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Abstract

We study the expressive power of polynomial recursive sequences, a nonlinear
extension of the well-known class of linear recursive sequences. These sequences
arise naturally in the study of nonlinear extensions of weighted automata, where
(non)expressiveness results translate to class separations. A typical example of a
polynomial recursive sequence is b, = n!. Our main result is that the sequence
u, = n" is not polynomial recursive.
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1 Introduction

Sequences defined recursively arise naturally in many areas, particularly in math-
ematics and computer science. One of the most studied classes is that of linear
recursive sequences. Such sequences are defined by fixing the values of the first &
elements, while every subsequent element can be obtained as a linear combination
of the k elements preceding it. The most famous example is the Fibonacci sequence,
defined by setting fo = 0, f1 = 1, and the recurrence relation f,,12 = f,+1 + fu-

This article belongs to the Topical Collection: Special Issue on International Colloquium on
Automata, Languages and Programming (ICALP 2020)
Guest Editors: Artur Czumaj and Anuj Dawar

Journal version of the paper with same title appearing in the proceedings of the 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020.

This work is a part of project TOTAL that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme, grant
agreement No. 677651.

P4 Filip Mazowiecki
filipm @mpi-sws.org

Extended author information available on the last page of the article.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10046-9&domain=pdf
http://orcid.org/0000-0001-9828-9129
http://orcid.org/0000-0002-4535-6508
http://orcid.org/0000-0002-6658-5238
http://orcid.org/0000-0001-7891-1988
http://orcid.org/0000-0002-5800-2506
mailto: filipm@mpi-sws.org

Theory of Computing Systems

It is well known that every linear recursive sequence can be defined by a system of
k jointly recursive sequences, where for every sequence we fix the initial value and
provide a recurrence relation expressing the (n 4+ 1)st element as a linear combination
of the nth elements of all the sequences [15]. For example, to define the Fibonacci
sequence f, in this way, one needs one auxiliary sequence: we set fo = 0, go = 1,
and postulate

{fn—H = &n> (1.1)
gn+1 = fn + &n.

In this paper we study polynomial recursive sequences over rational numbers that
generalise linear recursive sequences. They are defined by systems of sequences
like (1.1), but on the right hand side we allow arbitrary polynomial expressions, rather
than just linear combinations. For example, the sequence b, = n! can be defined in
this way using one auxiliary sequence: we may set by = cp = 1 and write

but1 = by - cn,
1.2
{ Cntl =cp + 1. (1.2
Thus, the recurrence relation uses two polynomials: Pj(xi,x2) = x1x» and

Py(x1,x2) =x2+ 1.

The two classes of linear and polynomial recursive sequences appear naturally
in automata theory, and in particular in connection with weighted automata and
higher-order pushdown automata. Weighted automata over the rational semiring are
a quantitative variant of finite automata that assign rational numbers to words [10].
In the special case of a l-letter alphabet, each word can be identified with its
length. Then a weighted automaton defines a mapping from natural numbers (pos-
sible lengths) to rationals, and this can be seen as a sequence. It is known that
sequences definable in this way by weighted automata are exactly the linear recur-
sive sequences [6]. Pushdown automata of order k can be used for defining mappings
from words to words [21]; in particular, for k = 2 and 1-letter alphabets, such
automata compute exactly the linear recursive sequences of natural integers [11].

Thus, nonlinear extensions of linear recursive sequences may correspond to
nonlinear extensions of weighted automata. For the latter, consider three examples:

—  polynomial recurrent relations that generalise pushdown automata of order 3 [12,
21];

—  cost-register automata which arose as a variant of streaming transducers [3, 4];

—  polynomial automata, connected to reachability problems for vector addition
systems [7].

Surprisingly, these three models, although introduced in different contexts, are all
equivalent.! Moreover, over unary alphabets they define exactly polynomial recursive
sequences, in the same fashion as weighted automata (respectively order 2 pushdown
automata) over unary alphabets define linear recursive sequences.

The goal of this paper is to study the expressive power of polynomial recursive
sequences. Clearly, this expressive power extends that of linear recursive sequences:

IThis is a simple but technical observation as the three models are essentially syntactically equivalent.
Throughout the paper we will use the name cost-register automata to refer to all three models.
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it is easy to see that every linear recursive sequence has growth bounded by 200,
while already the sequence b, = n! grows faster. In fact, already the recur-
rence relation ag = 2, ap41 = (an)2 defines the sequence Zzn, whose growth
is doubly-exponential. However, there are well-known integer sequences related to
these examples for which definability as a polynomial recursive sequence seems
much less clear. The first example is the sequence u, = n”. The second example is
the sequence of Catalan numbers C;,, = nlﬁ(zn”) Note that by Stirling’s approxima-
tion, n" is asymptotically very close to n!, while C, is, up to factors polynomial in
n, roughly equal to 4”. For these reasons, simple asymptotic considerations cannot
prove the sequences u, = n" and C, to be not polynomial recursive. Recall that the
Catalan numbers admit multiple combinatorial interpretations, which can be used to
derive the recurrence formulas C,, 1 = Z?:o CiCy—jand (n+2)Cy41 = (4n+2)C,.
Note that these formulas are not of the form of recurrence formulas considered in this
work. Additionally, it is known that Catalan numbers C,, are not linear recursive (see
e.g. [8]), despite having growth 20

Our Results We show that both the sequence of Catalan numbers C,, and the sequence
u, = n" are not polynomial recursive. For this, we present two techniques for proving
that a sequence is not polynomial recursive. The first technique for Catalan numbers
is number-theoretical: we show that a polynomial recursive sequence of integers is
ultimately periodic modulo any large enough prime. The second technique for n”
is more algebraic in nature: we show that for every polynomial recursive sequence
there exists k € N such that every k consecutive elements of the sequence satisfy a
nontrivial polynomial equation. The fact that u, = n" is not polynomial recursive is
our main result. These inexpressibility results were announced without proofs by the
fifth coauthor in an invited talk in 2007 [21]. The present paper contains proofs and
extensions of these results.

Applications The discussed models of cost-register automata [4, 7, 12] are not the
only nonlinear extensions of weighted automata that appear in the literature. We
are aware of at least two more extensions: weighted context-free grammars [5,
8] and weighted MSO logic [9, 17]. As it happens, over the 1-letter alphabet,
weighted context-free grammars can define Catalan numbers, and weighted MSO
logic can define n”. Therefore, as a corollary of our results we show that func-
tions expressible in pushdown-automata of level 4, weighted context-free grammars
and weighted MSO logic are not always expressible in the class of cost-register
automata.

The class of holonomic sequences is another extension of linear recursive
sequences [16]. These sequences are defined recursively with one sequence, but the
coefficients in the recursion are polynomials of the element’s index. For example,
b, = 1 and b,+1 = (n 4+ 1)b,, defines b, = n!. The expressiveness of this class has
also been studied and in particular the sequence n" is known to be not in the class of
holonomic sequences [14]. As a corollary of our results one can show that there are
no inclusions between the classes of holonomic sequences and polynomial recursive
sequences. On the one hand every holonomic sequence is asymptotically bounded
by 27™ for some polynomial p [16], and the sequence a, = 22" is polynomial
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recursive. On the other hand, Catalan numbers admit a definition as a holonomic
sequence: Cop = 1 and (n +2)Cy 41 = (4n + 2)C,,.

Organisation In Section 2 we give basic definitions and examples of linear and
polynomial recursive sequences. In Section 3 we show that the definition of polyno-
mial recursive sequences requires a system of sequences and, unlike linear recursive
sequences, cannot be equivalently defined using only one sequence. Then in Sec-
tions 4 and 5 we show that the sequence of Catalan numbers C,, and the sequence
u, = n"* are not polynomial recursive. In Section 6 we explain in details our corol-
laries for weighted automata. In Section 7 we discuss the class of rational recurrence
sequences that generalises both holonomic and polynomial recursive sequences. We
conclude in Section 8.

2 Preliminaries

By N we denote the set of nonnegative integers. A sequence over a set D is a function
u: N — Dj all the sequences considered in this work are over the field of rationals
Q. We use the notation (u,),cN for elements of sequences, where u, = u(n). Also,
we use bold-face letters as a short-hand for sequences, e.g., u = (uy),eN.

We now introduce the two main formalisms for describing sequences: linear
recursive sequences and polynomial recursive sequences.

Linear Recursive Sequences A k-variate linear form (or linear form if k is irrelevant)
over Q is a function L: QF — Q of the form

L(xy,...,xx) =aix1 + ...+ arxg

for some ay, ..., a; € Q. A sequence of rationals u is a linear recursive sequence if
there exist £k € N and a k-variate linear form L such that u satisfies the recurrence
relation

Untk = LUy, ..oy Uptk—1) foralln € N. 2.1

Observe that such a sequence is uniquely determined by the form L and its first k
elements: ug, ..., ur—1 € Q. The minimal k for which a description of u as in (2.1)
can be given is called the order of u. For example, Fibonacci numbers are uniquely
defined by the recurrence relation f,+> = f,+1 + f» and starting elements fy = 0,
f1 = 1. Note that this recurrence relation corresponds to the linear form L(x, x2) =
X1 + xp.

We now present a second definition of linear recursive sequences which, as we will

explain, is equivalent to the first definition. Suppose u', u?, ..., u* are sequences of
rationals. We say that these sequences satisfy a system of linear recurrence equations
if there are k-variate linear forms L1, ..., L such that:
1 1 k
U, | = Li(ug,,...,u,),
: 2.2)
ko _ 1 k
U, 1 = Ly, ... uy).
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for all n € N. Note that such a system can be equivalently rewritten in the matrix
form

Uyl = Mu,

where u, = (u,ll, R ufj)T and M is the k x k matrix over Q such that Mx =
(L1(X), ..., Ly(x))T for all x € QF. Note that then u,, = M"uq for all n € N.

It is well known that systems of linear recurrence equations can be equivalently
used to define linear recursive sequences, as explained in the following result.

Proposition 2.1 [15] A sequence  is a linear recursive sequence if and only if there
exists k € N and sequences u', ..., u* that satisfy a system of linear recurrence
equations, where W' = w. Moreover, the smallest k for which this holds is the order

of u.

To get more accustomed with this equivalent definition, let us consider the
sequence a, = n>. Since (n+1)> = n?42n+1, we consider two auxiliary sequences
b, = n and ¢, = 1. The initial values of these sequences are a9 = bp = O and ¢y = 1.
Thus, a, can be defined by providing these initial values together with a system of
linear equations

Apy1 = ap + 2by + ¢y,
buy1 = by + cy, (2.3)
Cn4+1 = Cp.

In the matrix form, we could equivalently write that (a,, b;, c,)T = M"e, where

121 0
M=|011],e=1]0
001 1

It can be readily verified that a,, is also defined by the recurrence a, 13 = 3a,42 —
3an41 + an.

The difference between the two definitions is that in (2.1) we have only one
sequence, but the depth of the recursion can be any k. Conversely, in (2.2) we are
allowed to have k sequences, but the depth of recursion is 1. The equivalence pro-
vided by Proposition 2.1 is quite convenient and is often used in the literature, see
e.g. [20].

We give a short proof of Proposition 2.1, different from the proof in [15]. The
reason is that this proof provides us with intuition that will turn out to be useful later
on.

Proof of Proposition 2.1 For the left-to-right implication, suppose u is a linear recur-
sive sequence of order k; say it is defined by the recursive formula u, ; =

L(up, ..., upyk—1), where L is a k-variate linear form. Define the sequences
ul, ..., ut by setting
w =uyri—y  forallie{l,...,k}andn € N,

Thenu! = u and the sequences u', . . ., uf satisfy the system of equations as in (2.2),

where Ly = L and L;(x1,...,x;) = xj41 fori e {1,...,k—1}.
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For the right-to-left implication, suppose that there exist k € N and sequences

ul, ..., u¥ that satisfy the system of (2.2) for some linear forms L, ..., Lk, such
thatu = u!. Let M be a k x k matrix over Q that encodes the linear forms L1, ..., Lg;
that is, u, = M"ug, where u,, = (u},, R u’,‘l)T S Qk. Consider the linear map

R: QF — Q! defined as
R(x) = (eM’x, eM'x, ..., eM*x)T,
where e = (1,0, ..., 0) € Q. Note that
R(uy) = (uh, b gy ostty ) = Wny g1, oo unsk)  foralln € N. (2.4)
Observe that R is a linear map from QF to Q%*!, hence the image of R is a linear
subspace of Q’”‘l of co-dimension at least 1. Hence, there exists a nonzero linear

form K : Q! — Q such that im R C ker K, or equivalently K (R(x)) = 0 for all
x € Q. By (2.4), we have

KQup,ups1, ..., uptx) =0 foralln € N. 2.5)
Let ag, ay, ..., ar € Q be such that
K(xo,...,xr) =apxo + ...+ agxg.

Since K is nonzero there exists the largest index ¢ such that a; # 0. From (2.5) we
infer that
ar—1 ar—2 a0

CUpgi—] — “Upgt—2 — ... — — Uy foralln € N,
t ar ar

Uptr = —

so u is a linear recursive sequence of order at most . O

Remark 2.1 One could imagine setting up all the definitions presented above using
affine forms instead of linear forms, that is, functions A: Q* — Q of the form

Ay, .., x) =a1x1 + ...+ apx2 +c,

where ay, ..., ax, c € Q. However, as we may always add constant sequences to
the system of recurrence equations defining a sequence, considering affine forms
does not increase the expressive power. In fact, from Proposition 2.1 it can be easily
derived that we obtain exactly the same class of linear recursive sequences, regardless
of whether we use linear or affine forms in both definitions.

Poly-Recursive Sequences We now generalise the concept of linear recursive
sequences by allowing polynomial functions instead of only linear forms. The start-
ing point of the generalisation is the definition via a system of recurrence equations,
as in (2.2).
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Definition 2.1 A sequence of rationals u is polynomial recursive (or poly-recursive

for short) if there exist k € N, sequences of rationals ul, e, u¥ satisfying u = ul,
and polynomials Py, ..., Py € Q[xy, ..., x¢] such that for all n € N, we have
uli_H = Pl(urll, e, u’,‘l),
: (2.6)
uﬁﬂ = Pk(u,ll, e, uﬁ).
Again, notice that polynomials Pp,..., P, and the initial values u(l), e ul(‘)
uniquely determine the sequences ul, ..., uf , hence in particular the sequence u =

ul.

Let us examine a few examples. First, recall the sequences a,, = 22" and b, =n!
defined in Section 1.
Another example is the sequence d,, = 2"". Since 20 +1? = 27°+21+1 e define
dy = eg = 1 and let
{ dpy1 = dy - (€n)* -2,
ent1 = ep - 2.

The polynomials used in the last definition are Pj(xy,x2) = 2x1(xz)2 and
P>(x1,x2) = 2x,. Notice that this idea can be easily generalised to define any
sequence of the form 2" where r is a rational number and Q is a polynomial

with rational coefficients. We remark that all three sequences a, = 22" b, = nl,

2 . . . . . .
dn, = 2" are not linear recursive for simple asymptotic reasons (from the discussion
in Section 1).

3 Simple Poly-Recursive Sequences

The following notion is a natural generalisation of the definition (2.1) of linear
recursive sequences to the setting of recurrences defined using polynomials.

Definition 3.1 A sequence of rationals u is simple poly-recursive if there exists k €
N and a polynomial P € Q[xy, x2, ..., xx] such that

Untk = PUn, Unt1y ooy Untk—1) forall n € N. 3.1

Again, note that if u is simple poly-recursive as above, then the polynomial P and
the first k values uo, . .., ux—1 uniquely determine the sequence u.

Clearly, every linear recursive sequence is a simple poly-recursive sequence. In
fact, by Proposition 2.1 and Remark 2.1, the two notions would coincide if we
required that the polynomial P in the definition above has degree at most 1. On the
other hand, observe that the same construction as in the first paragraph of the proof
of Proposition 2.1 shows that every simple poly-recursive sequence is poly-recursive.
We now prove that this inclusion is strict.

Theorem 3.1 The sequence b, = n! is not simple poly-recursive.
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Proof Towards a contradiction, suppose there is k € N and a polynomial P €
QI[x1, ..., xt] such that

bpik = P(by, bpsis -y bugi—1) for all n € N. (3.2)
Let us write
P=0Q+A,
where Q, A € Q[x1, ..., x¢] are such that A is the sum of all the monomials in the

expansion of P that have degree at most 1, while Q is the sum of all the remaining
monomials in the expansion of P. Thus, A is an affine form, while every monomial
in the expansion of Q has total degree at least 2.

Since A is an affine form, there exists a number ¢ € N such that

|A(g1, ..., qk)| < c+c- max |g; forall gq, ..., qx € Q.
1<i<k

Thus, for all n > 2¢ we have
[A(Dp, butts - s bppk—D) = c+c-(n+ k=D <(n+ k! =byyk.  (3.3)
Since by (3.2) it follows that
O, but1, s butk—1) = byt — Ay, byt 1s -+ s butk—1)s
using (3.3) we may conclude that for all n > 2c¢ the following inequality holds:
0 < Qbu, byt -+ busko1) < byt (3.4)

Let m be the product of all denominators of all the coefficients appearing in the
expansion of P into a sum of monomials. Note that for all n > m, the number

b,l = % 1s an integer. Furthermore, we have that b divides b foralln’ > n.

Since every monomlal in the expansion of Q has total degree at least 2, we infer that
for all n > m, we have

~\2
(bn) | Q. buits - bugpk1). (3.5)

By combining (3.5) with the left inequality of (3.4), we conclude that for all n >
max(2c, m),

~\2
Obus bust. - burie) = (Ba)
This bound together with the right inequality of (3.4) implies that

n\? /-2
(-) = (bn> < bpis =2 (n+ K.

m

This inequality, however, is not true for every sufficiently large n, a contradiction.
O

4 Modular Periodicity

Recall that a sequence of numbers r is ultimately periodic if there exist N,k € N
such that for all n > N, we have r, = r, . In this section we prove the following
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periodicity property of poly-recursive sequences, which, by means of contradiction,
provides a basic technique for proving that a given sequence is not poly-recursive.

Theorem 4.1 Suppose u is a poly-recursive sequence of integers. Then there exists

a € N such that for every prime p > a, the sequence r, ‘= u, mod p is ultimately
periodic.

Proof Let u be defined by the system of recursive equations

M}H_I = P](urll, el uﬁ),
: 4.1)
k
U, | = Pk(u,ll, ceey u’,‘l),
where u!, ... ,uk are sequences such that u! =uwand Py, ..., Pr € Qxq, ..., x].
Without loss of generality we may assume that the initial values ué, e, u’é are

integers. Indeed, this is certainly the case for u(l) = ug, while for every i > 1, we may
rewrite the system so that it uses the sequence U’ = ¢; - u’ instead of u’, where ¢; is
the denominator of uf). For this, the starting condition for U’ can be set as 56 =g ~u6,
which is an integer, in all polynomials Py, ..., Py we may substitute x; with x;/q;,
and the polynomial P; can be replaced with g; - P;.

Further, without loss of generality we may assume that all the monomials present
in the expansions of all the polynomials Py, ..., P have the same total degree d > 1.
Such polynomials are called homogeneous of degree d and they have the property
that P;(axi, ..., axx) = a®P;(x1,...,x;) forall a € Q. Indeed, letd > 1 be any
integer that is not smaller than the degrees of all the polynomials Py, ..., P. To the
system (4.1) we add a new sequence u**!, defined by setting

d
k1 _ k+1 _ [ k+1
uy =1 and U, 1= (un ) forn € N.

Thus u¥*! is constantly equal to 1. Then each monomial M (xp, ..., xx) appearing
in the expansion of any of the polynomials P;(xi, ..., xx) can be replaced by the
monomial M(xy, ..., xg) - x,f;f € Q[x1, ..., Xk, xk+1], where ¢ is the total degree
of M. It is straightforward to see that the modified system of recursive equations still
defines u = u!, while all monomials appearing in all the polynomials used in it have
the same degree d.

After establishing these two assumptions, we proceed to the main proof. Leta € N
be a positive integer such that the polynomials

Pi =a- Pl'
all belong to Z[x1, ..., x¢], that is, have integer coefficients. For instance, one can
take a to be product of all the denominators of all the rational coefficients appearing
in the polynomials Py, ..., Py. Foralli € {1,...,k} and n € N, let us define
. d"—1 .
i, =adT1 -ul.
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1

By a straightforward induction we show that the sequences @', ..., ¥ satisfy the

system of recursive equations
~1 p (i1 ~k
U, | = Pi(u,, ..., u,),
: “4.2)

~k p (1 ~k

U, | = Py, ..., u,).

Indeed, the induction base is trivial and for the induction step recall that all
monomials have the same degree d, hence

5 ~1 s LR i
Piu,,...,u,) =a-P@dT -u,,...,ad7T -uy,)
antl_g .
= qa- a—1 .yt
=a-a Unt1
antl_p .
= a—1 .y
=a Uy
_~i
= Uy,

Observe that since the initial values ﬁf) = ug are integers, and the polynomials P;
1 k

have integer coefficients, we can infer that all entries of the sequences @', ..., u* are
integers.

We now show that for every prime p > a, the sequence r defined as r, = u, mod
p is ultimately periodic; this will conclude the proof. For every i € {1, ..., k} and
neN,let

Fii=a' mod p.
By (4.2) and the fact that the polynomials P; have integer coefficients, for every

n € N the vector of entries (F,} IRTRER F,]: +1) is uniquely determined by the vector

(F,}, e, F,’j). Since this vector may take only at most pk different values, it follows
that the sequences !, .. ., ¥ are ultimately periodic.
Now note that for every n € N, we have

an—1 an—1

ATt ry=adt cu, =il =7 mod p.
Since p > a and p is a prime, we have that @ and p are coprime. Therefore, there
exists an integer b such that ab = 1 mod p. By multiplying the above congruence by

n_q

b T , we have
i

rp =bdT .7, mod p. 4.3)

-1
Observe that the sequence b, = b -1 satisfies the recursive equation b,y; = b -
(b,)?, hence the sequence (b, mod p) is ultimately periodic. Since ¥! is ultimately

periodic as well, from (4.3) we conclude that the sequence r is ultimately periodic.
O

We use Theorem 4.1 to prove that the Catalan numbers are not poly-recursive.

Recall that the nth Catalan number C,, is given by the formula C,, = ﬁ 2nn )

Alter and Kubota [2] studied the behaviour of the Catalan numbers modulo primes.
It is easy to see (and proved in [2]) that for every prime p, the sequence C, contains
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infinitely many numbers divisible by p, and infinitely many numbers not divisible by
p. Leta p-block be a maximal contiguous subsequence of the sequence C,, consisting
of entries divisible by p. The p-blocks can be naturally ordered along the sequence
Cy, so let L,’: be the length of the kth p-block. Then Alter and Kubota proved the
following.

Theorem 4.2 [2] For every prime p > 3 and k > 1, we have

LP _ perl -3
k 2 ’
m
where m is the largest integer such that (pTH) divides k.

Note that Theorem 4.2 in particular implies that for every prime p > 3, the
sequence C, contains arbitrary long p-blocks. This means that C,, taken modulo p
cannot be ultimately periodic. By combining this with Theorem 4.1, we conclude the
following.

Corollary 4.1 Catalan numbers are not poly-recursive.

5 Cancelling Polynomials

Consider the following definition, which can be seen as a variation of the definition
of simple poly-recursive sequences, which we discussed in Section 3.

Definition 5.1 A sequence of rationals u admits a cancelling polynomial if there
exist k € N and a nonzero polynomial P € Q[xo, ..., x¢] such that

P (up, pt1, ... upgk) =0 foralln € N.

Remark 5.1 A cancelling polynomial P can be always assumed to have integer coef-
ficients, i.e. to belong to Z[xo, . .., xx], because one may multiply P by the product
of all denominators that occur in its coefficients.

Observe that the notion of a cancelling polynomial extends the definition of simple
poly-recursive sequences (Definition 3.1) in the following sense: a sequence is simple
poly-recursive if and only if it admits a cancelling polynomial P (xp, ..., xx) whose
expansion into a sum of monomials involves only one term containing x;, namely
the monomial x; itself. This particular form of the considered algebraic constraint
was vitally used in the proof of Proposition 3.1, where we showed that the sequence
b, = n!is not simple poly-recursive. In fact, if one drops this restriction, then it is
easy to see that the sequence b, = n! actually admits a cancelling polynomial: for
instance P (xq, X1, X2) = XoXx2 — (X1)2 — X0X1-

We now prove that the above example is not a coincidence.

Theorem 5.1 Every poly-recursive sequence admits a cancelling polynomial.
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Proof The proof follows the same basic idea as the proof of Proposition 2.1 that we
gave in Section 2. The difference is that instead of linear maps we work with maps
defined by polynomial functions, hence instead of linear independence we shall work
with the notion of algebraic independence.

Recall that if K C L is a field extension, then elements ay, ..., a; € L are alge-
braically dependent over K if there is a nonzero polynomial P € K[xy, ..., xk]
such that P(ay, ...,ar) = 0 in L. We will use the following well-known fact; see
e.g. [18, Chapter VIII, Theorem 1.1].

Theorem 5.2 If K is a field and k € N, then in the field of rational expressions
K(x1, ..., xr) every k + 1 elements are algebraically dependent over K.

We proceed to the proof of the theorem. Let u be the poly-recursive sequence

in question. By definition, for some k € N there are sequences ul, ... u* and
polynomials Py, ..., Py € Q[xq, ..., xg] such that foralln € N,

u}H] = Pl(u,ll, R uﬁ),

ufl_H = Pk(urll, A uﬁ).
We inductively define polynomials Pl(t), e, Pk(t) € Q[x1, ..., xt] as follows. For
t =0, set

POy, ....;)=x  foralli € (1,...,k),

and forz > 1,setforalli € {1,...,k}

—1 -1
Pi(t)(xlvu-’xk):Pi(Pl(t )(XI,...,Xk),...,Pk(I )(XI,...,Xk)).

The following lemma follows from the construction by a straightforward induction.
Lemma 5.1 Foralln,t e Nandi € {1, ..., k}, we have Pi(t)(u)l, R u',‘,) = uil+,.

Consider the polynomials
PI(O), Pl(l), cees Pl(k) € Qlxi1, ..., xxl

By Theorem 5.2, these polynomials (treated as elements of Q(xy, ..., x;)) are
algebraically dependent over Q, so there exists a nonzero polynomial Q €
Q[yo, y1, - - - » Y] such that the polynomial

0 1 k
RGxt, .o = QPP ox), PV, o), PO (e )

is identically zero. It now remains to observe that by Lemma 5.1, for every n € N we
have

1 k 1 1 1
0 = R(uns MR un) = Q(unv un+]9 AR ] un+k) = Q(ul’lv u}’l+1’ MR un+k)»

hence Q is a cancelling polynomial for u. O
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Remark 5.2 Notice that a given polynomial can be the cancelling polynomial of
many different sequences. For example, the polynomial (xp)> — 1 is a cancelling
polynomial of any sequence over {—1, 1}. In particular, some of those sequences are
not ultimately periodic modulo p, for any prime number p, and thus are not poly-
recursive by Theorem 4.1. Hence, the converse direction of Theorem 5.1 does not
hold.

We now present an application of Theorem 5.1 by showing that the sequence
u, = n" is not poly-recursive. By Theorem 5.1, it suffices to show that there is
no cancelling polynomial for this sequence. Contrary to the reasoning presented in
Section 4, where we used off-the-shelf results about modular (non) periodicity of
Catalan numbers, proving the nonexistence of a cancelling polynomial for the n”
sequence turns out to be a somewhat challenging task.

We first observe that when we apply a multivariate polynomial to consecutive
entries of u,, we can rewrite the result in another form:

Lemma 5.2 Let Z € Z[xg, x1, ..., Xk] be a nonzero polynomial. Then there exist
nonzero polynomials Py, ..., Py, Q1,..., Om € Z|x] such that the polynomials
P1, ..., Py are pairwise different and for every n € N,

Z(n" R = S R i),
i=1

Proof By expanding Z as a sum of monomials, we may write
m
Z(x0..... %) =Y _ci- Mi(xo, ..., x)), (5.1)
i=1

where foralli € {I,...,m},c; # Oand
k d
M;i(xo, ..., xx) = ij”
=0

are pairwise different monomials. Now observe that for every n € N, we have

M (0, 0+ L )

k
I T

Jj=0
n

k k
= | [T+ 0% ) -TTe+ %, (5.2)
j=0

j=0

Hence, if we define

k k
P =[Ja+n% and Qi) =ci- [+ )%,

j=0 j=0
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then, by (5.1) and (5.2), we conclude that
m
z <n”, m+ D" i+ k)”“‘) = Z Pi(n)" - Q;(n) foralln € N,
i=1

as required. It now suffices to observe that (1) all polynomials P; and Q; are nonzero,
because ¢; # 0 and the monomial M; is nonzero, and (2) the polynomials P; are
pairwise different, because they have pairwise different multisets of roots. O

With Lemma 5.2 established, we move to the main result of this section.

Theorem 5.3 The sequence u, = n" is not poly-recursive.

Proof Suppose, for the sake of contradiction, that the sequence u,, = n”" is poly-
recursive. By Theorem 5.1 and Remark 5.1, there exists a nonzero polynomial Z €

Z[xg, X1, - . ., Xx] that is cancelling for u,,. By Lemma 5.2, we can find nonzero poly-
nomials Py, ..., Py, O1,..., O € Z[x], where Py, ..., P, are pairwise different,
such that

m

> Pm"- Qi(n)=0  forallneN. (5.3)

i=1
This system of equations seems somewhat unwieldy due to the presence of the term
P;(n)", where n is involved both in the base and in the exponent. The following claim
formulates the key idea of the proof: if we consider the (5.3) modulo any prime, then
the bases and the exponents of these terms can be made independent.

Claim 1 For every prime p and all a, b € Z where b > 0, it holds that

> Pi@)’ - Qita)=0 mod p .

i=1

Proof Since p and p—1 are coprime, thereisann € Nsuchthatn > b,n = a mod p
andn =b mod p — 1. Thus forany 1 <i < m:

Qi(n) = Qi(a) modp and  Pi(n)" = Pi(a)' = Pi(@)” mod p

the second part holding by Fermat’s Little Theorem. The claim now follows by
considering equality (5.3) modulo p. O

Let a € Nand let D, = [d;jli<i j<m be the m x m matrix defined by d;; =
Pj(a)'. Since this is essentially a Vandermonde matrix, its determinant has a simple
expression, as expressed in the following claim.

Claim 2 Let S € Z[x] be defined as

S =[]rPw- [] @& -Pw) .
i=1

1<i<j<m
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Then S is nonzero and det(D,) = S(a).

Proof That S is nonzero follows from the fact that the polynomials P; are all nonzero
and pairwise different.

Now observe that D, is a Vandermonde matrix with columns consisting of con-
secutive powers of Pj(a), for 1 < j < m with columns consisting of consecutive
powers of P;(a), starting with P; (a)! (whereas the Vandermonde matrix starts with
P;(a)°).

It is well known that the determinant of the Vandermonde matrix
[Pj(@) MNi<i j<m is

[ P@—Pi@) .

I<i<j<m
Further, multiplying the jth column by P;(a), for all j, results in the determinant
being multiplied by []/L, P;(a). This proves the claim. O

We will need the following classical definition.

Definition 5.2 Let R be aring and M be a m x m matrix over R. The adjugate matrix
M of M is an m x m matrix over R that satisfies MM = det(M) - I, where I is the
m x m identity matrix.

It is well known that the adjugate matrix always exists. Now let

g = (Q1(a), ..., Qm(@)".

Section 5 implies that for every prime p,
Dyu, =0 mod p,

where 0 is the m-dimensional zero vector. By multiplying both sides of this equation
by the adjugate matrix of D, taken over Z,, we conclude that for every prime p, we
have

det(Dg) -ugy =0 mod p for all @ € N.
This is equivalent to

S@a)-Qi(a)=0 mod p foralla e Nand 1 <i <m. 5.4

This means that for every prime p and every 1 < i < m, the following assertion
holds: every a € F is a zero of the polynomial S - Q; considered as a polynomial
over IF,.

Recall that the polynomials S, Q1,..., Q,, € Z[x] are nonzero. Consider a
prime p that is larger than every coefficient occurring in the expansion of the poly-
nomials S, Q1,..., O, into sums of monomials, and that is further larger than
deg(S) + maxe(1,... m) deg(Q ;). Then the polynomials S, Q1, ..., Oy are nonzero
even when regarded as polynomials over IF,, hence the same can be said also about
the polynomials S - Q;, for all 1 < i < m. However, by (5.4), forevery 1 <i < m
the polynomial S - Q; has at least p > deg(S) + deg(Q;) roots over [Fj,. This is a
contradiction. O
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6 Applications in Weighted Automata

In this section we discuss the implications of the results we presented in the previ-
ous sections for various questions regarding the expressive power of extensions of
weighted automata. We will briefly describe the model of weighted automata and
focus only on its expressive power. We refer an interested reader to e.g. [1, 10] for an
introduction to the area.

Given a semiring S, a weighted automaton A is a tuple (d, X, {My}4ex, I, F),
where:

— d € Nis the dimension;

— X is a finite alphabet;

— every M, is ad x d matrix over S; and

— I and F are the initial and the final vector in S¢, respectively.

In this paper we only consider the semiring S = Q. A weighted automaton defines a
function [[A] : X¥* — S as follows: if w = a; ...a, € X*, then

[Al(w) = I7-My My, ... M, - F. (6.1)

Note that when | X'| = 1, this definition coincides with (the matrix form of) the defi-
nition (2.2) of linear recursive sequences. Assuming | X'| = 1, one can identify each
word with its length, which means that a weighted automaton defines a sequence
[All : N — S. Therefore, weighted automata recognise exactly linear recursive
sequences. See [6] for a broader discussion of the connection between linear recursive
sequences and weighted automata.

We now discuss three nonlinear extensions of weighted automata that can be found
in the literature. These extensions are studied in different areas and, as far as we are
aware, they have never been compared in terms of expressive power before. We show
that the results we presented in Sections 4 and 5 can be used to prove separation
results, in terms of the expressive power, for some of these classes.

Like in the case of weighted automata, any automaton within the considered
classes defines a function f: X* — Q, where X is the working alphabet. For our
purposes, we restrict attention to the case of unary alphabets, that is, | ¥'| = 1. Thus,
the three considered classes of extended weighted automata correspond to three sep-
arate classes of sequences f: N — (Q, similarly as standard weighted automata
correspond to the class of linear recursive sequences.

Cost-Register Automata (CRA) Cost-register automata (CRA) were introduced in at
least three contexts [4, 7, 21]. To avoid technical details, we simply observe that
CRAs over unary alphabets recognize exactly poly-recursive sequences, as defined in
Definition 2.1. Since [4, 7, 21] discuss several variants of CRAs, to avoid ambiguity
we refer to the definition of a CRA that can be found in [19].2

2The equivalence of CRAs and poly-recursive sequences over a unary alphabet is basically a syntactic
translation, if one assumes that CRAs have only one state. Proving that every CRA can be defined by a
one state CRA is a simple encoding of states into the registers.

@ Springer



Theory of Computing Systems

Weighted Context-Free Grammars (WCFG) Weighted automata can be equivalently
defined as an extension of finite automata, where each translation is labelled by an
element of the semiring S (see e.g. [1]). In short, each run is assigned a value: the
semiring product of the labels of all the transitions used in the run. Given a word w,
the automaton outputs the semiring sum of the values assigned to all runs accepting
w.

Weighted context-free grammars are an extension of context-free grammars in the
same way weighted automata are an extension of finite automata. Every grammar rule
is assigned a label from S. Then every derivation tree is assigned the semiring product
of the labels of all the rules used in the tree. The output for a word w is defined as the
semiring sum of all values assigned to derivation trees of w. See e.g. [13] for more
details. Here we present only one example from [13] over the semiring Q.

Consider the grammar with one nonterminal X (which is also the starting nonter-
minal) and one terminal a with the following rules: X — a, X — X X. Both rules are
assigned weight 1. Therefore, for every word a” the output is the number of deriva-
tion trees. It is easy to see that if we denote the output on the word a” by D, then
D,, is the number of full binary trees with n leaves, which is the sequence of Catalan
numbers shifted by one, i.e. Dg = 0 and D, +1 = C,. By Corollary 4.1 and since it
is easy to see that poly-recursive sequences are closed under shifts, we conclude the
following.

Corollary 6.1 The class of sequences definable by unary-alphabet WCFGs over Q
is not contained in the class of sequences recognizable by unary-alphabet CRAs over

Q.

Weighted MSO (WMSO) Weighted MSO logic [9, 17] was introduced as a logic
involving weights that intended to capture the expressive power of weighted
automata, similarly as finite automata are characterized by MSO. In general, WMSO
turns out to be strictly more expressive than weighted automata. We will not define
the whole syntax of WMSO, only a simple fragment that does not even use variables.
See [9, 17] for the full definition.

Fix the semiring S = Q. Similarly as for weighted automata, every WMSO for-
mula ¢ over Q defines a function [¢] : X¥* — Q. As for atomic formulas, every
¢ € QQis an atomic formula that defines the constant function [[c]] (w) = c. Instead of
the boolean connectives v and A, WMSO formulas can be added using + and multi-
plied using -, with the obvious semantics. Instead of having the existential quantifier
3, and the universal quantifier V., we have the sum quantifier ) and the product
quantifier [ [,.. Then

|:|:Z<pi|i| (w) = Z lolx — a;1] (w) foralw=aj...a, € X%,

i=1

and similarly for [[]_[x (p]] (w). For example, [[Zx 1]] (a™) = n. It follows that

[ e
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This proves that the sequence n" can be defined in unary-alphabet WMSO over Q,
so by Theorem 5.3 we may conclude the following.

Corollary 6.2 The class of sequences definable in unary-alphabet WMSO over Q is
not contained in the class of sequences recognizable by unary-alphabet CRAs over

Q.

7 Rational Recursive Sequences

We now turn to a natural generalisation of poly-recursive sequences: rational
recursive sequences. These are specified like poly-recursive sequences (Defini-
tion 2.1) but on the right hand side of the system of (2.6) we allow the P;’s to
be taken from the field of fractions of the polynomial ring. That is, each P; is
of the form P;(xy,...,x;) = %, where Q;, R; € Q[xi1,...,xt] and
R; #0.

As discussed in Section 1, this class extends both poly-recursive sequences and
holonomic sequfnczes. For example one can express the sequence of Catalan numbers,

n+

since Cpy1 = 575 - Cy and an ancillary sequence can hold the value n. However,

the limitation of poly-recursive expressiveness we identified still applies:

Theorem 7.1 Every rational recursive sequence admits a cancelling polynomial.

Proof We inspect the proof of the existence of cancelling polynomials for poly-
recursive sequences (Theorem 5.1) and show that it carries over to rational recursive
sequences. Indeed, the proof of Theorem 5.1 relies on Theorem 5.2 about algebraic
dependency; this theorem holds for the field of rational expressions. Later in the proof
the only property of polynomials from Definition 2.1 we use is that they are rational
expressions. Therefore, the proof carries over if we replace polynomials with rational
functions. O

As a corollary of the previous theorem and the proof of Theorem 5.3, we have:
Corollary 7.1 The sequence u,, = n" is not rational recursive.

Another direction towards a more expressive framework was taken in [12, 21].
Let us introduce the class F(S3({a}, N)) defined therein as one of the most expres-
sive classes of sequences; we will simply write F for that class. First, let us say
that a poly-recursive sequence is defined over K, with K e {Z, N}, if its initial
values and the coefficients of its defining polynomials are all in K. A sequence
u is in F if there are poly-recursive sequences a, b, ¢, d defined over N such
that:

an — by

Uy = )
cp —dy
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The class F is naturally included in the class of rational recursive sequences.
In [21, Example 4], it is claimed without proof that u, = n" is not in F; Corol-
lary 7.1 thus closes that gap. It is however not entirely obvious whether F generalises
poly-recursive sequences; we now show that this is the case, and even that:

Proposition 7.1 The class F coincides with the class of rational recursive
sequences.

Proof Letu be arational recursive sequence, we show that itis in F. Let u be defined
byul, ...,uP via

o n ()
u(’) _

n+1 — 1 ’
Ql (ul(,l )7 A u;lp))

whereu = u' and P;, Q; € Q[X1, ..., Xpl
We start by proving that u can be defined as

where N, and D, are poly-recursive sequences defined over Z.
There exist polynomials, with coefficients in Z and with 2 p variables

P, Qi €ZIX1, ..., Xp, Y1,..., Y]

such that

Pi(X\/Y1,....Xp/Yp)  Pi(Xi,....Xp, Y1,....Yp)
Qi(X1/Y1, - Xp/Yp)  Qi(Xy,...,Xp, Y1,...,Yp)

Now we define the sequences of integers NO DO fori =1,..., p. We start
with the initial values, that are chosen such that

The values for Néi), D(()i) come from the irreducible positive fraction associated to

ug ). The remaining elements are defined by

@ p 1 (p) 1 (p)
N =B (NSO NP DD, D),
DYy = 0i (NO,.... NP DY, ... D).
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A simple induction shows that

NO, B (N NP DD, D)

1 1
mi 0r(N NP D, D)

1 1
P (N, NP D)

1 1
0 (N" /D", NP /D)

1
GO

=Uu .
1 n+l1
Qi (u}(/l ) 9t uslp))

This implies that u can be expressed using quotients of poly-recursive sequences
defined over Z.

It remains to show that every poly-recursive sequence defined over Z can be
defined as a difference of two poly-recursive sequences over N. The argument fol-
lows the same steps as the first part, but the extra variables in the polynomials Pi, O
are used as differences rather than quotients. [

o

8 Conclusion

We proved that two sequences, the Catalan numbers C,, and u,, = n", are not poly-
nomial recursive. For this, we exhibited two properties that poly-recursive sequences
always satisfy: ultimate periodicity modulo large prime numbers and admitting a
cancelling polynomial. In Section 7 we discussed the class of rational recursive
sequences, a natural class for future investigation.
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