qi(t)) = q; foreveryi € {1, ..., n}.

We consider the set I” x Q as an alphabet by defining tkj« g (a, q) = rkr(a) for
every pair (a, ¢) € I x Q and identify every tree t' € T o with the pair (¢, r) given
by t = (pos(t'), wrolabel;) € Tr and r = wgolabely, where wp: I' x Q — I' and
mo: I'x Q — Q are the projections. Fora I"-word s € Tr,, astate g € Q, and arun
rs € Run%(q, s, q), we define (s,)0 = (0, q) and (s, rg)" T = (s, 7)) {((s, 75)" —
Q1(s)) for n > 0. For a I'-context ¢ € Tr,, a run r; € Run(¢), and a position
w € pos(t) with r(w) = ¢, we define the insertion of (s, rs) into (t,r) at w by
(1, r)((s, rs) = w) = (t, 1) ((s, r5) = w)((, 71) Tw—> wO1(s)).

We call a WTA A = (Q, I', u, v) over K and I" trim if for every p € Q, there
existt € Tp, r € Accq(t), and w € pos(t) with r(w) = p. The trim part of A is
the automaton obtained from .4 by removing all states p € Q for which no such z, r,
and w exist. This process obviously has no influence on [.A].

We call A complete if for every m > 0,a € '™, and (q1, . .., gn) € Q™, there
exists at least one (g1, ..., qm, a,q) # 0. We call A deterministic or sequential if
foreverym > 0,a € ™ and @1, ---,9m) € O™, there exists at most one g € Q
with 4(q1, - - - qm, @, q) 7 O.If there exists an integer M > 1 such that |Acc 4 ()| <
M for every t € Tr, we call A M-ambiguous. We call A finitely ambiguous if it
is M-ambiguous for some M > 1 and unambiguous if it is 1-ambiguous. We call
the behavior [A] of A finitely sequential if there exist finitely many deterministic
WTA A, ..., A, over K and I" such that [A] = @7_, [A;], where the sum is taken
pointwise.

3 The Criterion for Finite Sequentiality

We will show that for a finitely ambiguous max-plus-WTA A, it is decidable whether
its behavior [A] is finitely sequential. Moreover, we will show that if [.A] is finitely
sequential, then deterministic max-plus-WTA whose pointwise maximum is equiv-
alent to [A] can be effectively constructed. Our approach is inspired by Bala’s
corresponding proof for finitely ambiguous max-plus word automata [26]. A precise

@ Springer

Theory of Computing Systems

comparison of our methods to those of [26] is difficult, however, as for lack of space,
most proof details had to be left out in [26]. The general outline of our proof can be
summarized as follows.

First, we formulate the separation property, a generalization of Bala’s A-Fork
property. Then we show that it is decidable whether the separation property is satis-
fied and that the behavior of a max-plus-WTA is finitely sequential if and only if the
separation property is not satisfied. For the decidability of the separation property,
we employ Parikh’s Theorem [35, 36] and show that the decidability of the separa-
tion property can be reduced to the satisfiability of systems of linear inequalities over
the rationals with integer solutions. To show that the behavior of a max-plus-WTA A
which satisfies the separation property is not finitely sequential, we assume that [.A]
can be represented as a finite maximum of deterministic max-plus-WTA and employ
Ramsey’s Theorem [33] to obtain a contradiction. For the converse, if the separa-
tion property is not satisfied, we show how to construct finitely many unambiguous
max-plus-WTA whose pointwise maximum is equivalent to [.A] and which all do not
satisfy the tree fork property. As the behavior of an unambiguous max-plus-WTA
which does not satisfy the tree fork property is finitely sequential [34], we obtain that
[A] is also finitely sequential.

We need some more preparation before we can formulate the separation property.
In the following, let I" be a ranked alphabet. We begin by recalling the tree fork prop-
erty and the related concepts of rivals, reachers, distinguishers, and forks. Intuitively,
two states of a finitely ambiguous max-plus-WTA A are called rivals if they can be
reached by the same tree u and they can loop in the same I"-word s but the weights
of these loops differ. The tree u is then called a reacher of p and g and the I"-word s
a distinguisher for p and ¢q. For two rivals p and ¢, a I'-word f is called a p-g-fork
if f can both loop in p and also go from p to ¢, in a bottom-up sense. We say that A
satisfies the tree fork property if there exist two rivals p and ¢ such that either there
exists a p-g-fork or p and g can occur at prefix-independent positions in some run
of A. Formally, these definitions are as follows.

Definition 1 Let A = (Q, I', 1, v) be a finitely ambiguous max-plus-WTA. Two
states p,q € Q are called rivals if there exists a tree u € Tr with Run 4 (u, p) #
¥ and Run4(u,q) # ¥ and a I'-word s with runs r, € Runf4(p, s,p)and ry €
Runf4(q, s, g) such that Wtf4(s, rp) # wth(s, rg). In this case, we call u a p-g-
reacher and s a p-q-distinguisher.

We say that A satisfies the tree fork property if at least one of the following two
conditions is satisfied.

(1) There exist rivals p,q € Q and a I"-word f with Run4(p, f, p) # ¥ and
Run 4 (p, f, q) # 9. In this case, we call f a p-q-fork.

(i) There exist rivals p,q € Q,a?2-I'-contextt € Tr,,andarunr € Runf4(t)
with 7(Q1 (1)) = p and r(2(¢)) = g. In this case, we call f a p-g-split.

We have the following theorem relating the tree fork property to finite sequential-
ity of unambiguous max-plus-WTA.

@ Springer

Theory of Computing Systems

Theorem 1 [34] The behavior of a trim unambiguous max-plus-WTA A is finitely
sequential if and only if A does not satisfy the tree fork property. If [A] is finitely
sequential, a finitely sequential representation of A can be effectively constructed.

For finitely ambiguous max-plus-WTA, however, the tree fork property does not
capture finite sequentiality. To see why, consider an unambiguous max-plus-WTA A
satisfying the tree fork property [10, 25, 34] and let L be the largest weight used in
A. Then construct a one-state max-plus-WTA B whose every transition weight and
every final weight is L. Clearly, B is deterministic and we have [B] > [A]. By
taking the disjoint union .AU B of A and B, we obtain a 2-ambiguous max-plus-WTA
which satisfies the tree fork property but whose behavior coincides with that of the
deterministic automaton B. In this particular example, the states relevant for the tree
fork property to be satisfied are not relevant at all for the behavior of the automaton.

In order to reduce the finite sequentiality problem of finitely ambiguous max-
plus-WTA to that of unambiguous max-plus-WTA, we decompose every finitely
ambiguous max-plus-WTA A into a maximum of finitely many unambiguous max-
plus-WTA Ay, ..., Ay and then analyze the interplay of these latter automata. We
can do so as in fact, every finitely ambiguous WTA can be decomposed into finitely
many unambiguous WTA [10, 40]. This is a common approach when dealing with
finite ambiguity [10, 41, 42] and is also used by Bala in the corresponding proof
for words [26]. In the simplest case, if Ay, ..., Ay all do not satisfy the tree fork
property, we find a finitely sequential representation of .4 by constructing such a rep-
resentation for each A, and then combining all of these. However, if some A4, does
satisfy the tree fork property, we have to analyze whether this automaton contributes
enough to the behavior of A for there not to exist a finitely sequential representation
of A. We have the following lemma.

Lemma 1 [40] Let A be a finitely ambiguous WTA over a semiring K and a ranked
alphabet I", then we can effectively find an integer M € N and construct finitely
many unambiguous WITA Ay, ..., Ay over K and I" with [A] = [A1]®. .. ®[Au].

Proof We provide a short direct proof. We let n be the number of states of .A. Then
by [24], A is at most ploeeE -ambiguous. We let M = n - pleetkEn By
pigeonhole principle, we obtain that [Run 4(¢)| < M holds for every ¢ € Tr. To con-
struct Ay, ..., Ay, we employ an idea also used in [43] for word automata, namely
a lexicographic ordering on the runs of A. We write A = ({1, ...,n}, I', u, v) and
for every tree t € Tr, define a total order <; on Run 4(¢) by r;1 < r» if and only
if there exists w € pos(r) such that ri(w) < ro(w) and for all v € pos(t) with v
<p w we have r1(v) = rp(v). For every i € {1,..., M}, we define an unambigu-
ous WTA A; executing every lexicographically i-th run of A as follows. For every
m € {0,...,rk(I")}, we define a total order < on (Q x {I,...,M})™ x Q by
((q1,n1), -, (@msnm), q0) < (g1, 1)), - - -, (q,,. n,,), q{) if and only if either go <
g or qo = g, and for some k € {1, , m} we have n; < g, and for some k € {1, ,m}
we have ny < nj and n; = nj foralll < k.

For a letter a € ™ and sets Vi, o..w Vi C 0 x
{1, ...,M}, we let ((q{l), n(ll)), ...,(q,(nl),n,%l)), qél)) <L ... <L

@ Springer

Theory of Computing Systems

((qu),ngN)), e, (q,i,N), n,(nN)), qéN)) be an enumeration of the set
{(q1,n1)s ooy (@ms> im)» qo) € Vi X oo X Vip X Q| (g1, -+ -5 qm» a, qo) # 0} and
let

ord(Vy, ..., Vi, @) = {((q®,), ..., (@0, n®), @, 00) ke 1,..., N}

and succ(Vq,...,Vy,a) = {(q(()k),k) | £ € {l,...,N}}. Then for every i €
{1,..., M}, we define a WTA A; = (Q x {l,...,M} x P(Q x {1,...,M}),
I, uw,v;) over K and I' by defining for every a € I' with m = 1kp(a) and
(g0, 10, V0)s -+, (@ms i, Vi) € O x{1,..., M} x P(Q x{1,...,M})

w(qi, s qm,a,qo) if Vo =succ(Vy,..., Vy,a)and

((q1.m1), .-, (Gm> nm), (qo, no)) € ord(Vy, ..., Viy, a)
0 otherwise

v(qo) ifng=1i
vi(qo, ng, Vo) = .
(40 no. Vo) {(D otherwise.
Weletm: O x{1,...,M} - Qandm: Q x{1,...,M} — {1,..., M} be the
projections. Then for every tree t € Tr and every runs 7, r1, 72 € Run 4, (¢), we have
mpor € Runy(?), wty, (t,7) = wtg(t, my or), and wy o rp < 71 or if and only if
7y or1(g) < mp o rp(e). It follows that every automaton A; is unambiguous and we

have [A] = [Ai] @ ... ® [Aum]. O

In order to analyze the interplay of the unambiguous automata we obtain from
Lemma 1 more easily, we want to join them into a product automaton. For this, it
is necessary that all of these automata coincide on their support. For the max-plus
semiring, this can easily be achieved.

Lemma 2 Let A be a finitely ambiguous max-plus-WTA over I, then we can
effectively find an integer M € N and construct unambiguous max-plus-WTA
Ay, ..., Ay over I with [A] = max | [A;] and supp(A)) = ... = supp(An).

Proof By Lemma 1, we can effectively find an integer M € N and construct unam-
biguous max-plus-WTA Ay, ..., Ay over I' with [A] = max,[A;]. We write
Ai = (Qi, I, wi,vp), let L = Uﬁ] supp(A;), and let x be the smallest weight
used in the automata Ay, ..., Ay, i.e., for R = Uiﬂil(ui(AAi) U v;(0;)) we let
x = min(R \ {—o0}).

First, note that each support supp(.A;) is recognizable. This follows from the main
result of [44], but is also easy to see as replacing the weight —oo by 0 and all other
weights by 1 in A; yields an FTA recognizing supp(A;). The tree language L is thus
recognizable, therefore for i € {1,..., M}, the tree language L; = L \ supp(A4;)
is also recognizable and there exists a deterministic FTA A} = (Q}, I, §;, F/) with
L(A}) = L;. We define the max-plus-WTA A} = (Q}, I', u/, v") by

1
K ifd e 8;
—o0 otherwise

if F’
u§/<d>={ and v{’<q>={” na e

—o0 otherwise.

@ Springer

Theory of Computing Systems

We assume without loss of generality that Q; N Q; = @ and define A = (Q; U
Q:, I, u!”, v Uv!) with
uild) ifd e Ay
wi'd)={pl@d ifde Ay

—00 otherwise

as the union of A; and A’. Then A/ is unambiguous since .A; is unambiguous, A7
is deterministic, and supp(A;) N supp(A/) = @. Furthermore, for t € supp(A;) we
have [A”](t) = [Ai](®).

For every ¢ € supp(AY), there exists some j € {I,..., M} with ¢ € supp(A;)
and due to the choice of k we have [A;](r) > [A](z). In conclusion, for all i €
{1,..., M} we have that A" is unambiguous, supp(A!") = L, and max,[A] =
max | [A;] = [A]. O

For our proofs, it will be convenient to assume that all final weights of the
automata we obtain from Lemma 2 are either —oo or 0, i.e., they only decide whether
a run is accepting or not, but otherwise do not influence the weight of the run. We
can do so by the following lemma.

Lemma 3 [45] Let A = (Q, I, u, v) be a WTA over a semiring K and a ranked
alphabet T'. Then we can effectively construct a WIA A" = (Q', I", u', V') over K
and I’ with [A] = [A], vV(Q') € (0,1}, and |Acc 4(t)| = |Accy (t)| for every
teTr.

Proof We define the WTA A" = (Q/, I', i/, V') as follows. We let Q' = Q x {0, 1}
and define v'(¢,0) = 0 and V'(¢,1) = 1 for all ¢ € Q. For every d =
(Pls- s Py @, o) € A, we let 1/ ((p1,0), ..., (P, 0), a, (po, 0)) = pu(d) and
wW({(p1,0), ..., (Pm,0),a, (po, 1)) = u(d) ®v(po). On all remaining transitions we
define u’ as 0.

It is easy to see that for every tree t € Tr, we have a bijection f: Accy(t) —
Acc /(1) given by (f(r))(e) = (r(e), 1) and (f(r))(w) = (r(w), 0) for w € pos(¢)\
{e}, and for this bijection it holds that wt 4 (¢, r) ® v(r(g)) = wt 4 (¢, f(r)) for every
r € Accq(t). O]

For the rest of this paper, let A be a trim finitely ambiguous max-plus-WTA over
the ranked alphabet I". We join the automata we obtain for A from Lemma 2 and
Lemma 3 into a product automaton over the product semiring Qﬁ;’ax as follows.
Lemma 4 We can effectively find an integer M € N and construct a trim WTA
U=(Q, T, 1 v)over Q¥ and I' such that

max

— U is unambiguous,

- w(Ay) CQMU{(—-o0,...,—00)} and v(Q) C {(O, ...,0), (—oo, ..., —00)},
and

— foreveryt € Tr we have [A](t) = maxf‘il 7 (U] (),

@ Springer

Theory of Computing Systems

where m; : Qnﬁfax — Qmax Is the projection to the i-th coordinate for every i €
{1,..., M}.

Proof By combining Lemma 2 and Lemma 3, we can find M € N and unambigu-
ous max-plus-WTA Ay, ..., Ay over I' such that [A] = max | [4;], supp(A;) =

. = supp(Ap), and such that with 4; = (Q;, I, ui, vi), we have v;(Q;) C
{0, —oc} forevery i € {1,..., M}. We defineld = (Q, I', u, v) as the trim part of
the automaton /' = (Q’, I', i/, v’) defined as follows. Welet Q' = Q1 X ... X Oun
and for a € I' with rtkr(a) = m and po, ..., pn € Q' with p; = (pj1,..., pjm)

we define, with x; = w;(p1i, ..., Pmi, a, poi) and y; = v;(po;),
, (X1, ..., Xp0) if (x1,...,xp) € QM
wpis---» Pm> @, po) = .
(—o00,...,—00) otherwise
/ D15 YM) if (yi,...,ym) € QM
Vi(po) =)
(—o0, ..., —00) otherwise.

It is easy to verify that U defined likes this satisfies all properties from the statement
of the lemma. 0

Let U be the automaton we obtain for A from Lemma 4. Foratree t € Tp, a I'-
word s € Tr,, runs r; € Runy(¢t), ry € RunZ{(s), states p, g € Q, and a coordinate
ie{l,..., M}, welet wt;(t, r) = 7 (W (t, 1)), Wt (s, 1) = 1; (Wt7;(s, r5)), and
Wt (p, s,) = Wty (s, rg) for the unique run rg € Runy,(p, s, q).

As we are still concerned with the rivals of the individual automata used to con-
struct U, we define in the following the concepts of rivals, reachers, distinguishers,
and forks for U.

Definition 2 Leti € {1,..., M}, p,q € Q,t € Tr, and r € Runy(¢).

— We call p and g i-rivals if there exists a tree u € T such that Runy,(u, p) #
and Runy(u,q) # @ and a I'-word s such that Runj,(p,s, p) # 0,
Runz,(q, s,q) # 9, and w7 (p, s, p) # wt7(q, s, ¢). In this case, we also call u
a p-g-reacher and s an i-p-q-distinguisher.

— Wecall a I'-word f an i-p-q-fork if p and g are i-rivals, RunZ{(p, fip) £ 0,
and Run;,(p, f, q) # 0.

— We say that (¢, r) is i-p-q-fork-broken if there exist positions wp, wy; € pos(t)
such that wy <p wp, r(wp) = p, r(wg) = g, and (t{¢ — wp)) [w, is an
i-p-q-fork.

— Wessay that (¢, r) is i- p-q-split-broken if p and g are i-rivals and there exist two
prefix-independent positions w,, w, € pos(t) with r(w,) = p and r(w,) = q.

When appropriate, we may drop some of the hyphenated modifiers from the terms
above; for example, we will refer to (¢,r) as i-fork-broken if there exist states
p,q € Q such that (¢, r) is i-p-q-fork-broken and as i-split-broken if there exist
states p, g € Q such that (¢, r) is i- p-g-split-broken. We call (¢, r) i-broken if it is
i-fork-broken or i-split-broken.

@ Springer

Theory of Computing Systems

Our concept of brokenness is inspired by Bala’s notion of “broken paths” [26]. Of
course, as his proof is concerned with words, the concept of split-brokenness does
not exist. His notion of brokenness corresponds to our notion of fork-brokenness.
Employing the notion of brokenness, Bala characterizes finite sequentiality of finitely
ambiguous max-plus word automata using the A-Fork property. Translated to tree
automata, the A-Fork property is defined as follows. We say that U satisfies the
A-Fork property if for every constant C > 0, there exists a tree t € Tr and an
accepting run r € Accy(t) such that for some weight-maximal coordinate i, i.e.,
with wt; (¢, r) = max;!/":1 wt;(t,r), we have that (¢, 7) is i-broken and for every
coordinate j such that (¢, r) is not j-broken, we have wt;(t,7) < wt;(t,r) — C.
In other words, the A-Fork property is satisfied if broken coordinates are able to
dominate non-broken coordinates by an arbitrarily large margin. Bala shows that a
finitely ambiguous max-plus word automaton is finitely sequential if and only if the
corresponding automaton U does not satisfy the A-Fork property.

For tree automata, however, this criterion does not capture finite sequentiality.
More precisely, if we know that there do not exist a tree ¢ and a run r on ¢ such
that (z, r) is split-broken, then the A-Fork property does capture finite sequentiality
also for tree automata. However, if U satisfies the A-Fork property due to split-
broken coordinates dominating non-broken coordinates, the behavior of A may still
be finitely sequential. This is evidenced by the following example.

Example 1 Consider the scenario for U as defined in Fig. 1. The support of U con-
sists of all trees of the form c(bk(a;”(d,-)), bl(a;’ (dj))) withi, j € {1,2}, k,1 > 0,
and m, n > 0. A valid run on such a tree necessarily assigns states from {p1, p2, p}
to the left branch of the tree and states from {q1, g2, g} to the right branch of the
tree. Moreover, if a branch begins with a letter d;, this branch is assigned states from
{pi,qi, p, q}. In particular, we see that I is unambiguous.

The states p and g are 2-rivals as we see from the p-g-reacher u =
b(ai(dy)) and the 2-p-g-distinguisher s = b(¢). By considering the trees t, =
c(b(ay(d1)), b(ay(d2))), we see that runs exist where p and g occur prefix-
independently and the weight of coordinate 2 is arbitrarily larger than the weights
of coordinates 1 and 3 since we have [U](t,) = (—n, 0, —n). However, in #, the
subtrees below p and ¢ are distinct, thus a deterministic automaton can distinguish
between them.

In fact, if U is given this way, we can construct a finitely sequential representation
of [A] as follows. All trees of the form c(b¥ (af*(dy)), b (a}(d1))) are assigned the
weight (—m —n+k+1—2,k — 1,k +1 — 2), so coordinate 3 is always dominant.
Similarly, coordinate 1 is dominant for trees of the form c(b* (@) (d2)), v (ay (d2))).
These trees can be handled by the two deterministic max-plus-WTA obtained from U
by removing the states g1 and ¢, letting u(p, p, ¢, T) = (0, 0, 0), and replacing p
with 773 o u and 71 o p, respectively. For trees of the form c(b* (ai'(d1)), b (a5 (d2))),
we remove the states pp and g from U and then construct three deterministic max-
plus-WTA by replacing u by 71 o i, 72 o u, and 73 o u, respectively. For the trees
c(bk (a3 (d2)), b (af (d1))) we can proceed similarly. The pointwise maximum of the
automata constructed this way is then equivalent to [.A]. This example shows in
particular that if U satisfies the A-Fork property, [.A] can still be finitely sequential.

@ Springer

Theory of Computing Systems

V(T) = (0’070) F‘(pa b,p) = (17 1, 1)
H(p’ q;6 T) = (07070) ,u(q,b, q) = (15 -1, 1)

w(p1,b,p) = pu(p2,b,p) = p(q1,b,q) = p(gz,b,q) = (0,0,0)
w(p1,a1,p1) = p(q1,a1,q1) = (-1,0,0)
p(p2,az,p2) = pu(ge, a2, q2) = (0,0, —1)

p(di,p1) = p(di, q1) = p(dz, p2) = p(dz, g2) = (0,0,0)

(o) ()

(1,1,1) (1,-1,1) (1,1,1) (1,-1,1)
JOROL ") @)
(—1,0,0) (0,0,-1) (0,0, —1) (—1,0,0)
Pl q2 P2 Q1

Fig.1 A scenario for the automaton U: The automaton ({p1, p2, 91, 92, p,q, T}, I', i, v) over the ranked
alphabet I' = {a1, a2, b, ¢, dy, d>} where ¢ € 'Y ay,ay,b € IV, and dy,dy € IO, All unspecified
weights are assumed to be —oo. The states p and g are 2-rivals

Our fundamental idea to adapt the A-Fork property to tree automata is to for-
mulate our version not for U but for a covering of U. Oversimplifying, a covering
of an automaton is a new automaton obtained by enhancing the states of the origi-
nal automaton with additional capacities to store information. A prominent example
of a covering construction is the Schiitzenberger covering of an automaton. The
Schiitzenberger covering in particular has already been employed in a number of
decidability results for max-plus automata [10, 25, 26, 34, 42]. For more background
on the Schiitzenberger covering and coverings in general, see [46].

Here, we construct from I/ an unambiguous automaton U with the same behavior
as U and whose states are tuples from Q x P(Q) x P(O* x P(Q?)). Every run r of
U on atreet € Tr will correspond uniquely to a run of U on ¢, given by projecting to
the first entry. For a position w, the second entry of r(w) will be the set of all states
g € Q which can be reached by ¢[,, i.e., for which Runy;(¢[,, ¢) is non-empty. The
third entry of r(w) will consist of all tuples (p, g, p’, ¢’, Y) such that (1) there exist
runs r, € Runy(¢t[y, p) and r, € Runy(¢ [y, g) where (2) for some position below
w, i.e., some position v € pos(t[,), we have r,(v) = p" and ry(v) = ¢’ and (3) Y
is the set of all pairs of states (r,(vu), ry(vu)) with u € pos(t[y). Intuitively, the
third entry of r(w) contains a tuple (p, g, p’, ¢’, Y) if and only if 7], can reach p
and ¢ with two runs r, and ry, these runs visited p’ and ¢" simultaneously at some
position v in the past, and Y consists of all pairs of states which these runs visited
simultaneously up to v.

Our intention of considering the covering U is to increase the knowledge we have
about each pair of rivals. For two rivals of U/, all we know is what the definition of

@ Springer

Theory of Computing Systems

rivals specifies. For two rivals of U on the other hand, we will show that they are
necessarily of the form (p, P, V) and (g, P, V) where p and g are rivals of /. This
allows us to infer statements about the rivals of & which are not necessarily true for
the rivals of ¢. The precise construction of U is as follows.

Construction 1 We defineld = (Q, I', p, v) as the trim part of the automaton U’ =
(Q, I, i/, v') defined as follows. We let Q' = Q x P(Q) x P(Q* x P(Q?)) and

for subsets Py, ..., P, € Q and aletter a € I" with rkj(a) = m, we let

succ(Py, ..., Pu,a) = g0 | 3Iqi,....qm) € P x ... x
Py with 11(q1, ..., gm. a, qo0) € QM}.

For i € {1,...,tkr(a)} and a tuple
(p.q. P’ q',Y) € Q% x P(Q?), we let

succ(Py, ..., Pu,(pyqg, P q',Y),i,a) = succ(Py,..., Pi_1,{p}, Pix1,...,

Py, a) x succ(Py, ..., Pici,{q}, Pix1, ..., Pm,a) X {p'} x {q} x {Y}.
For V C 0% x P(Q?) and p, g € Q, we let

visited(p, ¢, V) = {(p’, ¢") | (p.q, p'.q',Y) € V for some Y C Q?}.

Then for a € I' with rk-(a) = m and (po, Py, Vo), - .., (Pm» P, Vi) € Q', we
define v'(po, Py, Vo) = v(pg) and

I"/((pl7 P17 V1)5 AR] (Pm7 va Vm)5 a5 (p()? PO? VO)) =
w(pt, ..., pm,a, po) if Pp=succ(Py,..., Py, a)and with

m

V=U USUCC(PI,“-,Pm,(P,q,p/aql,y)7i7a)
i=1(p.q.p'.q" . Y)€V;

we have Vo =V U{(p,q,p,q,Y) | p,q € Pyand

Y =visited(p, g, V) U{(p, q)}}

(=00, ..., —00) otherwise.

Weletm: Q > Q,m:Q — P(Q), and m3: Q — P(Q* x P(Q?)) be the
projections, and let wt; and wt{ be defined for 2/ in the same way we defined wt; and
wt;> for U. Furthermore, we note that the concepts of rivals, reachers, distinguishers,
and forks as defined for ¢/ in Definition 2 apply to U in a similar fashion.

We have the following lemma stating that & indeed possesses the properties we
described earlier.

Lemma S Lett € Tr be a tree. Then the following statements hold.

(1) Forevery runr € Runy(t) and position w € pos(t), we have q € m or(w) if
and only if there exists a runr € Runy/(t[y, q).

(i) For every run r € Rumy(t) and position w € pos(t), we have
(p.q,P.q,Y) € m3 or(w) if and only if there exist runs r” € Runy(t[y, p)
and r? € Runy(t]y, q) such that for some v € pos(t|y) we have r? (v) = p/,
ri(v) =q', and Y = {(r?(vu), r?(vu)) € Q% | u € pos(t]un)}.

@ Springer

Theory of Computing Systems

(iii) The projection 1 induces a bijection w1 : Runyy(t) — Runy(t) byr — mjor.

(iv) U is trim, unambiguous, and satisfies [U] = [U].

(v) Letp,q € Q be rivals. Then p and q are of the form (p, P, V) and (¢, P, V),
respectively, for two states p,q € Q and sets P € Q,V C 0% x P(Q?).
Moreover, for every tree u € Tr we have Runy(u,p) = 0 if and only if
Runyy(u, q) = 0.

Proof (i) Lett € Tr and r € Rung(¢) and for contradiction, let w € pos(t) be
a prefix-maximal position for which (i) does not hold. We deduce that (i) holds for
w. We let a = t(w), m = tkr(a), and write r(w) = (po, Po, Vo) and r(wi) =
(pi, P;, Vi) fori e {1,...,m}.

First, let ¢ € Py, then there are states (g1, ...,qm) € P; X ... X P, with
w(gi,---,qm,a,q) = —oo. By assumption, for every i € {1, ..., m} we find a run
ri € Rung/(t[yi, qi). Then the quasi-run r: pos(t[,,) — Q defined by r(¢) = ¢ and
r(iv) = ri(v) isarun of U on t[, with r(e) = q.

On the other hand, let » € Runy(¢t [y, q). Then for every i € {1,...,m}
we have r [;€ Runy(t [ui), so by assumption r(i) € P;. Moreover,
ur),...,r(m),a,q) # —oo, so g € Py. Thus, (i) holds for w, which is a
contradiction, so w does not exist.

(ii) Let t € Tr and r € Rung4(¢) and for contradiction, let w € pos(t) be a prefix-
maximal position for which Lemma 5 does not hold. We deduce that (ii) holds for
w. We let a = t(w), m = rkr(a), and write r(w) = (pg, Py, Vo) and r(wi) =
(p!, P;, V) for i e {1,..., m}. Furthermore, we let V = |JiL, U(p,q,p’,q’,Y)eV,-
succ(Pi, ..., Pu, (p.q,p'.q',Y),i,a).

We first make the following observation. If (p,q, p’,q’,Y) € V, then for
some i € {1,...,m} and (pi,qi,p’,q’,Y) € V; we have (p,q,p’.q',Y) €
succ(Py, ..., Py, (pisqi» P’ q',Y),i,a). Thus, there exist (pi,...,pi—1,
Pitls s Pm)s (Q1s oo Gim15Git1, -+ qm) € Pt X ... X Piop X Piy1 X ... X Py
with u(p1,..., pm,a, p) € QM and u(qi,...,qm,a,q) € QM. By Lemma
5, there exist runs 7Y € Runy(t [y, pj) and r;.] € Runy(t [, q,) for every
j € {l,...,m}\ {i}. Furthermore, we assume that (ii) holds for wi, so there exist
runs rip € Runy(t [y, pi) and riq € Runy(t [yi, qi) and a position v € pos(? [y;)
with /' (v) = p’, rl(v) = ¢/, and Y = {(r] (vu), r{ (vu)) € O | u € pos(t [wiv)}.
Thus, for the runs r? and r? defined by r?(¢) = p, ri(e) = q, rP(ju) = rj'?(u),
and r?(ju) = r;](u) for every position ju € pos(t [y), we have r”(iv) = p/,
ri(iv) =q’,and Y = {(rP (ivu), ri(ivu)) € Q% | u € pos(twiv)}-

& Now let (p,q, p',q,Y) € Vo.If (p,q, p',q', Y) € V,Lemma 5 follows easily
from the observation above. If (p, g, p’, ¢, Y) = (p, q, p,q,Y) with p, g € Py and
Y = visited(p, g, V) U {(p, q¢)}, we see by (i) that there exist runs r” € Rung(z[y,
p) and r? € Runy(t]w, ¢). We show that ¥ ={(r? (), r4(u)) € Q* | u € pos(t|w)}.

Let (p'.q") € Y. If (p',q") = (p,q), we have (p', ¢") = (rP(e),r4(e)). Oth-
erwise, there exists Y/ C Q2 with (p,q, p’,q’,Y') € V. The observation above
together with the unambiguity of U then yields i € {1,...,m} and v € pos(? [;)
with (r? (iv), r1(iv)) = (p', q').

@ Springer

Theory of Computing Systems

Now let u € pos(t[y), pi = rP(i), and ¢; = r4(i) forevery i € {1, ..., m}. For
every i € {1,...,m}, we have r”[;, r?];€ Runy(t[y;), so we have p;, q; € P; by
Lemma 5. For u = ¢, we have (r”(u),r?(u)) = (p,q) € Y. Otherwise, we have
u =ivforsomei € {1,...,m}. Itfollows that (r? (u), r?(u)) = (rP[; (v), r4[; (v)).
We assume that (ii) holds for wi, so we have (p;, g;, r?(u), r9(u),Y’) € V; for
some Y’ € Q2. Since u(p1, ..., pm.a,p) € QM and u(q1, ..., qm.a,q) € QM,
we see that (p, g, r”(u), r%(u),Y’) € V. In particular, we have (r”(u), r?(u)) €
visited(p, g, V) C Y.

& Conversely, we let (p,q,p’.q',Y) € 0* x P(0?) satisfying that there exist
runs r” € Rung(¢]y, p) and r? € Runy(t[y, g) such that for some v € pos(t[,) we
have r?(v) = p/, r4(v) = ¢’, and ¥ = {(r? (vu), r?(vu)) € Q% | u € pos(t|wv)}.
We let p; = rP(i) and ¢; = r9(i) fori € {1,...,m}. For v # ¢, we have v =
iv' for some i € {1,..., m}. We assume that Lemma 5 holds for wi, so we have
(pi.qi, p',q',Y) € Vi.By (i), we see that (p1, ..., pm), (q1,+ .-, qm) € P X... %
Pn.so (p.q.p'.q".Y) €succ(Py, ..., Py, (pi.gi-P'.q'.Y).i,a) C Vo.

For v = &, we note that we have (p, q, p, g, visited(p, g, V) U {(p,q)}) €
Vo. We show Y = visited(p,q, V) U {(p,q)}. Let u € pos(t [). For u =
e, we have (rP(u),r?(u)) = (p,q). Otherwise, we have u = iu’ for some
i € {l,...,m}). We assume that (ii) holds for wi, so for some ¥’ < Q2 we
have (p;,qi, rP),r?(u),Y") € V;. It follows that (p,q,rPu),r?(u),Y’) €
V, so (rP(u),r%(u)) € visited(p,q, V). On the other hand, for (p”,q") €
visited(p, g, V), there exists (p, g, p”, q”,Y") € V. The observation above together
with the unambiguity of U thus yields i € {1,...,m} and v € pos(t [,;) with
PV, F1GV)) = (p, ¢

(iii) ow Let t € Tr. By definition of u, it is clear that for r € Rung4(¢) we have
1 or € Rung(¢). The injectivity of 71 : Rungy(#) — Rung,(¢) follows from (i) and
(ii), as all runs on ¢ coincide on their second and third entries. For surjectivity, note
that given a run r € Runy,(#), the definition of u provides an obvious way to define
arunr € Runy(¢t) withryor =r.

(iv) U is trim by definition. Let ¢+ € Tr. By definition of u, for every run
r € Rung(t) we have wty, (¢, r) = wty/(¢, w1 o r). By definition of v, we also have
v(r(e)) = v(m or(e)). By (iii), we thus have |Accy(¢)| = |Accy(#)| < 1, which
means that U is unambiguous, and [U](¢) = [U](2).

(v) Let p,q € Q be rivals and let u € Tr be a p-q-reacher. Then there exist
runs r” € Rungy(u, p) and r? € Rung(u, q). We write p = (p, Pp, V) and q =
(g, Py, Vy). From (i) and Lemma (ii), we obtain P, = maor?(e) = mori(e) = Py
and V, = m3 or?(e) = m3 ori(e) = V,. Moreover, by (i), we see that p € P, and
q € Py

For the second statement, let u € T such that r” € Rungs(u, p) exists. Since
q € P, = P,, we see by (i) that there exists a run r? € Runy(u, g). By (iii), there
thus exists a run r? € Rung,(u) with 71 o r?(¢) = ¢. From (i) and Lemma (ii), we
obtain 7y or?(e) = P, = Pyjand 3 or?(e) = V), =V, so we have r?(¢) = q. By
symmetry, the stated equivalence holds. O

Finally, we introduce our version of the A-Fork property. To allow for easier
proofs, we use a different formulation and consequently a different name. But in fact,

@ Springer

Theory of Computing Systems

U satisfies the separation property if and only if it satisfies the A-Fork property in
the way we translated it to trees earlier.

Definition 3 Let C € N. We callaset I C {1, ..., M} C-separable if there exists a
treet € Tr and arun r € Accyy () such that

(i) ifi € I, then (¢, 1) is i-broken and
() ifjefl,...,M}\ I, thenwt;(t,r) < wt;(t,r) — C foralli e I.

In this case, we also say that (¢, r) is I-C-separated. We call I separable if it is
C-separable for every C € N and define Z as the set of all separable subsets I C
{1,..., M}. If T is non-empty, we say that U satisfies the separation property or, for
short, that U is broken.

Our main result is to prove the following theorem relating the separation property
to the finite sequentiality problem of finitely ambiguous max-plus-WTA.

Theorem 2 The behavior [A] of A is finitely sequential if and only if U is not
broken. Moreover, it is decidable whether U is broken. In particular, it is decidable
whether [A] is finitely sequential.

We separate the proof of Theorem 2 into three parts. We show in Section 3.1 that
it is decidable whether U is broken. In Section 3.2, we show that if U is broken,
then [.A] is not finitely sequential. Finally, in Section 3.3, we show how to construct
finitely many deterministic max-plus-WTA whose pointwise maximum is equivalent
to [A] in case that U is not broken.

For all of our proofs, it will be crucial that for every two states of U, we can
decide whether they are rivals [47, Section 4], [48, Section 5.4]. For two rivals of
an unambiguous automaton, it is in fact quite easy to give an upper bound on the
size of their smallest distinguisher. The same applies to reachers and forks. Thus,
deciding whether two states are rivals reduces to checking for finitely many trees
whether they can reach both states and checking for finitely many I"-words whether
they are a distinguisher for these two states. For Section 3.3, we require an even more
precise statement, namely that if s is a distinguisher for two rivals p and q, then
we can obtain a p-q-distinguisher of height at most 4/Q|?> by removing loops from
the unique runs looping in p and q. For this, we employ the notion of a truncation.
Simply put, for a I"-word s and a run r on s, a truncation of (s, r) is any pair (s, r’)
of a I'-word s’ and a run r’ on s’ which can be obtained by repeatedly cutting loops
from (s, r).

Definition 4 Let s,s" € Tr, be I'-words, r € Rung,(s), and I’ € Rung,(s"). We
say that (s', ') is a fruncation of (s, r), denoted by (5,1) >% (s', '), if there exists a
mapping g: pos(s’) — pos(s) such that g(¢) = ¢, g(01(s")) = O1(s), and for all
w € pos(s’) and [€ rkp, (s'(w)) we have t(s’, ', w) = t(s, 1, g(w)) and g(w)! <p
g(wl).

@ Springer

Theory of Computing Systems

We observe as follows that removing a loop from a pair (s, r) yields a truncation,
that “being a truncation of” is a transitive relation, and that every truncation is the
result of removing loops from a pair (s, r).

Lemma 6 Lets € Tr, be a I'-word and r € Runzt (s), then the following holds.

(i) For every two positions wi, wy € pos(s) with wy <p wy and r(wy) = r(wz)
and (s',Y) = (5,1){(s, 1) [w,—> wi), we have (s,r) >% (s',1') by defining
g: pos(s’) — pos(s) through g(w) = wyv if w = wyv for some v € N* and
g(w) = w otherwise.

Gi) If(s,r) > (s',x") and(s',x') >€ (s",1"), then(s,v) >% (s",1") by concate-
nating the mappings g: pos(s’) — pos(s) and g': pos(s”") — pos(s’) to
gog': pos(s”) — pos(s).

Gii) If (s,v) >% (s',7') and g: pos(s’) — pos(s) a respective mapping, then

rkr, (' (1)

Wiy, (5, 1) = Wi (5")+ 30 cpossr) 2oi=i wiz, (s,) ((0, r(g(wl))) —
gWwD)gqwy)-

Proof (ii) We only show the last condition for g o g’. Let s € pos(s”) and I €
tkp, (s” (w)), then g'(w)l <p g'(wl), so g'(wl) = g’ (w)lly - - - I,. It follows that g(g’
()l <p g(g'(w)) <p g(g" WDl <p g(g'W)l}) <p ... <p g(g' W)l ---1,) =
g(g' (wl)).

(iii) First, we show that g is injective. Let v/, w’ € pos(s’) with v/ # w’, let u’ be
the longest common prefix of v’ and w’, and let v/ = w'ky - - - kyp and w’ = w'l - - - 1,,.
Then g(u')ky <p gW'ky) <p gu'ki)ks <p gu'kiks) <p ... <p gW'ky -+ kp) =
g’ and similarly g(u)l <p g(w’). If v/ <p w’, we have g(v)l1 <p g(w’), so
g # g’). If v/ and w’ are prefix-independent, we obtain g(v') # g(w’) from
ki # 15

Now let w € pos(s) with w ¢ g(pos(s’)). We show that there exists exactly
one w € pos(s’) with g(w') <p w and —(g(w'k) <p w), where k €
{1,..., 1k, (s'(w))} is such that g(w)k <p w. Let w" € pos(s’) such that g(w’)
is prefix-maximal in the set {v € g(pos(s’)) | v <p w}; note that this set is non-
empty due to g(¢) = ¢ <p w. Since w ¢ g(pos(s’)), we have g(w')k <p w for
some k € {1,...,rtkr, (s'(w"))}, and since g(w’) is prefix-maximal and g(w’) <p
g(w"k <p g(w'k), we have —(g(w'k) <p w).

Now assume that v’ € pos(s”) with g(v/) <p wand v’ # w’ andlet! € {1, ...,
tkr, (s'(v"))} such that g(v')] <p w. We show that g(v']) <p g(w’) which together
with g(w’) <p w implies g(v']) <p w. For the longest common prefix u’ of v’
and w’, we have v/ = u'k; -k, and w' = u'l;---1,. As above, it follows that
gwk; <p g() and g(u')l; <p g(w’). Since g(v') <p w and g(w’) <p w, both
g(v") and g(w’) are prefix-dependent, so this can only hold if either m = Q0 orn = 0.
For n = 0, the prefix-maximal choice of g(w’) implies g(w") = g(u’) <p g k1 <p
g() <p g(w’), so m = 0 holds. From g(v)l; = gl <p g(w’) <p w and
gl <p w, we see that [; = [. We obtain g(v'l) = g'l})) <p gl <p
g'lhip) <p...<p gW'l---1y) = g(w).

@ Springer

Theory of Computing Systems

& Due to the injectivity of g, we obtain

w sy = Y prw)
w’e€pos(sH\{O1(s")}
= > w(tGs, T gw)))
w’epos(sH\{O1(s")}
= Z n(t(s, r, w)).
weg(pos(s)N\{O1(s)}
Let w' € pos(s"), I € {1,...,tkp(s"(w')}, and W(w',]) = {w € pos(s) |
gl <p w A =(g(w'l) <p w)}. We have
Z R(t(s, T, w)) = wig;((s, 1) ((0, r(g(w'D)) = g(w'D)guy)-
weW (w',l)

By the observation above, we have pos(s) \ g(pos(s')) = Uw,epos(x,) U?;Ff(s)

W (w’, [) and this union is disjoint. We obtain

wiz, (s, 1)
= > R(t(s, T, w) + Yo u(tsrw)
weg(pos(s")\{O1(s)} wepos(s)\g(pos(s’))

rkr, (5" (w")

wig (s)+ Y Y Y (s T w))

w’epos(s’) =1 weW (w',l)
ks, (s"(w))

wig s)+ Y Y wig (s o (e, r(gw'D)) = g(w'D) gqury)-

w’€pos(s’) =1

O

We can use truncations to bound the size of distinguishers as follows.

Lemma 7 [48, Lemma 5.10], [34] Let p,q € Q be i-rivals for some i € {1,...,
M}, let s € Tr, be an i-p-q-distinguisher, and let rp € Runzl(p, s,p) and rq €
Rung,(q, s, q). Then there exists an i-p-q-distinguisher s’ with height(s") < 41Q[?
such that for the runs r;, € Runﬁ(p, s’,p) and r:l IS Run&(q, s’ q), (s, ri,) is a
truncation of (s, rp) and (s', r:l) is a truncation of (s, rq).

Proof Let p, q, s, rp, rq be as in the statement of the lemma. If height(s) < 4|Q|2,
the statement is clear as both (s, rp) and (s, rq) are each truncations of themselves.
Otherwise, we let w € pos(s) such that |[w| = height(s) > 4|Q|? and we let
w’ € pos(s) be the longest common prefix of w and ¢ (s). Then either |w’| > 2|Q|?
or lw| — |w'| > 2|Q|?, or both. In the first case, there exist two disjoint simulta-
neous loops in rp and rq above ¢;(s). More precisely, by pigeonhole principle we
can find positions w; <p wy <p w3 <p wgq wWith wy <p w' <p O1(s) for which
(rp(wy), rq(wy)) = (rp(wz), rq(wz2)) and (rp(ws), rq(wz)) = (rp(w4), rq(ws)).

@ Springer

Theory of Computing Systems

In the second case, there exist two disjoint simultaneous loops in rp and rq which
are prefix-independent from {1(s). That is, there exist positions w; <p wy <p
w3 <p w4 wWith w’ <p wy and wy <p w in pos(s) for which (rp(wy), rq(wy)) =
(rp(w2). Tq(w2)) and (rp(w3), rq(w3)) = (Kp(ws), Fq(w)).

We let x = wty, (s, 1p) and y = wtj,(s, rq), we let xj and x34 be the weights
of the loops in the run rp, and we let y12 and y34 be the weights of the loops in
the run rq. We obtain truncations of (s, rp) and (s, rq) by removing either one of
the two loops or both loops as follows. If x — x12 # y — y12, we remove the w;-
w2 loop by (s, rp){((s, rp) [w,— wi) and (s, rq){(s, rq) [w,—> wi). Otherwise, if
X — X34 # Y — y34, we remove the w3-wy loop in the same fashion. If we have both
X—Xx12 = y—y12 and x —x34 = y—Y34, We obtain that 2x —x12—x34 = 2y—y12—y34.
From x # y, it follows that x — x12 — X34 # ¥ — Y12 — y34, S0 we remove both loops.
We continue this procedure until we arrive at truncations of height at most 4|Q|2. The
transitivity of truncations ensures that the distinguisher and runs we obtain eventually
are indeed truncations of the original distinguisher and runs. O

Using similar arguments, we can also bound the sizes of reachers and forks.

Lemma 8 ([34]) Let p, q € Q be rivals, u € Tr be a p-q-reacher, and f € Tr, be a
p-q-fork. Then there exists a p-q-reacher u’ with height(u') < |Q|? and a p-q-fork f’
with height(f') < 2|Q|%. In particular, for every two states p, q € Q, it is decidable
whether p and q are rivals.

3.1 Decidability

In this section, we show that it is decidable whether U is broken. For this, we
employ Parikh’s Theorem and the decidability of the satisfiability of systems of linear
inequalities over the rationals with integer solutions [37, 38]. Note that this part of the
proof does not follow any idea from [26] as in his proof, Bala reduces the decidabil-
ity of the A-Fork property to the decidability of a decidable fragment of Presburger
arithmetic. We begin by recalling Parikh’s Theorem and the concepts it involves.

Let ¥ = {ay, ..., a,} be an alphabet. The Parikh vector p(w) € N" of a word
w € X* is the vector p(w) = (|wlg;, [Wlay, - - -, |Wlg,). For alanguage L € X*, the
Parikh image of L is the set p(L) = {p(w) | w € L}.

A set of vectors J € N” is called linear if there exist k > 0, a vector «, and a
matrix 8 € N*K such that

J={a+BX|XeNy.

The set J is called semilinear if it is the union of finitely many linear subsets of N".
A context-free grammar (short: CFG) [49] is a tuple (N, X, P, S) where (1) N
is a finite set of nonterminal symbols, (2) X is a finite set of terminal symbols with
NNX =03 P C N x (NU X)*is a finite set of productions or rules, and (4)
S € N is the initial symbol. We usually denote a rule (A, w) € P by A — w.
Let G = (N, X, P, S) be a context-free grammar. For u, v € (N U X)* we write
u =g v if there exists u’,u” € (N U X)* and a production A — w € P such

@ Springer

Theory of Computing Systems

that u = u’Au” and v = vw'wu”. The language generated by G is the language
L(G) =

(weX* | Imn>1uy,...,up € NUXD)Y : S=6u1 =G ... =G Un =G W)

A language L C X* is called context-free if there exists a context-free grammar
G with L = L(G). By Parikh’s Theorem, the Parikh image of every context-free
language is semilinear.

Theorem 3 [35, Theorem 2], [36] For every context-free language L, the set p(L)
is semilinear. Furthermore, integers k, k1, . .., ki, vectors oD, and matrices ,BU) IS
N>k (1 e {1, ..., kY) with

k
pL) = Ji«® + VX | X e N¥)
=1

can be effectively found from every context-free grammar generating L.

We will employ Parikh’s Theorem to show that the image [U](Tr) of Tr under
[U] is the image of a semilinear set under a matrix over the rationals. From this
matrix, we will be able to infer a constant C such that every set I C {l,..., M}
is separable if and only if it is C-separable. We then reduce the C-separability of
such a set I to deciding the satisfiability of finitely many systems of inequalities over
the rationals with an integer solution. As the latter problem is decidable [37, 38],
deciding the brokenness of U boils down to deciding the C -separability of every set
I C {1,..., M}. We will employ the following notion of the Parikh image of an
automaton.

In the following, let B = (Qp, I, 13, vg) be a WTA over a commutative semiring
K =(K,®,0,0,1)and I" and let d, ..., dp be an enumeration of Ag. For a run
r of B on a tree ¢, we define the transition Parikh vector of (t, r) by

P, r) = ({w € pos(®) [t(t, r,w) =di}l, ..., [{w € pos(t) | t(z, r, w) = dp}).

We define the Parikh image of B as the set p(B) = {p(t,r) |t € Tr,r € Accg(t)}.
As the following lemma shows, the Parikh image of every WTA coincides with the
Parikh image of a context-free language.

Lemma 9 There exists a context-free language L over the alphabet Ag such that
p(L)=p(B). A context-free grammar G generating L can be found effectively from B.

Proof We define the context-free grammar G = (Qp U {S}, Ag, P, S), where S is a
new symbol, by

P = {S— plvg(p) # 0}
U{p = (p1,--» Pm-a, P)p1---Pm | 1B(P1, ..., Pm,a, p) # O}

Then L = L(G) is context-free and we see as follows that p(L) = {p(,r) | t €
Tr,r € Acci(t)}.

@ Springer

Theory of Computing Systems

“C”: Let w € L. We construct atree t € Tr and a run r € Accg(¢) such that

p(w) = p(,r). Since w € L, we find words uy,...,u, € (O U Ag)* such
that u, = wand S =¢ u; =g ... =¢ u,. We construct by induction for every
i€fl,....n}al-context #; € Tr, and arun r; € Run%(#;) such that v3(ri (£)) # 0

and for every p € Q and d € Ag we have

luilp = {v € pos(?) | t;(v) = ¢ and r;(v) = p}|

luila = |{v € pos(z) | t(z, r, w) = d}|.
For i = 1, we know by the definition of G that u; = p with vg(p) # 0, so we
let 1 = ¢ and r;(¢) = p. Now assume we have constructed #; and r; with the

properties above. We have u; = ¢ u;41, so by definition of G, there exists a transition
d=(p1,..., pm,a, p) € Ag withup(d) # 0and words u’, u” € (QgUAR)* such

that u; = u’'pu” and u;11 = w'dpy - -- puu”. Thus |u;|, > 1, so by induction we
find v € pos(t;) with t;(v) = ¢ and r;(v) = p. We let t;11 = t;{a(o, ..., o) = v)
and define r; 1 by riy1(v)) = r;(v') for v/ € pos(t;) and ri1(vj) = p; for j €
{1, ..., m}. Itis easy to check that #;; | and r; satisfy all of the above properties.

Since u,, = w € A%, the I'-context t, is actually a I'-tree, the run r,, € Run%(tn)
is an accepting run of B on t,, and we have p(w) = p(u,) = pP(ty, rn). Thus, we
have p(L) C {p(t,r) |t € Tr,r € Accg(t)}.

“D”:Now letr € Tr and r € Acci(t). We construct a word w € L with p(w) =
p(t, r). For this, we construct by induction for every v € pos(¢t) words uy, ..., u,
such that r(v) =G U1 =G ... =G Un, Un € Ak, and p(u,) = P [y, 7 [y). We
proceed by a reverse induction on the length of v. For |v| = height(¢), we letn = 1
and u; = t(z, r, v), then we have r(v) =¢ uy, u, € Ag, and p(u,) = ptly, rlv).

For |v| < height(¢), we assume that t(t,r,v) = d = (p1, ..., Pm,a, p) and that
forevery i € {1,...,m} we have words uY), e uf,'i) with p; =¢ u(ll) =6 ...=¢
u,(fl.), uf,’,) € A, and p(u,(fl.)) = p(tlvi, r'lvi). Since r € Accp(t), we have up(d) # 0,
so by the definition of G, we have p =¢ dp; - - - p». Thus, we see that

P =G dp1- Pm
1
=g du\"pr- pn =6 ... =6 dulpr-- py

2
=G duﬁlll)ui)pg c Pm =G .- =G duflll)u,%)m < Pm

=g dull ... u;m:]l)ugm) =6 ... =6 duf}f coenm,

ni nm

From this, we obtain words uy,...,u, € (Qp U Ag)* with p =g u; =g

... =g uy such that u, = duf,ll) . u,(f,fl) € A}, and therefore p(u,) = p(d) +

Y D)) = D) + X7 Dt o) = Do, 7).

For v = ¢, we thus obtain words uy, ..., u, such that r(¢) =g u; =g ... =¢
Un, up € Af, and p(u,) = p(t,r). Due to r € Accp(r) we have 7(¢) # 0, which
means that S = r(¢). Therefore u,, € L, which shows that p(L) D {p(¢,r) | t €
Tr,r € Accg(t)}. O

Lemma 9 shows in particular that the Parikh image of a WTA is semilinear.

@ Springer

Theory of Computing Systems

Lemma 10 The set p(B) is semilinear and integers k, ki, . .., ki, vectors a® e NP,
and matrices BV € NP*ki (1 e {1, ..., k}) with

k
p(h) = + VX | X e NY
=1

can be effectively found from B. Furthermore, with 2 = (ug(dy), ..., un(dp)) €
KP we have wtg(t,r) = 2 - p(t, r) for every t € Tr and every r € Accg(t).

Proof 1t follows from Theorem 3 and Lemma 9 that p(B3) is semilinear. The second
statement follows from the definition of wtg and the commutativity of &. O

In fact, we do not apply Lemma 10 directly to I but to a covering of U. For this
covering, we add a mechanism to U to detect the broken coordinates of a run. More
precisely, we add to each state of Q one entry containing all states reachable on the
current subtree, one entry containing all states visited on the current run, one entry
containing all pairs (p, q) of states such that q is reachable by a run which visited p at
a position where our current run also visited p, and one entry containing a record of
all broken coordinates. This allows us to infer the brokenness of a run directly from
the state at its root. The precise construction is as follows.

Construction 2 Let 0 = Q x P(Q) x P(Q) x P(Q?) x {0, 1}™. For subsets
Py, ..., P, CQandalettera € I" withrk;(a) = m, we let succ(Py, ..., Py,a) =

{qo | 3(qi,.--.qm) € P1 x ... x Py with u(qu, ..., qm,a,qo) € QM}. For a
set W € Q*and ! € {1,...,m}, we let succ(Py, ..., Pn, W,1,a) = UPEQ{p} X

succ(Py, ..., P—1,{p" | (p,P) € W}, P41, ..., Py, a). Then we define the weight
functions of the new automaton/ = (Q, I, 1, V) by

w((qi, Pi, Vi, Wi,a1), ..., @n, Pus Vin, Wi, am), a, (qo, Po, Vo, Wo, ao)) =
rQi, ..., Qm,a,qo) if Pp=succ(Pi, ..., Py,a)and Vo = {qo} U, Vi
and Wo = {(qo, qo)} U U/, succ(Pi, ..., Pn, Wi, 1, a)
and foralli € {1,..., M} we have agp[i] = 1 if
either ¢;[i] = 1 forsome [€ {1, ..., m}
or for somei — rival p of qp we have (p, p) € Wy
or there are [1, [, € {1, ..., m} with [; # I and
p € Vi, q € V,, such that p and q are i — rivals
and ap[i] = 0 otherwise
—0o0 otherwise

v(qo, Po, Vo, Wo, ap) = v(qo).

We have the following lemma stating that the additional entries of the states of I/
realize the intuition behind its construction described earlier.

@ Springer

Theory of Computing Systems

Lemma 11 Lett € Tr, 7 € Runy(1), w € pos(t), and r(w) = (q, P, V, W, a).
Then the following statements hold.

) P ={peQ|Runy(tlw,p) # ¥} }
(i) V ={mgor(wv) |v € pos(tly)}, where mq: Q — Q is the projection to the
first coordinate.
(i) W = {(p1,p2) € Q2 | for some v € pos(t[y) we have g o F(wv) = py and
Rung,(p1, t{o — wv)[y, p2) # ¥}
(iv) alil = 1ifand only if (t, mqQ o 7)[y is i-broken.
(V) 7Q: Accyy(t) — Accy(t) is a bijection preserving weights of runs.

Proof (i) See the proof of Lemma 5(i).

(i) Let 7 € Tr and r € Rung;(¢) and for contradiction, let w € pos(¢) be a prefix-
maximal position for which (ii) does not hold. We deduce that (ii) holds for w. We
let a = t(w), m = rkp(a), and write ¥(w) = (qo, Py, Vo, Wo, ap) and r(wl) =
(q, P, Vi, Wi,ap) forl € {1, ..., m}.

First, let q € Vp. If @ = qo, then q = mg o 7(w). Otherwise, there exists [€
{1, ..., m} with q € V;. We assume that (ii) holds for wl, so there exists v € pos(#[;)
with 7 o F(wlv) = q.

On the other hand, let v € pos(t[y). For v = ¢, we have mg o r(wv) = qo € V.
Otherwise, we have v = [v’ for some [€ {1,...,m}. We assume that (ii) holds
for wl, so we have mq o F(wlv') € V; € Vy. Thus, (i) holds for w, which is a
contradiction, so w does not exist.

(iii) Let r € Tr and r € Runy(#) and for contradiction, let w € pos(f) be a
prefix-maximal position for which (iii) does not hold. We deduce that (iii) holds
for w. We let a = t(w), m = rkj(a), and write 7(w) = (qo, Py, Vo, Wo, ap) and
r(wl) = (q;, P, Vi, Wi, ap) forl € {1,...,m}.

First, let (p, p') € Wo.If (p, p’) = (qo, qo), we choose v = ¢. Then mg o7 (wv) =
qo = p and Rung,(p, (¢ — wv) [y, p') = Rung,(qo, ¢, qo) # @. Otherwise, there
exists [€ {1,...,m} with (p,p’) € succ(Py,..., Py, W, 1, a). Thus, there exist
(p.p) € Wrand (pr, ... Pi—1, Pi4+1, -+ Pm) € PLX ... X P1 X Py X ... X Py,
with u(p1, ..., Pm»a, p’) € QM. By (i), there exists r; € Rung(t[yj, p;) for every
je{l,...,m}\ {I}. We assume that (iii) holds for wl, so there exists v € pos()
with mg o 7(wlv) = pandr; € Run&(p, t{o — wlv) [y, pr)- Thus, we can define
r € Rung,(p, t(¢ — wlv)[y, p') through r(s) = p’ and r(jv) = r;(v).

On the other hand, let (p, p’) € Q? such that there exists v € pos(t) with
mQ o F(wv) = p and r € Rung,(p, 1(¢ — wv) [, p'). If v = &, it follows that
p =p =mngor(w)=qp,so (p,p) € Wy. Otherwise, we have v = [v' for some
I € {1,...,m}. We assume that (iii) holds for wl, we have 7q o 7(wlv") = p, and
rl;e Runzl(p, t{¢ — wlv')y, r()), so we have (p, r(l)) € W;. Moreover, we have
r|;je Rungy(t]y;) forevery j € {1,...,m}\ {/}, so by (iii) we have r(j) € P; for
every j € {1, ..., m}\{l}. It follows that (p, p’) € succ(Py, ..., Py, W;,1,a) C Wj.
Thus, (iii) holds for w, which is a contradiction, so w does not exist.

(iv) Lett € Tr and r € Rung;(7) and for contradiction, let w € pos(¢) be a prefix-
maximal position for which (iv) does not hold. We deduce that (iv) holds for w. We

@ Springer

Theory of Computing Systems

let a = t(w), m = rkr(a), and write ¥(w) = (qo, Py, Vo, Wo, ap) and r(wl) =
(q, P, Vi, W,,ap) forl € {1, ..., m}.

First, assume that ag[i] = 1. If @;[i] = 1 for some [€ {1, ..., m}, then (¢, g o
)i is i-broken since we assume that (iv) holds for wl, so (¢, m¢ o 7)[y is i-broken
as well. If there exists an i-rival p of qo with (p, p) € Wy, we see by (iii) that there
exists v € pos(f) with 7q o r(wv) = p and Runzl(p, t{o = wu) [y, p) # 9.
It follows that #(¢ — wv) [, is an i-p-qo-fork, so (t, wQ o F) [, is i-fork-broken.
If there are I1,l, € {1,...,m} with [y # [and p € V;;,q € V,, such that p and
q are i-rivals, we see by (ii) that there exist positions v; € pos(f [,) and vy €
pos(t [w,) With p = mg o r(wljvy) and q = 7 o F(wlava). Thus, (1, 7Q o 7) [w
is i-split-broken.

On the other hand, assume that (¢, g o 7) [is i-broken. If (¢, mg o 7) [y is i-
fork-broken, there exist two i-rivals p, q € Q and positions w,, wy € pos(t[,) such
that wy <p wy, mQ o F(wwp) = p, g o F(wwy) = (q, and (I{¢ — wwy)) Fwwq
is an i-p-q-fork. It follows that Runz{(p, (10 = wwp)) [ww,.P) # ¥, so for
r(wwy) = (q, P, V, W,a), we have (p, p) € W by (iii). It follows that a[i] = 1,
so by construction of [, also ap[i] = 1. If (#,1Q o 7) [is i-split-broken, there
exist two i-rivals p, q € Q and two prefix-independent positions w,, wy € pos(t[y)
with 7q o F(wwp,) = p and g o F(wwy) = q. We let w’ be ¢ w, and w, and
write w, = W' jpvp, wg = W javg, F(ww’) = (q', P/, V', W', a’), and r (ww' j) =
(q’j, PJf, Vlf, WJ’.,Ez;.) (j € {jp,Jg}- By (ii), we have p € V/fp and q € V/fq, SO
a'li] = 1. By construction of &, we thus have ag[i] = 1. Thus, (iv) holds for w,
which is a contradiction, so w does not exist.

(v) See the proofs of Lemma 5(iii) and Lemma 5(iv). O]

Finally, we show the decidability of the separation property by applying Lemma 10
tol.

Theorem 4 There exists an integer C such that every set of coordinates 1 <
{1,..., M} is separable if and only if it is C-separable. Moreover, it is decidable for
every such I whether it is C-separable. In particular, it is decidable whether U is
broken.

Proof We let dy, ...,dp be an enumeration of Ay and for Z/_{, let k,ki,..., ki €
N,a® e NP O e NPk @ e QM<P (I e {l,....k}) be as in
Lemma 10. Furthermore, we let wi,...,wy be the rows of £, let C

1 + Mmax{loja® —w;a®| i, jef{l,....,M},l €{l,...,k}}], and for I C
{1,...,M},let D; =
{te{l,....D}| d=(q1,...,qm,a,(q, P, V,W,a)) € Ay with
ali]=1foralli e I anda[j] =0forall j € {1,..., M} \ I}.
Let/ € {l,...,M}and J ={1,..., M} \ I. First, assume that / is C’—separable
and letr € T and r € Accyy(7) such that (z, r) is I-C-separated. Let 7 be the unique

accepting run of / on 7. Then for some / € {1, ..., k} and some X e N¥ we have
p(t,7) =a + pOX.

@ Springer

Theory of Computing Systems

We let «P[1], ..., a®[D] be the entries of «® and ,8(1)[1], e, ﬂ(l)[D] be the
rows of ﬂ(l). Since (¢, r) is i-broken exactly for the coordinates i € I, we have
Yien, P11+ BOIANX = 1and 3 ey Ygep,, @ P1d1+BP[d]1X = 0. More-
over, for every two i € [and j € J we have a)ja(l) —I—a)jﬂ(l))_(= wt;(t,r) <
wt;(t, 1) — C = wia® + w, ,B(Z))_(— C. In conclusion, we see that there exists
I € {1,...,k} such that the following system of linear inequalities possesses an
integer solution.

Y VX = 1=) aVla]

deDy deDy
- > Y BYdax = Y Y ol
ICI'CM deDy, ICI'CM deDy
(@iBY —0;pMX > wja® —wia® +C (iel,jel)
X >0
Conversely, assume that there exists [€ {1, ..., k} such that the above system of

linear inequalities possesses an integer solution X.Let C € Nand let Y be the scalar
multiplication of X with C + C. Then there exists a tree ¢ € T and an accepting run
r € Accyy(t) suchthat p(z,) = a(l)—i—,B(j)Y. Letr = wgor € Accy(t) be the unique
accepting run of U on ¢. By choice of C and the linearity of matrix multiplication,
we see that for every i € [and every j € J we have

@B — wipDY = (€ + O)ip? — w;p")X
(C + C)(wjoz(l) —wia® +C)
cC+C

a)joz(l) — a),-a([) +C.

vV IV 1V

It follows that wt;(¢,r) = wja([) + a)j,B(l)Y < wia(l) + a)i,B(l)Y - C =
wt;(t,r) — C for every i € I and every j € J. Moreover, since all entries in
a® and O are non-negative, we see that also ZdeDl a®[d] + BP[d]Y > 1 and
Y 1Crcm 2dep, a®[d] + BD[d]Y < 0holds, so (¢, 1) is i-broken exactly for the
coordinates i € I. Thus, I is C-separable. As C was arbitrary, I is separable.

In conclusion, we see on the one hand that if I is C -separable, then for some
I € {1, ..., k} the above system of linear inequalities possesses an integer solution.
On the other hand, if for some / € {1, ..., k} the above system of linear inequalities
possesses an integer solution, then [is separable. In particular, / is separable iff it
is C’—separable iff the above system of linear inequalities possesses an integer solu-
tion. The satisfiability of systems of linear inequalities over the rationals with integer
solutions is a decidable problem ([37, 38], Theorem 3.4). As there are only finitely
many such systems to consider, it is decidable whether / is separable. To decide
whether U is broken, it suffices to check whether there exists a separable subset
I C{l,...,M}. O

@ Springer

Theory of Computing Systems

3.2 Necessity

In this section, we show that if U is broken, then [.A] is not finitely sequential. For
this, we employ Ramsey’s Theorem, so we briefly recall Ramsey’s Theorem and the
related concepts.

Let H, ¢ € N be integers. For a set X, we denote by [%] the set of all subsets of

X of cardinality H, i.e., [%]=1{Y € X ||Y| = H}. AsetY € [%]is also called an
H-subset of X. An H-c-coloring of X is a mapping g: [%] — {L,..., c}. We have
Ramsey’s Theorem as follows.

Theorem 5 ([33]) Let H, c,n € N. Then there exists an integer R(H, c,n) € N such
that for every set X of cardinality at least R(H, c, n) and every H-c-coloring g of
X, there exists a subset Y C X of cardinality n such that |g([%])| =1, i.e., all sets

in [%] are colored by the same color.

Although not stated explicitly, Bala’s proof for words [26] most likely also
involves some form of Ramsey’s Theorem as his proof of U being broken imply-
ing [.A] to not be finitely sequential “deals with colorings of finite hypercubes”. In
our proof for tree automata, we are able to handle fork-brokenness without employ-
ing Ramsey’s Theorem. This suggest that applying our approach to word automata
yields a proof which is simpler than the corresponding one used in [26]. The reason
for this is that our separation property considers sets of coordinates instead of the
single coordinates which the A-Fork property considers. For the separable sets / € 7
which are minimal with respect to set inclusion, we are able to prove a statement for
I-C-separated pairs (¢, r) which greatly facilitates dealing with fork-brokenness and
enables us to deal with split-brokenness in the first place. Namely, if (¢, r) is I-C-
separated for a sufficiently large C and no subset of / is separable, then the weights
of all coordinates in / coincide for every loop which loops in a state occurring in r.

To prove this statement, we define 7 as the size of the largest I"-word of height
at most 4/Q|? and we define £ as the smallest difference between the weights of two
coordinates of a loop in a I"-word of height at most 4|Q|>. That is, we let

Y = max{|t| | t € Tr, with height(¢) < 41Q/%},
X ={lwtf(p,s,p) —wtj(q,5. 9| | p.qeQ.i.jefl,.... M},
s is a I'-word with height(s) < 4|Q|2,
Rung, (p, s, p) # ¥, Rung,(q, s, q) # ¥},
and £ = min X \ {0}. Moreover, we let umax € Q be a positive upper bound on the
weights occurring in U, ie., for R = {|m;(x)| | i € {1,..., M}, x € (n(Ay) Y

v(Q)) \ {(—o0,...,—00)}}, we let umax = max R. Then we have the following
lemma.

Lemma 12 Let I € 1 be minimal with respect to set inclusion, let C be as in Theo-
rem 4, and let n = [2MC&~"). Furthermore, let C > 2pumaxnY and let t € Tr and

@ Springer

Theory of Computing Systems

r € Accy/(t) be such that (t, r) is I-C-separated. Then for every p € r(pos(t)), every
I -word s with height(s) < 4|Q|* and RunZ{ (p, s, P) # 9, and every two coordinates
i, j € I we have wt{(p, s, p) = wt?(p, s, P)-

Proof Let I, C,n,t, r be as in the statement of the lemma. First, we see as follows

that for every two i, j € I we have |wt;(z,r) — wt;(z,r)| < MC. Let I, .0y
be an enumeration of / such that wt; (z,r) < ... < wt;, (#,r). If for some k €
{L,...,[{|=1} wehad wt;,_, (¢, 1) > Wt;, (t, r)+é,thenclearly I'=1\{i1,..., i}

would be C -separable. By Theorem 4, we would therefore have I’ € Z, which would
be a contradiction to the minimality of /. Thus, we have wt;, (7, r) — wt; (f,1) <

(I - HC < MC.

Now assume for contradiction that there exists a state p € r(pos(z)), a I"-word s of
height at most 4|Q|?, and two coordinates i, j € I such that Runzt (p, s, p) # ¥ and
wt?(p, s, p) # wt?(p, s, p). We may assume that wt’ (p, s, p) < wt;?(p, s, p)- Then
by our choice of £, we have wt? (p, s, p) < Wt;?(p, s,p) —&.Letrp € Rung,(p, s, p),
w € pos(t) with r(w) = p, and let (t',r') = (£,1)((s,1p)">w) Thenr € Accyy (1)
satisfies

wt; (', ') = wt; (1, r) + nwt (p, 5, p)
< Wt (1, 1) + n(wtj(p, s, p) — &)
< wtj(t,r) + MC + nwtj(p, s,p) —2MC
= wt;(t',r) — MC.

Now let iy, ..., i be an enumeration of I such that wt; (t'.,r') < <
wt;, (¢/,1). Since wt;(¢',r") — wt;(t',r") > MC, there must exist some k €
{1,..., 1] — 1} with wt;, (£, 1) > wt; (¢, 1) + C. Furthermore, for every ¢ €
{1,..., M} \ I we have

th(l/» r) < Wt (7, 1) + fmax|s"| < Wt (t, 1) + maxn T
and similarly
wt;, (t/a I‘/) > wt;, (t,r) — Mmax|sn| = wt;, (t, 1) — Umaxn T .
By choice of C, we thus have

wt, (i’ r') < wt (1, 1)+ Mmax Y < W (£, 1) — imaxn? < Wt (t/v r),

sol’ = I\ {i,...,ir}1is C’—separable. By Theorem 4, we therefore have I’ € Z,
which is a contradiction to the minimality of /. U

We are now ready to prove the main result of this section, i.e., that [.A] is not
finitely sequential if ¢ is broken. We will assume that a finitely sequential repre-
sentation [A] = max!_,[A,] of A exists, choose a C-separated pair (¢, r) for a
sufficiently large C, and then deduce a contradiction depending on whether (¢, r) is
fork-broken or split-broken.

@ Springer

Theory of Computing Systems

Due to Lemma 12, our method to deal with fork-brokenness is quite similar to
the method used to deal with fork-brokenness in [25] and [34]. As in those proofs,
we construct from (¢, r) new trees and runs with increasingly more alterations of
forks and distinguishers and then show that at least N + 1 deterministic max-plus-
WTA are necessary to assign the correct weight to all of these trees. The challenge
we face in adapting the proof from [34] to our situation is that, in order to obtain a
contradiction, we have to ensure that in the runs we construct the coordinates from
I dominate the other coordinates. In our constructions we may therefore only make
“small” modifications to (¢, r). Our solution involves constructing more than the N +
1 trees sufficient for the proofs in [25, 34].

Dealing with split-brokenness is much more complicated and is in fact the only
reason we have to use the covering automaton U instead of 4. As split-brokenness
does not apply to words, this was not an issue in [26]. We provide a detailed intuition
of this part of our proof when we consider the case that (¢, r) is split-broken. We
prove the following lemma.

Lemma 13 IfU is broken, A does not possess a finitely sequential representation.
Proof For contradiction, we assume that [A] = maxl."i i ([U]) is the maximum
of the deterministic max-plus-WTA Ay, ..., Ay. For n € {1,..., N}, we write
Apn = (On, T, y, vy) and let L = maxflvzlmaxxeﬂn(AAn)\{_oo} |x| and |Q.| =
max_, Q.

Due to the determinism of Ay, ..., Ay, the set Rungy, (¢) is either empty or a
singleton for every n € {1, ..., N} and t € Tr. We may even assume that Run 4, (¢)
is always a singleton, i.e., that each A, is complete. If A, is not complete, we can
simply add a dummy state with final weight —oo to Q, which the automaton can
transition into whenever no valid transition is available.

We warn the reader that the roles of the constants defined in the following are
likely not apparent until these constants are actually used. It may thus be wise to only
take note of which constants are defined and then later verify the correctness of their
choice. Welet & = Q0 x ... x Oy x 0% and

Y’ = max{|t| | r € Ty with height(r) < |Z|%}.

For H € {1,..., M} we let Ry be the Ramsey number R(2H, MN,2H + 2) from
Theorem 3, i.e., such that for every set X of cardinality at least Ry and every 2H -
M N-coloring of X, there exists a subset ¥ C X of cardinality 2H + 2 whose
2 H-subsets are all colored with the same color. Then we let R = max{Ri, ..., Ry}.
Furthermore, we let D = N|Q, |2 + 1 and define natural numbers Ny, ..., Np induc-
tively as follows. We let Np = 0 and if N, 41, ..., Np are defined, we choose Ny,
such that forall k; € {k; + 1, ..., D} we have

ko k2
Ni &> L((le = k0T +7 3 M)+ (ko = kDpman Y + i Y N0,
I=k1+1 I=k1+1

@ Springer

Theory of Computing Systems

Let I € 7 be minimal with respect to set inclusion, let C be as in Theorem 4 and
for some

D
C = max{ 2tmax T 12MCE™1), 2ptman ¥ Y (N1 + 1),
=1
Apmax M |E|TR 4+ 2pmax (T + '+ M|E|T) + 1},

choose t € Tr and r € Accy () such that (¢, r) is I-C-separated. We consider two
cases.

Case 1: For some i € [and i-rivals p, q € Q, (¢, r) is i-p-q-fork-broken.

In this case, there exist two positions wp, wy € pos(?) such that wy, <p w),
r(w,) = p, r(wy) = q, and =@ —> wp)) [wq is an i-p-q-fork. By Lemma 7
and Lemma 8, there exists an i-p-q-distinguisher s with height(s) < 4|Q|? and a
p-g-fork f with height(f) < 2|Q[*>. We let u = t [y, and & = 1{o — wy), ie.,
we have ¢t = u(f'(u)). We let so = u and for k € {1,..., D — 1}, we let 55 =
sNE(f(sxk—1)). Then for k € {1, ..., D}, we let ty = a(s™ (f'(sx—1))). For clarity,
for words we would have 11 = uf’s™i and tp = ufs™t .- fsNi=1 f/sNegi. For each
k ek +1,..., D}, we let ry be the unique accepting run of U on #;.

Due to the choice of I and C, the heights of s and f, and Lemma 12, we
have Wt?(pv f’ P) = Wt}?(P, f’ p)’ Wt?(P’ s, P) = Wt}?(P: S, P), and Wt?(q9 S, Q) =
Wt}?(q, s, q) for every two i, j € I.Leti € I such that wt;(z,r) > wt;(, r) for all
j € 1. Then, forevery k € {1, ..., D} and every j € I, we have

wt; (&, rg)
k—1
= Wt; (1, 1) + (k — DWES(p, £, p) + Wt (p, 5, p) Y _ Ni + Nywt$(q, 5,)
=1
k—1
Wt (1, 1) + (k — DWE (D, £, p) + WE (D, 5.9) Y Ny + Newt? (g, s, @)
=1

IA

= Wt; (&, Tg).

Furthermore, for every k € {1,..., D}and j € {1,..., M} \ I, we have by choice
of C that

wt; (tk, Tx)
k—1
= wt; (1, 1) + (k = DWE(p. /. p) + WE (B, 5.)) Ny + Niwt(q. 5. @)
I=1
k
Wt (1 0) + (k = Ditmax ¥ + pmax Y) Ni
=1

A

@ Springer

Theory of Computing Systems

D

Wi (1. 1) + pmax T Y (N1 + 1)
=1
D

< W (6, 1) = ftmax ¥ Y (N1 + 1)
=1

IA

k

=< Wt,‘(t, I’) - (k - l)ﬂvmax’r - /’LmaxT ZNI
=1

< wt; (I, rr).

Thus, we have max?”=1 wtj (t, Tr) = wt; (g, 1) for every k € {1, ..., D}. By choice
of Ny, ..., Np, it follows that for every two k1, ky € {1,..., D} with kp > ki we

have
[[A] (t,) — [A] (5]
M M
= |r}1_ai(Wtj(tk2, r,) — I}lfiﬁ wt; (tk,, Try)l

= |wt; (t,, Ti,) — W (tx,, Tk, |

ko—1
+WE'(p,5,p)) Ni+ Ni,wt'(q, 5, @)
I=k;+1
> Ny Wt (p, s, p) — wt' (q, 5, @)| — (k2 — ki)Wt (p, f, p)
ky—1
—|wt'(p. 5. p)| > Ni— Niy|wt(q. 5, Q)|
I=ki+1
k2
= Nklg — (k2 — k1) tmax T — max T Z N
I=k;+1
ka
> L((kz —kDY+7T Z Nz) (»).
1=k +1

Here, the first inequality is an application of the reverse triangle inequality. We
assume that [A] = max_,[A,], so for every k € {1,..., D} there exists some
ng € {1,..., N} with [A] (%) = [As] (). Forevery k € {1,..., D}, we let ry €
Runy, (t) be the unique run of A, on 7. Furthermore, we let § = ¢y (i) and
v = 010 (f'))). We have D = N|Q,|>+ 1 many trees and every automaton A,
has at most | Q.| many states, so by pigeonhole principle there are at least two distinct
indices k1, k2 € {1, ..., D} such that (ng,, i, (D), ri, (vk,)) = (Mky, Fiy (D), iy (Viy))-

@ Springer

Theory of Computing Systems

We may assume that kp > kj. We let n = ny,, then due to the assumption that A, is
deterministic, we have

A (k) — [A] Gy

I[AR] (try) — [AR] @)
ko—1
L(ky = k)| f1+ Lls| Y Ny + Lls|(N, — Ni,)
1=k
ko
L((kz — k)Y +T Y Nl).
I=ky+1

IA

IA

Clearly, this is a contradiction to (#¥) above.

Case 2: Forsome i € I and i-rivals p, q € Q, (¢, r) is i-p-q-split-broken.

As the proof for this case is rather involved, we first provide an intuitive descrip-
tion of the main ideas behind our approach. First, assume that M = N = 1 and that
two rivals p, q occur at prefix-independent positions w,, w, € pos(?) as in Fig. 2.
We let s be a p-q-distinguisher and u a p-q-reacher. Then we substitute the subtrees
at wy and wy in ¢ by the tree s!2+(u) to obtain a tree ' as in Fig. 2. We easily obtain
an accepting run r’ of U on ¢’ and this run loops s in p below w, with some weight
x and it loops s in q below w, with some weight y such that x # y.

Since M = N = 1, we have wtyy (¢, r') = [A1]('). As A; is deterministic,
the one accepting run of A; on ¢’ is identical on the subtrees below w, and wy.
Furthermore, as A has at most | Q,]| states, this run loops some sub-/"-word s" of
519l in a state of A;. We let z be the weight of this loop in .A;. Then we consider
the tree 77 obtained by substituting the subtree at w, in ¢’ by s/*"(u) and the
tree 777 obtained by substituting the subtree at w, in 7’ by s 10.147(yy), see also Fig. 2.
Clearly, we have [A;](tT7) = [A;](¢T9) = [A] () + z.

We also easily obtain accepting runs r™?, r™¢ of U on the trees t 7 and ¢ 79 and
for these runs we have wtyy (t 77, r*?) = wiyy(t',r') + nx and wigy (¢t 79, r+9) =
wigy(t', ') + ny. Again, since M = N = 1, we obtain [A;] (') + z = [A1](tTP) =
wiy (', ¥')+nx = [A1] (') +nx and [A] () +z = [A1] (1) = wigy (¢, ¥')+ny =
[A1](#") + ny, ie., nx = z = ny. This is a contradiction to x # y.

For M = 1 and N arbitrary, our earlier argument breaks as we cannot guaran-
tee anymore that exactly one deterministic automaton assigns the maximum weight
to the trees ¢/, ¢77, and t 9. There are two approaches to solve this problem. One
is described in [34], the other employs Ramsey’s theorem. We outline the latter

+ + ttp +ta

G A A A

S P A=t Q] (IQu+n

LA la A A

Fig.2 The tree ¢ and the trees obtained by substituting the subtrees at w, and w, by powers of s

sl Qel+n

@ Springer

Theory of Computing Systems

approach as it is easier to generalize to the scenario where M is arbitrary. As above,

we substitute the trees below w), and w, by the tree s‘Q°|N(u). By considering the
runs of all the deterministic automata on ¢ in parallel, we see that some sub-I"-word
5" of s12+" loops in all the deterministic automata in parallel. More precisely, there
exist integers m and n such that each automaton 4;, after reading s™ (), is in a
state g; which loops in s”. For each automaton 4;, we let z; be the weight of A;’s
loop in s”".

We then consider the Ramsey number R = R(2, N, 4), i.e., for every set X of
cardinality at least R and every 2-N-coloring of X, there exists a subset ¥ € X of
cardinality 4 whose 2-subsets are all colored with the same color. For every 2-subset
{¢1, 02} € {1,..., R} with &1 < &, we define the tree f;, ;, by substituting the

subtree below w,, by s1Qe1"+61m (44} and the subtree below wy by s1Qe1"+0m (1)) We
let r, -, be the unique accepting run of U on f, , and define the color of {{1, ¢}
as the smallest index i € {1,..., N} such that wigs(t;, ¢, ¥¢,.c,) = [Ail(t,.0,)-
By choice of R, we find 4 integers {1 < {» < &3 < & in {l,..., R} such that
{¢1, &3}, {¢2, &3}, and {¢1, ¢4} are all colored with the same color i € {1,..., N}.
We derive that (& — f0)zi = [Ai](t.0) — [Ail(e.6) = Wty 050 T00.05) —
Wiy (tg,65: Tep.0) = (&2 — ¢)nx and similarly (&4 — &3)zi = [Ai](t,.0p) —
[[Ai]](til.ﬁ) = Wig(fg),¢45 r§1,§4) - WtU(té“l,Ca* r§1,§3) = ({4 — §3)ny. As above, we
obtain the contradiction x = y.

Assume that both M and N are arbitrary. For M = 1, we substituted the subtrees
below w, and w, by the same tree 512" (1) to make use of the fact that each deter-
ministic automaton then treats both subtrees in the same way. However, if M > 1, the
subtrees present below w, and w, may be indispensable to ensure that the weights
of the coordinates not in / are small. That is, replacing these subtrees may cause a
coordinate for which p and q are not rivals to become dominant. This is evidenced
by the automaton in Example 1, where we cannot simply replace these subtrees. To
overcome the problem of not being able to substitute the subtrees, we employ the
properties of U proved in Lemma 5 and construct a run of ¢/ into which we insert
powers of distinguishers. The general outline of our approach is depicted in Fig. 3.

First, we realize that it suffices to substitute only one subtree. By Lemma 5(v), the
subtree 7, at w, is a p-q-reacher. Thus, substituting ¢, and the subtree 7, at w, by
a tree of the form 5™ (#,) allows us to create a scenario as above while changing the
weights below w,, only “slightly”, i.e., dependent only on 5. However, depending
on the sizes of 7, and t,, this operation may still significantly change the coordinate-
wise weights below w,. This is the case for the automaton from Example 1. We thus
need to bound the size of both the substituting and the substituted tree below wy.

13 — — —
move loops insert SL:“ and substitute

Fig.3 The general outline of our proof of case 2

@ Springer

Theory of Computing Systems

Our idea to bound the size of the substituted tree is to move parts of 7, from 7, to
tp, thereby shrinking ¢,. More precisely, we want to cut loops from rz € Runy (74, q)
and insert them into rg € Rung(#p, p). If #; is of height at least |Q|?, there exists a
loop in rg, so we can shrink 7, to height |Q|? by moving loops. However, in order
for this to work, the state rZ loops in has to occur in rf;. This is not always the case,
as seen in the automaton from Example 1. We resolve this problem as follows. We
let r(,], € Runy (¢, q) and rf; € Rung (74, p), such runs exist by Lemma 5(v), and let
rf,’ , rZ, rg , ré’ be the projections of rg, r?,, rz, rg to the first coordinate. Then from
Lemma 5(ii), we see that {(rll,’(w), rZ(w)) | w € pos(tp)} = {(rlf(w), rg(w)) |
w € pos(ty)}. Thus, if we have a simultaneous loop in rl) and r}, i.., two posi-
tions wi <p wy in pos(ty) with () (w1), rf(w1)) = () (w2), rf(w2)), then this is
also a simultaneous loop in ré’ and rg and there exists a position w € pos(z,) with
(r{,)(w), rg (w)) = (rg(wl), rg(wl)) at which we can insert this loop into both runs
on t,. This approach would work if we could guarantee that r(‘;’ (wp) and rZ (wy) are
never rivals, as then, the simultaneous loops in rf; and rg coincide on their weights
and removing a loop from rg and moving the simultaneous loop from r(f tor [’,’ would
be weight-preserving.

In fact, our only concern is to not reduce the gap between the weights of the coor-
dinates in / and the non-broken coordinates. Therefore, we consider all positions
w € pos(ty) such that r} (w) and rf (w) are i-rivals for some i € 1, let v, be prefix-
maximal among these positions, and shrink only the subtree at v, in the way just
described, see also Fig. 4. By Lemma 5(ii), there exists a position v, € pos(,) such
that () (vy), rp(vp)) = (1] (vg), rg (vg)) and {(r} (vpu), r(vpu)) | u € pos(ty |y,
)} = {0 (gu), rd (vgu)) | u € posity lv,)}. We let 74, pg. pf. o . pg be the

restrictions of f, rf;, rZ, ré’, rf{] to v, and we let 7, pZ, p%, ,og, ,oZ be the restric-

tions of #,, rh, r’h, b, r} to v,. Thus, if we have two positions u; <p u2 in pos(zy)
with (pf (u1), pi(u1)) = (pg (u2), pg(u2)), there exists a position u, € pos(t,)
with (pp, (up), pp(up)) = (P (u1), pg(u1)), see also Fig. 5. Moreover, the weights
of the simultaneous loops in pg and pZ now coincide by construction for all
coordinates in /.

In particular, removing a loop from pZ and moving the corresponding simulta-
neous loop from pf; to pf; does not influence the weights for the coordinates in /.
We let J = {ji1,..., ju} be the set of all coordinates such that for some position
w € pos(ty), the state pZ(w) is a j-rival. We note that I C J due to & € pos(z,) and
Lemma 12.

¢ viel(pd(u),ph (u) i-rivals cu=c)

pP/a a/p a/p

t
q
p q
rd p q A r?
La t t P v q N
r} P q rh i 1Py |0
P q
Pq

Fig. 4 The subtrees #, at w, and #; at w, of r are both p-q-reachers, so there exist runs rZ, r?, on t,
reaching p and q, respectively, and runs ry, rg on t, reaching p and q, respectively. The position v, €
pos(t,) is prefix-maximal among all positions w for which rg (w) and rZ(w) are i-rivals

@ Springer

Theory of Computing Systems

p/q a/p
v
tp Up — ! tq
R Ta pTg
q a P
Tp pg p///q// q///p// Pq T'q
Py | vpup SN TS P4
P VqlUq
p'/d q’/p’
T 7! Tq
P T U1 q
q
pgl pp UP S pg/ pq
q’ ? s /| P
pp pq o q// /p/l pT; q
p "o o
P /q u2

wt?(s,pp)yﬁwt;?(.=;.,pq)~>i€J\I

Fig.5 Top: There exists a position v, € pos(t,) such that (r;;(v,,), rZ (vp)) = (r,f (vg), rg (vg)) and such
that for every u, € pos(t, {vq), there exists a position u, € pos(t, {vp) with (rﬁ(vpup), rg(v,,up)) =
(rqp(vquq), rg (vquq)). Bottom: Moving a loop from pf; and pZ on 7, to ,0},’ and p;’, on T,

Assume that by moving loops as above we have transformed our trees and runs
Ty Tp. o, p{q, into trees.and runs z,, 7, ph', o3 where now height.(r;) < |Q|2. Intu-
itively, we will now shrink the tree r; and replace T(; by the resulting tree. However,
we still need to ensure that for every coordinate j € J, there exists some position
w in pos(rl’)) such that pf,’/(w) and pg/(w) are j-rivals and such that for some j-
p[’,’/(w)—pf,/(w)—distinguisher s, all deterministic automata reach w with a state which
can loop in 5. We do so by choosing for every ji € J a position w such that p[’;/(u))
and ,o?,/(w) are ji-rivals and a jk-,of,ﬂ(w)-,oZ/(w)-distinguisher s and inserting s,lf‘

at w, where we recall that & = Q| x ... Qn x Q2. This results in a tree r[’,/ with runs

,0,1,’” and p;’,”. We assume the deterministic automata Ay, ..., Ay to be complete,

so each deterministic automaton .4,, possesses a run p;,, on 'L’IZ . We consider the runs

prr qn . . - . - .
Pl .., PN, Pp > Pp in parallel as a quasi-run p on r;,’ with states in Z. By pigeon-

hole principle, for each ji the quasi-run p loops with a state py ina I"-word s = s,':"
with 1 < nj < |Z|, see also Fig. 6.

For our final substitution, we remove loops from p while ensuring that such a
removal does not influence the set of states visited by our quasi-run. This allows us
to shrink 7/ and to a tree T/ of height at most | Z|? and a quasi-run 5’

P P
Int, we substitute 7, into v, and 7" into v, to obtain a tree ' with an accepting run

r’ € Accy (). The runs on the substituted subtrees are given by p 5 " and the last entry

@ Springer

Theory of Computing Systems

PN
o) s A /%
: \ Py (u), p’ (up))

Fig.6 Some power 5k of s loops a state py in all runs pq, .. pN, pf,)”, pp” simultaneously. Each state
Pr still occurs in p’ after removing loops from p to obtain from r a tree r”’ of height at most | 5 |?

p plp1(uy), ..., pn(uh),

q

of p'. For every ji € J, there exist positions u} € pos(ty) and u; € pos(t,’

) such
that 5 is a jk-r'(wpvpuy)-r' (wevgu})-distinguisher, each deterministic automaton
A, reaches w pvpu,f and wy vquz with the same state, and each .4, loops in this
state with s;. We then consider the Ramsey number R = R(2|J|, MN, 2|J| + 2),
i.e., for every set X of cardinality at least R and every 2|J|-M N-coloring of X,
there exists a subset Y € X of cardinality 2|J| + 2 whose 2|J|-subsets are all col-

ored with the same color. For every 2|J|-subset ¢ = {¢1,..., 0} € {1,..., R}

=82k—1

with &1 < ... < {1y}, we define the tree #; by inserting §; at wpvpu,i7

and sg “ at wyvguj for each jx € J. Then we define the color of ¢ as the pair

(],n) € {1,...,M} x {1,..., N} such that the unique accepting run of ¢/ on t,
has its maximum weight in coordinate j and such that A, assigns the maximum
weight to #; among all the deterministic automata. We can show that in fact, all col-
ors assigned this way are from J x {1, ..., N}. By choice of R, we find 2|J| + 2
integers {1 < --- < {742 in {1, ..., R} such that {¢1, - -+, {21142} \ {G2k» ak+2}s
{C1 -+ G2} \ {Qok—1, Gok+2}s and {&1, -+, &opa+2} \ {Q2k, Qok+1} are all col-
ored with the same color (ji, n). With the same reasoning as earlier, we obtain the
contradiction that si is not a ji-distinguisher.

We now give a more detailed presentation of the proof. By assumption, there exist
two prefix-independent positions w, w, € pos(t) with r(w,) = p and r(w,) = q.
We may assume that w), <i wg. We let (15, 1},) = (£, 1) [y, and (15, 1) = (1, 1)]y, .
Furthermore, by Lemma 5(v) we may write p = (p, P, V) and q = (g, P, V) with
p.q€Q.PCQ.andV C Q*x P(QY).

By Lemma 5(v), there exist runs r;], € Runy(z,, q) and rf; € Runy(14, p). We
consider the set {w € pos(ty) | rZ(w) and rZ (w) are i-rivals for some i € I} and
let v, be a prefix-maximal position from this set. Note that this set is non-empty as
it contains . We let 7, = 1, [vq, pg = r,‘; [vq, and pZ = rz [Uq. Furthermore, we
letp’ = pl(e), q = pi(e), p' = m(p)), and ¢’ = m1(q'), see also Fig. 4. Also,
welet J = {j € {1,..., M} | there exists u € pos(ty) such that p} () and p{ (u)
are j-rivals}. Note that p’ and q' are i-rivals for some i € I, so by Lemma 7 there

@ Springer

Theory of Computing Systems

exists an i-p’-q/-distinguisher of height at most 4|Q|?. Thus, we obtain 7 C J from
Lemma 12.

We let rg = m o rZ, rtf = 7w o r([;, and ¥ = {(r(f(vqu) rq (vqu)) € 0? |
u € pos(ty)}, then by Lemma 5(ii) we have (p,q, p’,q',Y) € V. Therefore,

again by Lemma 5(ii), there exist runs 7}, € Runy(tp, p) and rj € Runy(tp, q)
and a position v, € pos(t,) with rh(v,) = p’ and r}(vy) = ¢’ such that

Y = {(rp (vpu), rj(vpu)) € Q% | u € pos(tyly,)}-

Since Y is unambiguous, the sets Runy(¢,, p) and Runy(z,, g) are singletons. It
follows that r{,’ =m0 rg and rZ =m0 r;],.

We let 7, = 1, [y, oy = rp v, and op = r} lv,- Then in conclusion, we
see that for every position u, € pos(t,), there exists a position u,, € pos(t,) with
(05 up). pi(up) = (0} (1g). P (1q)). see also Fig. 5.

& We now remove cycles from pg and pZ in parallel as follows. If height(z,) <
|Q|?, we do nothing. Otherwise, by pigeonhole principle, there exist two posi-
tions uy, uy € pos(ty) with uy <p un such that (o) (u1), pdu1)) = (pfu2),
pZ (u2)). On the I'-word s = 7,(¢ — u2)[y,, we thus obtain two runs looping in a
state by defining p” (w) = pj (ujw) and p? (w) = pg (ujw).

We let ,0” = m o p” and p? = 7 o p9, then there exists u, € pos(t,) with
(,op (up) ,op(up)) = (,0”(8) pp(s)) We insert the I"- word s into T, at u, to obtain

a tree 7, and two runs ph’ and p}’ on T, by (T, Pp) = (@ oG, /O Py > up)

and (‘Cp’ Pp) = (1, ,Op)((S, p7) > up)- Moreover, we remove the loops on s
from the runs on 7, by (z/, pb) = (zg, P (4, PF) Tuy— u1) and (t), el =
(Tqv pg)((qu PZ)fu2—> up).

For every i € {I,..., M} \ J, we have wt’ (s, p”) = wt’(s, p?). Likewise, by
choice of v,, we have wt (s, p¥) = Wtf(s, p?) for every i € I. This implies in
particular that for every i € 1 U ({ky + 1,..., M} \ J) we have wt; (‘L'p, ,op) +
wti(z;, p) = Wti(z, pp) + Wi (14, p§).

We continue this procedure of moving loops until we arrive at a tree 1:(; with
height(z)) < |Q|*. We then have two runs ol € Rung(z/, p') and el € Runy
(t4.q') on 7, and a tree 7;, with runs ,o;,” € Runy(t,, p') and pg/ € Runy(t, ¢").

& We let ji, ..., jg be an enumeration of J. We let k € {1,..., H} and let
u € pos(ty) be position such that p} (u) and pJ (u) are ji-rivals. Then by Lemma 7,
there exists a jx-pl (u)-pl (u)-distinguisher s; with height(sy) < 4/Q|>. We let
r,’: € Runzl(pf;(u), Sk pg(u)) and rZ € Runzl(pz (u), sk, pZ (u)). Furthermore, we
let uy € r[/, be a position with (,of,”(uk), pgl(uk)) = (pg(u), pZ (u)). We know that
such a position exists from the way we obtained 7, p,‘,ﬂ, and ,0;’,/ from 7, ply, and pj.

We may assume that ji, ..., jy are ordered such that u; <; ... <L uy.
Then for every k € {l,..., H}, we insert (sk,m ory)“‘| into ('C pp) and
(sk, 1 o r)!El into (tp,p[,) at uy by (T Pp) = (Tp’pp (O AL

wp) -+ (s, wor))El=u1) and (Tp,,op) = (T,,,Pp)((SH,m ori)El—up) .-

'NE;
((s1, myor])‘ I —u 1), For sake of simplicity, we assume that the I"-words we inserted
are still below the positions u1, ..., ugy.

@ Springer

Theory of Computing Systems

& We assume that the deterministic automata Aj,..., Ay are all complete,
thus for every n € {1,..., N} there exists a run p, € Rung,(r,). We define
p:pos(t)) — & by p(w) = (p1(w)..... pxw), pb" (), pp’" (w)) and let v =
O1(sx). Forevery k € {1, ..., H}, we can find by pigeonhole principle two integers
m,n €{0,...,|Z]} withm < n such that p(uv") = p(urv}). We let uf = uvl”,
Dk = ﬁ(ukv,’(”) ny = m —n, and s = sZ , see also Fig. 6. We remove loops
from r;,/ and p as follows. If helght(t”) < |&|%, we do nothing. Otherwise, we let

seen(w) = {p(ww’) | w" € pos(z, [w)} for w € pos(z,) and choose w € pos(z,)
with |w| = helght(r”) > |Z|?. Then for every two positions wy, wy € pos(r[/,/)
with w; <p wp, we have # # seen(wy) C seen(w;) € &. Thus, there exist by
pigeonhole principle two positions wi, wy € pos(rj’y’) such that w; <p wy <p W
and (p(wy), seen(wi)) = (p(w2), seen(wy)). We cut this cycle from ‘L’ " by defining
(r’” o) = (), p){(t)), p)[w,— wi). We continue this procedure untll we obtain a

tree 7,” with height(z))’) < |& | together with a quasi-run p’. We note that by con-
struction, we have p'(pos(z,')) = p(pos(zy)), so for every k € {1,..., H}, there
exists uj € pos(t,’) with ﬁ’(uZ) = pr. We denote the projections on & to the respec-
tive coordinates by 71, . .., my12. Then we also have 7, o ,5/ € Runy, (7)) for every
nefl,...,N},ays100 € Runu(t”’ p),and Ty1p 0 p € Runu(r” q").

We now consider the tree ¢ and the accepting run r’ € Accu(t) defined by
@,r) = (¢, 7 or){(z, p”) — wpvp)((tp JINt2 0 p') — wgug). Let k €
{0, ..., H}. We have (r’(wpvpuk), r (quq“k)) = (71’N+1o,0(uk), nNHop’(uZ)) =
(1 or,f (&), my orZ (¢)). Moreover, forevery n € {1, ..., N} we see that for the unique
run r,, of A, ont’ we have (r,,(wpvpu,f), rn(ququZ)) = (Trnoﬁ(u,[:), n,,o,é’(uZ)) =
(7 (pi), mn(Pr)). Also, the I'-word 5k loops in 7, (pg).

We consider the weight of ' on #'. By construction, we have for every i €

(1. M} that Wt (1,) = W4 (2, pp) — Wi (7q, pg) = Wt (¢, r') = wti (z), pp) —
wt; (7)), Ty 0p0'). Leti e TU ({1, ..., M}\ J), then we have
wt;i (7, ph) + wt; (z,, pd) = wti(tp, ph) + Wti (z4, p)
and
Wi (1),) = Wi (zy, pp)| < tmax D |5 - skl < tmax MIZ| Y.
k=1
Thus, we see that
Iwti (', ') = wti(t, ©)| = w0, r') — wti(z), pp) — wti(z)', ang2 0)

+wti (), pp)+ whi (1), wv2 0)
—wt; (t, 1) + Wti (T, ph) + Wi (14, pd)
—wi; (tp, pb) — Wi (14, p)|

@ Springer

Theory of Computing Systems

= Wity pp") + Wi (r) TN 420)
—wt; (tp, pp) — Wi (14, pd)|

= |wti(t), pp) +Wti(z), 42 0 5)
—wti(t), pp) — Wi (z), pg)|

< mx (Y + T +M|E|T).

We write (k1, ..., ky) = Wty (', r") and recall that I € J. Then for every i € I
andi’ € {1,..., M}\ J, we have by choice of C that

kir — ki = (ki — Wt (£, 1)) + (Wt (£, 1) — Wt; (£, 1)) + (Wt (7, 1) — &)
< (Wt (t, 1) — Wt; (1, 1)) + 2Umax (T + 7' + M|E|T)
< —4umaxM|Z|TR - 1.

We consider the Ramsey number Ry as above and the set {1, ..., Rg}. For every
2H-subset ¢ C {1,..., Ry}, we define a colorin {1,..., M} x {1,..., N} as fol-
lows. We assume that { = {¢1,...,%p) With {1 < ... < {2y and let #; be the
tree obtained from ¢’ by inserting the I'-word 5,52"’1 at wpvpul and the I"-word E,?k
at ququz for every k € {1,..., H}. Then writing [U](1;) = (Kf, ...,/cfw), we
let the color of ¢ be the pair (j, n) consisting of the smallest j € {1, ..., M} with
K? = max{/cf, . ..,K]f,[} and the smallest n € {1, ..., N} with [A,](z;) = K?. We
note that for every i € {1, ..., M}, we have

H
i = if | < pmax D ISkl C2k—1 + £20)
k=1

< PmaxM|E|T - 2R.
Thus, foreveryi € I andi’ € {1,..., M} \ J, we have
= (g — seir) + (= 1) + i = 17) + i
< 2ftmaxM|E|T R — 4tmax M| E|TR — 1 + 2umax M|E|T R +

:Kf—l.

In particular, all 2 H-subsets are colored with a color from J x {1, ..., N}.

By assumption on Ry, there now exists a subset ¥ C {1, ..., Ry} of cardinality
2H +?2 whose 2 H-subsets are all colored with the same color. Let ¢ < ... < {p42
be the an enumeration of Y and let (j, n) € J x {1, ..., N} such that all 2H -subsets
of Y are colored by (j, n).

Weletk € {1,..., H} with ji = jandlet ¢ = {¢1,..., Sany2} \ {Gak, Sorv2)
Furthermore, we let {17 = {0} U ¢\ {¢ok—1} and £ = {{ox 42} U S \ {Sok41}. With
7= WtQAn (0 (Pr), Sk, 7w, (Pr)), we then have

Gk — Cok-1)z = [An](te+r) — [Au](2e)

¢te
j Kj

(Cok — Cok—1)niWEj (S, 1)

=K

@ Springer

Theory of Computing Systems

and

(G212 — Corr)z = [An] tera) — [An] ()
5

= (Cak42 — Sokr)Wt (s,).

Thus, we obtain n;wt; (s, rf:) =z = niwt; (s, rZ), which is a contradiction to the
choice of s¢. O]

3.3 Sufficiency

In this section, we show that if U is not broken, then [A] is finitely sequential.
Although our approach is inspired by an idea in [26], we are not sure whether we
employ this idea in the same way. Our general strategy is to show that, if U is not
broken, then we can construct M unambiguous max-plus-WTA which all do not sat-
isfy the tree fork property and whose pointwise maximum is equivalent to [.A]. By
Theorem 1, we obtain a finitely sequential representation of A by constructing one
for each of the unambiguous max-plus-WTA. We essentially construct the unam-
biguous automata by removing problematic runs from U and then projecting to the
coordinates 1, ..., M.

Our fundamental idea is the following. Assume that p and q are i-rivals, that (¢, r)
is i-p-q-broken, and that the maximum of wty4(z, r) is in coordinate i. Furthermore,
assume that in r, some i-p-q-distinguisher s loops N times in p, where N € N is
some integer, and that s loops in p with a smaller weight, in coordinate i, than in
q. By removing the loops of s in p from (¢, r) and inserting them back as loops in
q, we increase the weight of coordinate i, but leave the weights of all non-broken
coordinates unchanged. If height(s) < 4|Q|?, we can even assert that the weight of
coordinate i increases by N&, where £ is defined as in Section 3.2. Thus, in this latter
case, coordinate i then dominates all non-broken coordinates by a margin of at least
NE&. We know that i cannot dominate all non-broken coordinates by an arbitrarily
large margin, so N cannot be arbitrarily large. In turn, this means that if N is suffi-
ciently large, then wty4(#, r) cannot take its maximum weight in coordinate i. This
implies that the weight of coordinate i can be discarded if some distinguisher loops
in both of its rivals too many times.

We employ this idea in the following way. First, we identify an integer N such
that looping in an i-distinguisher more than N times ensures coordinate i to be dom-
inated by other coordinates. Then we construct for every coordinate an automaton
which checks every run of U for i-brokenness and detects for every i-distinguisher
of height at most 4|/Q|> whether it is looped N + 1 times. Finally, we restrict the runs
of U to those which are not detected, simply using a product construction, and apply
the i-th projection to all weight vectors. As we will show, the resulting automata are
unambiguous and do not satisfy the tree fork property. We do not need to detect loops
of arbitrarily large distinguishers since by Lemma 7, every large distinguisher con-
tains a distinguisher of height at most 4|Q|? by truncating. We begin by introducing
the following notions.

@ Springer

Theory of Computing Systems

We define the set R = {(i,p, q,s) € {1,..., M} x Q% x Tr,|ie{l,...,M},s
is an i-p-q-distinguisher, height(s) < 41Q%}, let C be as in Theorem 4, let § be as in
Section 3.2, and define the constant N = [MC&~17.

Definition 5 Lett € Tr, r € Runy(¢), (i,p,q.s) € R, rp € Runzl(p,s,p), and
rq € Rung,(q, s, q). We call (¢, 1)

- (i,. P, q, s)-fork-broken if there exist positions up, vp, Wy, Wq, Uq, Vq € POs(t)
with vqg <p uq <p wq <p wp =<p Vp <p up such that (¢, r){(c, r(up)) —

Up)ly, > (5,1p) VL (1) ((0,1(uq)) — ug) [y, > (5,1q)" !, 1(wp) = p,
r(wq) = g, and 1(¢ — wp)[w, is a p-q-fork.

— (i, p, q, s)-split-broken if there exist positions up, vp, Uq, Vg €
pos() such that wvp <p Up, Vg <p Ug, Up arjl\(fi 1vq are
prefix-independent, (t, r){(o, r(up)) —Up) va >3 (s,1p)" T, and

(t.1){(0,1(uq)) = uq)l,, > (5,1)V

For an illustration, see also Fig. 7.

The first observation we make is that if some (¢, r) is (i, p, q, s)-broken for a tuple
(i,p,q,s) € R, then the weight of coordinate i is strictly dominated by another
coordinate.

Lemma 14 Lett € Tr and r € Accy(t). If (¢, r) is (i, p, q, s)-broken for some
@i, p,q,s) € R, then wt;(t,r) < [A](®).

Proof Let t € Tr and r € Accy(t) be such that (¢,r) is (i, p, q, s)-broken
for (i,p,q,s) € R. Furthermore, let up, vp,uq,vq € pos(t) be as in the
definition of (i, p, q, s)-brokenness. We may assume that wt’(p,s,p) <
wt?(q, s, q), let rp € Rung,(p, s, p), rq € Runj,(q, s, q), and let g: pos(sNVt1y —
pos((z, r){(¢, p) — up) [y,) be as in the definition of a truncation. We let
(s1.71), ..., (sp,T,) be an enumeration of the family ((z, r){((o, r(vpg(wl))) —
Upg(WI)vag(w)l)wepos(sN+|)Je{]’m’rkm (sN+1(w))} and we let (t/’ rl) =

(t,0){(t, fu,—> vp). Then by Lemma 6(iii), we have wiyy(t, 1) = wigy(t', 1)
+ (N + Dwtg,(s,rp) + Yy Wiy, (s, rx). Note that by the definition of

(¢, p, q, s)-fork-broken (¢, p, q, s)-split-broken

AN

uq /N

w,

Wp / \

Up /' \

Fig.7 An illustration of (i, p, q, s)-fork-brokenness and (i, p, q, s)-split-brokenness

@ Springer

Theory of Computing Systems

a truncation, we have riy(¢) = ry(Q1(sg)) for all k € {1,...,n}. By con-
struction, for every k € {l,...,n}, there exists a position uy € pos(s)
such that ri(¢) = rp(ux). We may assume that u; =< <L Uy

and let (s',rp) = (s, 1p){(Sn, Tn) > up) -+ ((s1,71) >u1). Then with
", r") = ', ') ((s", rp)>vp) we have wig¢(r, r) = wigg(t”, ¥") + Nwtg, (s, rp).
By choice of ¢ and r, there exists a position v € pos(z”) with r’(v) = q. We
let (1", 1) = (¢",r"){((s, rq)Y = v). Then we have wt;(t"’,r"") = wt;(¢,1) +
N(wt’(q,s,q) — wt’(p,s,p)) > wt;(r,1) + MC. Since (1", r") is i-p-q-broken,
r’” € Accy(t”"), and we assume U to not be broken, there exists a coordinate j €
{1,..., M} suchthat (", r"") isnot j-broken and wt; (", x"") > wt; (¢"", ") —MC;
otherwise, we could construct a C-separable set I like in the proof of Lemma 12,
which by Theorem 4 would imply that U is broken. Since (¢, r’’) is not j-p-q-broken,
we have wt;(r, 1) = wt; (", ") > wt; (", ¥") — MC > wt; (¢,). O

Next, we show that forevery i € {1, ..., M}, itis arecognizable property whether
for a run r € Rung(¢) on a tree t € T, (¢,r) is (i, p, q, s)-broken for some
(i, p,q,s) € R. More precisely, we show the following lemma.

Lemma 15 Foreveryi € {1, ..., M}, there exists a complete and deterministic FTA
B; over the alphabet I x Q which accepts a tree (t,1) € Tryq if and only if there
does not exist (i, p, q, s) € R such that (t,r) is (i, p, q, s)-broken.

Proof We employ the generalization of Biichi’s theorem to trees [50-52], namely
that a tree language is definable using the MSO logic given by the grammar

B = label(q p)(x) | edge;(x, y) | x € X | =B | BV B | Ix.6|3X.B

if and only if it is recognizable by a (complete and deterministic) FTA over I" x Q.
Here (a,p) e I’ x Q,1 € {1,...,rk(I")}, x, y are first order variables, and X is a
second order variable, and (¢, r) as above corresponds to the structure with universe
pos(t) where the interpretation of label, p) is the set {w € pos() | (f(w), r(w)) =
(a, p)} and the interpretation of edge; is the set {(w, wl) | w, wl € pos(t)} for every
I e {1, ..,tk(I")}. We note that the prefix order <; is definable using this logic, so
we may use it as well as its strict version <p in our formulas.

We let (i,p,q,5) € R, rp € Run&(p, s,p), and rq € Runzfl(q, s,q). We

let (s',1p) = (s,rp)V*! and (s',rp) = (s, r)V*t!. We let di,...,d|p| be an
enumeration of D = {d € Ay | u(d) € QM} and let wy, ..., w, be an enu-
meration of pos(s’). Furthermore, we let D(q) = {(qi,...,qm,a,q) € D} and

Di(@ ={(q1,....qn.a.q0) € D | q =q} forq e Qand [€ {1,...,1k(I")}. We
first define a formula fork(yq, yp) which checks for two positions yq, yp € pos(?)
that r(yq) = q, r(yp) = p, and that p can loop in the I"-word #(¢ — yp)[y, by

(g <p ¥p) A Vg per 1abel(a,p) (yp) A label(g)(yq)
A 3¥q, ...

@ Springer

Theory of Computing Systems

vy (g <p ¥ A =0p <p) >
(V VoeYanlabelapymar= \/ yeY)

d=(q,a,90)€D poQ d’eD\{d}
tk(I")

Ave A\ AN (e Yanedge(y,x) A=(yp <p X))
I=1 deD,
qoeQ €D;(qo) - \/ Y Yd/))
d’'eD(qp)
A \/ Yq € Ya A \/ Yp € Yy.
deD(p) deD(p)
Then we define the formula ¢ p q) to check for (i, p, q, s)-brokenness by
Az, -+ Tz, Fx, - - Txy,

/\ labe](s/(w),r:](w)) (zZw) A label(s/(w))ri)(w)) (xw)
wepos(s)\{O1(s)}

A\ Tabel,q) (20,5)) A labelp,p) (60, s7)

a,bel’

ks, (5" (w))

A /\ /\ VzVx(edge; (2w, 2) A edge;(xy, x) —

wepos(s’) =1 7 <p Zwl A X <p Xyl

A\ 1abel i, iy (2) A label g oy ()
a,bel’

A((_'(xs <p 2e) A 7(Ze <p Xe))

v 3yq@p ok (g, ¥p) A 20,(+) Sr Yq A p Zp 30))).

Finally, we let i = =\/(; 4)R ¥(s.p,9 and we let B; be a complete and deter-
ministic FTA with L(g;) = L(B;), then ; accepts (, r) if and only if there does not
exist (i, p, q, s) € R such that (¢, r) is (i, p, q, s)-broken. O

In the following, we define M max-plus-WTA Cy, ..., Cy over I" which we claim
to all not satisfy the tree fork property and whose pointwise maximum we claim to
be equivalent to [.A].

Construction 3 Fori € {1,..., M}, welet B; = (B;, I’ X Q, §;, F;) be the automa-
ton we find by Lemma 15. We define C; = (C;, I', i, v;) over Quax as the trim part
of the automaton C; = (Q x B;, I', u}, v;) defined for a € I' with tkj-(a) = m and
(90, b0); - - - » (@m> bw) € Q X B; by

I'L:((qlv b])v MR (qma bm)» a5 (q07 bO)) =

T[l(/"l’(ql’) va a5 qo)) lf (b17 ey bm’ (aa QO)y bO) € (Si and bO € Fi
—00 otherwise

v (qo, bo) = 7; (v(q)).

@ Springer

Theory of Computing Systems

Weletmg: Q x B; — Qand mp, : Q x B; — B; be the projections.
We make the following observations about Cy, ..., Cy.

Proposition 1 For every tree t € Tr and every r € Rung,(t), we have mg or €
Rungy(t), wic, (¢, r) = wt;(t, mQor), and mp, or is the unique run of B; on (t, mgor).
In particular, we have [C;](¢) < m; ([U](@)).

We first show that maxZ [C;] = [A].
Lemma 16 For everyt € Tr, we have max!? | [C;](1) = [A](1).

Proof Let t € Tr. By construction of U we have [A](¢) = maxl."i1 i ([U](0)). If
[A](t) = —o0, we have —oco = max | ; ([U](1)) > max [C;](1). If [A] () #
—o00, there exists arun r € Rung4(¢) and an index j € {1, ..., M} with wt;(¢,r) =
7;([U] (1)) = [A](¢). By Lemma 14, this implies that (¢, r) is not (j, p, q, s)-broken
for any (j,p,q,s) € R. From the definition of (j, p, q, s)-brokenness, it is easy
to see that the same is true for every subtree (¢, r) [, with w € pos(t). As B; is
complete, there exists a run r3; € Rung, (7,). As B; is deterministic and accepts
every subtree of (7, r), it follows that B, (w) € Fj for every w € pos(t). Thus, we
can define a run r; € Rung, (1) by r; (w) (r(w), rp; (w)) and for this run we have
wte, (t, rj) = wt;(t, 1) = [Aﬂ(r). Thus, we have [[Cjﬂ(t) > wig; (1, 7)) = [A](z) and
we have [C;](?) < 7; ([U](¢)) < [A](¢) by construction for every i € {1, ..., M}.
Therefore, max?? | [C;](1) = [A] (). O

Finally, we show that the automata Cy, . .., Cjy do not satisfy the tree fork property
and therefore possess finitely sequential representations.

Lemma 17 The automata Cy, ..., Cy do not satisfy the tree fork property.

Proof We prove the statement by contradiction and assume that for some i €
{1, ..., M}, the automaton C; satisfies the tree fork property. Then there exist rivals
P, b), (q, c) € Q x B; which satisfy one of the conditions of the tree fork property
together with a (p, b)-(q, c¢)-distinguisher s € Tr,. From the definition of (;, it is
easy to see that s is now also an i-p-q-distinguisher of . We letrp € Runzl P, s, p)
and rq € Runu (q,s,q). Then by Lemma 7, there exists an i-p-q-distinguisher
s’ € Tr, with height(s’) < 4|Q|? and with runs rp € Runy (p, ’,p) and r €
Rung,(q, s, q) such that (s,rp) >¢ (s, ry,) and (s,rq) > (5,7g). We then also
have (s,rp) Nt >¢ (¢, r,)N and (s,rq) VT > (s, 1)V *1 Moreover, there
exists a reacher u € Tr with Rung, (u, (p, b)) # ¥ and Rung, (u, (q, c)) # @. We
consider two cases.

If C; satisfies condition 1 of the tree fork property for (p, ») and (q, c¢), there
exists a (p, b)-(q,c)-fork f € Tr,. Then f is also an i-p-q-fork in U. We
let t = sNFLUFGEN L W))), vg = &, wq = uqg = 01OV, wp = v =
wqQ1(f), and up = vp<>1(s)N+1. By assumption, the sets Rung, ((p, b), s, (p, b)),
Rung, ((q, ¢), 5, (q, ¢)), and Rung,((p, b), f, (q,c)) are all non-empty, so there

@ Springer

Theory of Computing Systems

exists a unique run r; € Rung, (¢, (q, ¢)). We consider the run r = mg o 7y,
then we have (1,1)((0,p) — up)l, > (5/,1) L, (11){(0.a) = g, >
(s ,rq) ,r(wp) = p, r(wq) = q, and 1(¢ — wp) [y, is a p-q-fork. Thus, (7, r) is
(i, p, q. s")-broken and for the unique run rp; € Rung, (¢, r), we have rg, (¢) ¢ F;. It
follows that wp, o r;(¢) ¢ F; which implies that 7; is not valid in contradiction to our
assumption.

If C; satisfies condition 1 of the tree fork property for (p,) and(q, c), there exists

a 2-I'-context ¢ € Tr, and a run r; € Rung (t') with r/(01(t")) = (p,b) and

rl(02(t) = (q,0). We let t = t'(s¥ (), sV W), vp = 01(t), vg = 02",
up = vp01 ()Nt and uq = vg¥1 (s)N*+1. By our assumptions, there exists a unique
run r; € Rung, (t) with r;(¢) = rl.’ (¢). We consider the run r = mq o r;, then vy
and vgq are prefix-independent and we have (¢,r)((o, p) = up)[,, >¢ (s,))N+
and (¢, r){(0,q) — uqg)l,, > (s',ry)NTL As in the previous case, we see that

(t,r) is (i, p, q, s")-broken and thus for the unique run rg; € Rung, (¢, 1), we have
rg;(e) ¢ F;. Therefore, wp, o ri(¢) ¢ F; which implies that r; is not valid in
contradiction to our assumption. O

To conclude, the proof of Theorem 2, we construct for every i € {l,..., M}
deterministic max-plus-WTA AEI), ce Af,l,.) with max?i: | [[.A;.’)]] = [C;], which is

possible by Theorem 1. Then [A] = max/’ | [C;] = max// | max?i: 1 [[Ag-i)]], so [A] is
finitely sequential.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Schiitzenberger, M.-P.: On the definition of a family of automata. Inf. Control. 4(2-3), 245-270 (1961)

2. Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series, Texts and Monographs
in Computer Science. Springer (1978)

3. Kuich, W., Salomaa, A.: Semirings, automata, languages, vol. 5. EATCS Monographs in Theoretical
Computer Science. Springer (1986)

4. Berstel, J., Reutenauer, C.: Rational series and their languages, EATCS Monographs in Theoretical
Computer Science, vol 12. Springer (1988)

5. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of weighted automata, EATCS Monographs in
Theoretical Computer Science. Springer, Berlin (2009)

6. Simon, I.: Limited subsets of a free monoid. In: 19th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 143-150. IEEE Computer Society (1978)

@ Springer

http://creativecommons.org/licenses/by/4.0/

Theory of Computing Systems

11.

12.

13.

14.

16.

17.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

. Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Chytil, M.P., Janiga, L.,

Koubek, V. (eds.) 13th International Symposium on Mathematical Foundations of Computer Science
(MFECS), Lecture Notes in Computer Science, vol. 324, pp. 107-120. Springer (1988)

. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is

undecidable. Int. J. Algebra Comput. 4(3), 405426 (1994)

. Hashiguchi, K., Ishiguro, K., Jimbo, S.: Decidability of the equivalence problem for finitely

ambiguous finance automata. Int. J. Algebra Comput. 12(3), 445-461 (2002)

. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and sequentiality from a

finitely ambiguous max-plus automaton. Theor. Comput. Sci. 327(3), 349-373 (2004)

Bjorklund, J., Drewes, F., Zechner, N.: An efficient best-trees algorithm for weighted tree automata
over the tropical semiring. In: Dediu, A.-H., Formenti, E., Martin-Vide, C., Truthe, B. (eds.) 9th Inter-
national Conference on Language and Automata Theory and Applications (LATA), Lecture Notes in
Computer Science, vol. 8977, pp. 97-108. Springer (2015)

Daviaud, L., Guillon, P., Merlet, G.: Comparison of max-plus automata and joint spectral radius of
tropical matrices. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) 42nd International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 83, pp. 19:1-19:14. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik
(2017)

Filiot, E., Jecker, I., Lhote, N., Pérez, G.A., Raskin, J.-F.: On delay and regret determinization of
max-plus automata. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 1-12. IEEE Computer Society (2017)

Mazowiecki, F., Riveros, C.: Pumping lemmas for weighted automata. In: Niedermeier, R., Vallée,
B. (eds.) 35th Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 96, pp. 50:1-50:14. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik (2018)

. Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf. Comput. 78(2),

124-169 (1988)

Waldmann, J.: Weighted automata for proving termination of string rewriting. J. Autom. Lang.
Combin. 12(4), 545-570 (2007)

Komenda, J., Lahaye, S., Boimond, J.-L., van den Boom, T.: Max-plus algebra in the history of
discrete event systems. Annu. Rev. Control. 45, 240-249 (2018)

. Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269—

311 (1997)

Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res Dev 3(2), 114-125
(1959)

Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomially ambiguous min-
plus automata. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical
Aspects of Computer Science (STACS), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 3, pp. 589-600. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik (2009)

Kirsten, D.: A Burnside approach to the termination of Mohri’s algorithm for polynomially ambiguous
min-plus-automata. Inf. Théor. Appl. 42(3), 553-581 (2008)

Blattner, M., Head, T.: Automata that recognize intersections of free submonoids. Inf. Control. 35(3),
173-176 (1977)

Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325—
349 (1991)

Seidl, H.: On the finite degree of ambiguity of finite tree automata. Acta Inf. 26(6), 527-542 (1989)
Bala, S., Koninski, A.: Unambiguous automata denoting finitely sequential functions. In: Dediu, A.-
H., Martin-Vide, C., Truthe, B. (eds.) 7th International Conference on Language and Automata Theory
and Applications (LATA), Lecture Notes in Computer Science, vol. 7810, pp. 104-115. Springer
(2013)

Bala, S.: Which finitely ambiguous automata recognize finitely sequential functions? (extended
abstract). In: Chatterjee, K., Sgall, J. (eds.) 38th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), Lecture Notes in Computer Science, vol. 8087, pp. 86-97.
Springer (2013)

Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inf. Process. Lett. 24(1),
1-4 (1987)

Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Comput. Sci. 18, 115-
148 (1982)

Springer

Theory of Computing Systems

29.

30.

31.

32.

33.
34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.
50.

S1.
52.

53.

Esik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Combin. 8(2), 219-285 (2003)

Fiilop, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste, M., Kuich, W., Vogler,
H. (eds.) Handbook of Weighted Automata, EATCS Monographs in Theoretical Computer Science,
pp. 313-403. Springer (2009)

Koprowski, A., Waldmann, J.: Max/plus tree automata for termination of term rewriting. Acta Cybern.
19(2), 357-392 (2009)

Petrov, S.: Latent variable grammars for natural language parsing. In: Coarse-to-Fine Natural Lan-
guage Processing, Theory and Applications of Natural Language Processing, pp. 7-46. Springer
(2012)

Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. series 2, 30, 264-286 (1930)
Paul, E.: Finite sequentiality of unambiguous max-plus tree automata. In: Niedermeier, R., Paul,
C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS), Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 55:1-55:17. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik (2019)

Parikh, R.J.: On context-free languages. J. ACM 13(4), 570-581 (1966)

Esparza, J., Ganty, P, Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple and direct automaton
construction. Inf. Process. Lett. 111(12), 614-619 (2011)

Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley (1988)

Bockmayr, A., Weispfenning, V., Maher, M.: Solving numerical constraints. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 751-842. Elsevier and MIT Press
(2001)

Paul, E.: Finite sequentiality of finitely ambiguous max-plus tree automata. In: Czumaj, A., Dawar,
A., Merelli, E. (eds.) Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 137:1-
137:15. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik (2020)

Paul, E.: On finite and polynomial ambiguity of weighted tree automata. In: Brlek, S., Reutenauer,
C. (eds.) Lecture Notes in Computer Science, vol. 9840, pp. 368-379. Springer (2016)

Kreutzer, S., Riveros, C.: Quantitative monadic second-order logic. In: 28th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pp. 113-122. IEEE Computer Society (2013)
Paul, E.: The equivalence, unambiguity and sequentiality problems of finitely ambiguous max-
plus tree automata are decidable. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) Leibniz
International Proceedings in Informatics (LIPIcs), vol. 83, pp. 53:1-53:13. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik (2017)

Droste, M., Gastin, P.: Aperiodic weighted automata and weighted first-order logic. In: Rossmanith, P.,
Heggernes, P., Katoen, J.-P. (eds.) Leibniz International Proceedings in Informatics (LIPIcs), vol. 138,
pp. 76:1-76:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2019)

Kirsten, D.: The support of a recognizable series over a zero-sum free, commutative semiring is
recognizable. Acta Cybern. 20(2), 211-221 (2011)

Borchardt, B.: A pumping lemma and decidability problems for recognizable tree series. Acta Cybern.
16(4), 509-544 (2004)

Sakarovitch, J.: Elements of automata theory. Cambridge University Press (2009)

Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J. Autom. Lang. Combin.
8(2), 117-144 (2003)

Biichse, M., May, J., Vogler, H.: Determinization of weighted tree automata using factorizations. J.
Autom. Lang. Combin. 15(3/4), 229-254 (2010)

Gécseg, F., Steinby, M.: Tree automata (2015)

Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision
problem of second-order logic. Math. Syst. Theory 2(1), 57-81 (1968)

Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4(5), 406451 (1970)
Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Loding, C., Lugiez, D., Tison, S., Tommasi,
M.: Tree Automata Techniques and Applications. Available on: https://www.grappa.univ-lille3.fr/tata
(2008)

Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.): 42nd international symposium on mathematical
foundations of computer science (MFCS), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 83. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Berlin (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

https://www.grappa.univ-lille3.fr/tata

	Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata
	Abstract
	Introduction
	Preliminaries
	The Criterion for Finite Sequentiality
	Decidability
	Necessity
	Case 1:
	Case 2:

	Sufficiency

	References

