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Abstract

In the k-Connectivity Augmentation Problem we are given a k-edge-connected graph
and a set of additional edges called links. Our goal is to find a set of links of mini-
mum size whose addition to the graph makes it (k + 1)-edge-connected. There is an
approximation preserving reduction from the mentioned problem to the case k = 1
(a.k.a. the Tree Augmentation Problem or TAP) or k = 2 (a.k.a. the Cactus Augmen-
tation Problem or CacAP). While several better-than-2 approximation algorithms are
known for TAP, for CacAP only recently this barrier was breached (hence for k-
Connectivity Augmentation in general). As a first step towards better approximation
algorithms for CacAP, we consider the special case where the input cactus consists
of a single cycle, the Cycle Augmentation Problem (CycAP). This apparently sim-
ple special case retains part of the hardness of the general case. In particular, we are
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able to show that it is APX-hard. In this paper we present a combinatorial (% + 8)-

approximation for CycAP, for any constant ¢ > 0. We also present an LP formulation
with a matching integrality gap: this might be useful to address the general case of
the problem.

Keywords Approximation algorithms - Connectivity augmentation - Cactus
augmentation - Cycle augmentation

1 Introduction

The basic goal of Survivable Network Design is to construct low cost networks that
provide connectivity guarantees between pre-specified sets of nodes even after the
failure of a few edges/nodes (in the following we will focus on the edge failure case).
This has many applications, e.g., in transportation and telecommunication networks.

A relevant subclass of these problems is given by Network Augmentation prob-
lems. Here the goal is to augment a given graph G = (V, E) by adding extra
edges taken from a given set L (links), so as to satisfy given (edge-)connectivity
requirements. Several such problems are NP-hard, and in most cases the best known
approximation factor is 2 due to Jain [19].

In this paper we focus on the following k-Connectivity Augmentation Problem
(k-CAP). Given a k-(edge)-connected undirected graph G = (V, E) and a collection
L of extra edges (links), the goal is to find a subset A C L with minimum size,
such that G’ = (V, E U A) is (k 4 1)-connected. (We recall that G = (V, E) is k-
connected if for every setof edges F C E, |F| < k— 1, the graph G’ = (V, E\ F) is
connected.) Dinitz et al. [10] presented an approximation preserving reduction from
this problem to the case k = 1 for odd k, and k = 2 for even k. This motivates a
deeper understanding of the latter two special cases.

The case k = 1 is also known as the Tree Augmentation Problem (TAP). The
reason for this name is that any 2-edge-connected component of the input graph G
can be contracted, hence leading to a tree. For this problem several better-than-2
approximation algorithms are known [1, 7, 11, 12, 17, 24, 28]. The case k = 2 is also
known as the Cactus Augmentation Problem (CacAP) since, similarly to the previous
case, the input graph can be assumed to be a cactus [10]. Recall that a cactus G is
a connected undirected graph in which every edge belongs to exactly one cycle. For
technical reasons in this paper we also consider cycles of length 2. However, here the
best-known approximation factor was 2 [19] for a long time and only recently this
was improved to 1.91 (implying the same for k-CAP in general).

For all the mentioned problems it makes sense to consider the weighted version,
where links have non-negative integral weights, and the goal is to find a minimum
weight (rather than minimum cardinality) subset of links A with the desired proper-
ties. In particular we will speak about Weighted TAP (WTAP) and Weighted CacAP
(WCacAP). Here the best-known approximation factor is 2 in both cases [19]. More-
over, improving on that approximation factor for WTAP is considered as a major
open problem in the area. We also notice that we can turn a WTAP instance into an
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equivalent WCacAP instance by replacing each edge with two parallel edges. Hence,
approximating WCacAP is not any easier than approximating WTAP (and the same
holds for the corresponding unweighted versions).

1.1 Our Results

As mentioned before, CacAP contains TAP as a special case when all the cycles in
the cactus have length 2 (formed by a pair of parallel edges). Hence, in order to make
progress on CacAP, it makes sense to consider the somehow complementary case
where the input cactus consists of a single cycle of n nodes. We call the corresponding
subproblem the Cycle Augmentation Problem (CycAP), and its weighted version
Weighted CycAP (WCycAP). To the best of our knowledge, these special cases were
not studied before. However, as we will see, they still retain part of the difficulties of
the general cactus case. In more detail, we achieve the following main results:

Approximation Algorithms We present better-than-2 approximation algorithms for
this problem. In particular, we present a simple %-approximation, and a slightly more
complex (3/2 + ¢)-approximation for any constant ¢ > 0. Notice that the latter
approximation factor is not far from the best known approximation factor for TAP
which is equal to 1.458 [17]. Our algorithms are purely combinatorial, and they
consist of two main phases. In the first phase, we greedily add some links to the
solution under construction and contract them. At the end of this phase we achieve
an instance of CacAP that can be solved exactly in polynomial time. In particular,
for the %—approximation this reduces to computing a spanning tree, while for the
(3/2 + &)-approximation we use an FPT algorithm parameterized by a proper notion
of maximum length of a link.

Hardness of Approximation We are able to show that WCycAP is as hard to approx-
imate as WCacAP. Therefore, improving on a 2-approximation for WCycAP would
imply a major breakthrough in the area (in particular, it would imply the same for
WTAP). This also justifies a more careful investigation of CycAP. In our opinion
it is a priori not so obvious that CycAP is even NP-hard. Indeed, the special case
of TAP (and even of WTAP) where the input graph is a path can be solved exactly
in polynomial time. The case of an input cycle might closely remind the path case.
Here we show that this intuition is not correct: we prove that CycAP is NP-hard and
even APX-hard via a simple but non-trivial adaptation of the proofs in [15, 23]. In
particular, we need one extra step in the reduction where we turn an intermediate
CacAP instance into a CycAP one while maintaining certain properties of the optimal
solution.

LP Gaps The recent literature on TAP approximation [1, 12, 17] shows that finding
strong LP relaxations for the problem can be very helpful to design improved approx-
imation algorithms. In the same spirit, we tried to address the problem of finding LP
relaxations for CycAP with small integrality gap. For both TAP and CacAP (hence
CycAP) one can define a natural and simple standard cut LP (more details later).
While for TAP it was recently shown that the standard cut LP has integrality gap
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smaller than 2 [29], interestingly for CycAP (hence for CacAP) the standard cut LP
has integrality gap 2. Here we present a stronger LP that, for any ¢ > 0, has integral-
ity gap at most % + & (hence matching the approximation ratio of our algorithm). In
our opinion this could be useful for future work on CacAP approximation.

1.2 Related Work

As mentioned before, the best known result in terms of polynomial time approxi-
mation algorithms for k-CAP is a 1.91-approximation proposed by Byrka et al [2].
However, if the set of links is equal to V x V it is possible to solve this problem
optimally [33]. More recently, this problem has been studied in the framework of
Fixed-Parameter Tractability: Végh and Marx [27] proved that this problem is in FPT
when parameterized by the size of the optimal solution, and later the running time of
their algorithm was further improved [3].

Tree Augmentation has been extensively studied over the past few decades. It was
first shown that WTAP is NP-hard by Frederickson and J4ja [15], then that TAP is
NP-hard by Cheriyan et al. [6], and later that TAP is APX-hard by Kortsarz et al. [23].
For WTAP, the best-known approximation guarantee is 2 and was first established
by Frederickson and Jaja [15]. Their algorithm was later simplified by Khuller and
Thurimella [21]. A 2-approximation can also be achieved by various other techniques
developed later on, including a primal-dual approach [16] and iterative rounding [19].
Improvements on the factor 2 have only been obtained for restricted cases, including
bounded diameter trees [8] and bounded weights [1, 12, 17, 29].

Regarding TAP, the first algorithm beating the approximation guarantee of 2 is
due to Nagamochi [28], achieving an approximation factor of 1.815 + ¢. This factor
was subsequently improved to 1.8 [11] and to 1.5 [24]. These results are combina-
torial in nature, but LP-based results have been achieved as well. As an example,
recently Nutov [29] showed that the standard cut LP for TAP has an integrality gap

of at most 28/15 while a lower bound of 3/2 was known [7]. An LP-based (% + 8)—
approximation was given by Adjiashvili [1] and then refined by Fiorini et al. [12]
to obtain a (% + 8)—approximation (see also [4, 5, 26]). Both results are obtained
by adding a proper family of extra constraints to the standard cut LP. Recently,
Grandoni et al. [17] achieved a 1.458 approximation for TAP, which is smaller than
the integrality gap of the standard cut LP.

The rest of this paper is organized as follows. In Section 2 we give some prelimi-
nary definitions and results. The approximation algorithms, LP-gaps and hardness of
approximation results are discussed in Sections 3, 4 and 5 respectively.

2 Preliminaries
For a set X and element y, we use the shortcut X \ y for X \ {y}, and similarly for
other set operations.

Givenagraph G = (V, E),welet V(G) = V and E(G) = E. Recall that in WCa-
cAP we are given a cactus G = (V, E), a set of links L C (‘2/) and a non-negative
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weight function ¢ : L — Rx¢. The task is to compute a subset of links A € L such
that the graph (V, EUA) is 3-edge-connected while minimizing ¢(A) := ), cac@).
The special case where G is a cycle is called WCycAP, and the unweighted ver-
sions of the above problems are called CacAP and CycAP respectively. By n we will
denote the number of nodes of the considered instance of the problem.

Notice that, given an instance (G, L) of CacAP, we can check in polynomial time
if the graph (V(G), E(G) U L) is 3-edge-connected by exhaustively checking if the
removal of any pair of elements from E(G) U L disconnects the graph. Hence we
will assume along this work that the instance always admits a feasible solution.

Observation 1 The 2-edge cuts of a cactus G are identified by pairs S = {e, €'} of
distinct edges belonging to the same cycle, and consist of the node sets (U, V \ U)
of the two connected components obtained by removing S from G. A necessary and
sufficient condition for a subset of links A to be a feasible solution for WCacAP is
that, for any such cut S, there is at least one { =< u,v >€ A thatu € U and
v € (V\ U). (in which case £ satisfies the {e, ¢'}-cut).

Note that in the case of CycAP, Observation 1 implies that any feasible solution
must be an edge cover as 2-edge cuts defined by neighboring edges of the cycle must
be satisfied. Given a 2-edge cut S = {e, €'}, let Lg be the subset of links satisfying
S. The standard cut LP for CycAP is as follows:

min Z X¢ (standard cut LP)
tel

s.t. Z x¢>1VS:Sisa?2-edge cut
leLg
0<x,<1WVlel

Now we proceed to define a standard building block for our algorithms, the
contraction of a link.

Definition 1 Contracting a subset of nodes W consists of the following operations:
(i) remove the nodes in W and all edges/links incident to them; (ii) add a new node
w and, for each original edge/link of type (v, x), x € W,y ¢ W, add the edge/link
(v, w) (of the same weight for the case of links). Note that we do not create loops
this way but may introduce parallel links. We say that (y, w) is the image of (y, x)
and (y, x) is the preimage of (y, w).

We will sometimes slightly abuse notation and use the same label to denote a link
and its image: the meaning will be clear from the context.

Foralink £ = (u, v), we define a sequence wy, . .., wy of boundary nodes B(£) as
follows. Consider a simple path from u to v in the cactus, and let Cy, C3, ..., Cy be
the ordered sequence of cycles visited by this path (possibly ¢ = 1). Note that a path
visits a cycle iff it includes an edge from the cycle. We define w;,i = 1,...,q — 1
as the unique common node between C; and C; 41, and set wo = u and w, = v.
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Definition 2 Contracting a link £ is the operation of contracting its boundary nodes
B(£). We denote by G|¢ the graph obtained by this operation. Contracting a set of
links A is the operation of contracting any £ € A, and then continue recursively on
G|¢ and on the image of A \ ¢ until A becomes empty.

Note that contracting a link in a cactus yields again a cactus. We will extensively
use the following standard fact.

Lemma 1 Let (G, L) be a CacAP instance, A C L, and £ € A. Then A is a feasible
solution for (G, L) iff the image of A \ £ is a feasible solution for (G|¢, L \ £).

We require some further notation before proving the lemma. The internal projec-
tions S(£) of £ are the links (w;, wi4+1),i = 0,...,¢g — 1. In terms of feasibility, £
and S(£) are equivalent as the following proposition states.

Proposition 1 Let (G, L) be a CacAP instance and £ € L. Then ¢ satisfies precisely
the same 2-edge cuts as S(£).

Proof Let B(£) = (wo,...,wy) and Cy, ..., Cy be the corresponding sequence
of cycles visited by a simple path between the endpoints of £. Notice that pairs
(wi, wit1),i =0,...,9 — 1, subdivide each C; into two paths next denoted as C{
and C/. Trivially £ satisfies only cuts belonging to the cycles Ci, ..., Cy, and the
same holds for S(¢). Consider any pair (e1, e2) belonging to some C;. Link £ satis-
fies the corresponding cut if and only if precisely one such edge e; belongs to C;.
The same holds for (w;, w;+1), hence for S(£). O]

In order to prove Lemma 1, let us first consider the simpler case where G is a
cycle.

Lemma 2 Let (G = (V, E), L) be a CycAP instance, A C L, and £ = (u, v) € A.
Then A is a feasible solution for (G, L) iff the image of A \ £ is a feasible solution
for the CacAP instance (G|€, L\ £).

Proof Let C1 and C3 be the two cycles in G |¢, with common node w.

Suppose first that the image of A\ ¢ is a feasible solution for (G|¢, L\ £). Consider
a pair of edges {e1, e2} belonging to a common cycle C;, and the corresponding cut
(8, 8”)in G|€ withw € S”. There must be a link £’ € A\ £ satisfying this cut in G|£.
The preimage of ¢’ has one endpoint in S’ and the other in V\§" = (S"\{w})U{u, v},
hence it satisfies the {e, e2}-cut in G. The remaining pairs of edges {e1, ex} of G
satisfy e; € Cy and e» € C», modulo symmetries. Those cuts are satisfied by £ in G.

Suppose now that A is feasible for (G, L). Consider a pair of edges {eq, ez}
belonging to a common cycle C;. Let (S’, S”) be the corresponding cut in G|€ with
w € S”. Since ¢ does not satisfy that cut in G, this means that there is some other
link ¢/ € A \ £ satisfying it. The image of £’ has one endpoint in S’ and the other in
S”, hence it satisfies the {e;, e»}-cut. O

Now we can proceed with the proof of Lemma 1.
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Proof of Lemma 1 By Proposition 1, we obtain an equivalent statement of the lemma
by replacing A with the set S(A) of the internal projections of links in A and replacing
£ with its internal projection S(£).

Let B(f) = (wo,...,wy) and Cy, ..., C4 be the corresponding sequence of
cycles visited by a simple path between the endpoints of £. Consider any cycle C
not in the above list. Then trivially any pair of edges in C is covered by links in
S(A) \ S(£). Therefore it is sufficient to consider pairs of edges e1, e2 belonging to
the same cycle C;. Let ¢; = (w;, w;+1) be the internal projection of £ with both
endpoints in C;, and define similarly S;(A) w.r.t. S(A). Then it is sufficient to show
that S;(A) is a feasible solution for the CycAP instance induced by C; if and only
if S;(A) \ ¢; is a feasible solution for the CycAP instance induced by C;|¢;, which
follows from Lemma 2. U

3 Approximation Algorithms for Cycle Augmentation

In this section we present improved approximation algorithms for CycAP. We start
with a simple %—approximation to illustrate the main ideas, and then present a slightly

more complex (% + e)-approximation. The approach we will follow in both cases is

as follows: in a first phase we iteratively add a properly chosen subset of a few links
to the solution under construction, and then contract them. Notice that, after the first
contraction, the cycle structure may be lost and we obtain a CacAP instance instead.
These choices are designed so that, at the end of the first phase, the remaining CacAP
instance can be solved efficiently, which is done in a second phase with an ad-hoc
algorithm.

3.1 A 3-Approximation

We next describe a simple greedy algorithm that provides a %-approximation for
CycAP, that we refer to as CROSSING-FIRST algorithm. In order to present the
algorithm clearly, we need the following definitions.

Definition 3 A link £ = (u, v) of a CacAP instance is internal if both its endpoints
belong to a common cycle, and external otherwise.

Definition 4 Given a CacAP instance, a pair of internal links {(u1, v1), (42, v2)} of
acycle C is crossing if they are node disjoint and deleting u» and v, disconnects u
from vy in C.

The kind of links that we want to add in the first stage of the algorithm are external
links plus crossing pairs of links. More in detail, the algorithm has two main stages.
The first stage consists of a set of rounds, where in each round we first check if
there exists an external link ¢, in which case we add it to our solution, contract it
and proceed to the next round. Otherwise, if there exists a pair of (internal) crossing
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links ¢" and £”, we add them to our solution, contract them and proceed to the next
round. If none of the two cases above applies, we are left with a CacAP instance
without neither external links nor crossing pairs of links which we address in the
second stage of the algorithm. As the following lemma states, in the second stage we
can efficiently compute the optimal solution.

Lemma 3 Consider an instance (G = (V, E), L) of CacAP. If there are no external
links and no crossing pairs of links, then every minimal solution has size exactly
|V| — 1 and induces a spanning tree over V.

Proof We prove the first part of the claim by induction on n = |V|. The base case
n = 2 is trivial since in this case the instance is just a cycle consisting of two parallel
edges and any link must be incident to the two nodes of G (hence defining a feasible
solution). For the inductive case, assume the claim is true up to instances having n — 1
nodes, and consider an instance of the problem defined by a cactus G having n nodes
with optimal solution OPT. If G is not a cycle of length n, then it is defined by a
set of cycles of length at most n — 1 where every link is internal, so we can apply
the inductive hypothesis to each cycle independently. If G is a cycle of n nodes, then
let £ = (u,v) € OPT. Contracting £ leads to a CacAP instance on two cycles C
and C; sharing a common node w, with |V (Cy)| + |V (C2)| = n. Let OPT’ be the
optimal solution for the new instance. By Lemma 1, |OPT| = |OPT’| + 1. Observe
that any remaining link ¢’ must have both endpoints in the same C; (otherwise £
and ¢’ would be crossing). Thus by the inductive hypothesis the optimum solution
for the problem induced by C; has size |V (C;)| — 1. It then follows that |OPT'| =
[V(C)|—=14+1|V(Cy)| — 1 =n — 2. Hence |OPT| = n — 1 as desired.

For the second part of the claim, it is sufficient to show that a minimal solution
does not induce a cycle. By contradiction, consider a minimal solution containing a
simple cycle L', and consider now a solution where we remove precisely one arbitrary
link £ = (u, v) from L’. Consider any pair of edges ej, e belonging to the same
cycle such that ¢ satisfies the {e], e;}-cut. Since L'\ £ induces a simple u-v path, then
some ¢/ € L'\ £ must satisfy the cut. Thus L’ \ £ is a feasible solution, contradicting
the minimality of L'. O

Now we proceed to prove the approximation guarantee of the algorithm.
Theorem 2 The CROSSING-FIRST algorithm is a %—approximationfor CycAP.

Proof Let OPT be the optimal solution and APX the computed solution. Let also
n” be the number of nodes remaining at the end of the first stage, and APX’ (resp.
APX") be the set of links added to the solution during the first (resp. second) stage.
Since contracting an external link decreases the number of nodes by at least 2 and
contracting any pair of crossing links decreases the number of nodes by at least 3, we
have that |APX'| < 2(n —n").

By Lemma 3, [APX”| = n”—1,and hence [APX| < 2(n—n")+n"—1 = 2H°=3,
On the other hand, since any feasible solution must be an edge cover, we have that
|OPT| > n/2. Observe also that |OPT| > n” — 1 since by Lemma 1 contracting links
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cannot increase the cost of the optimum solution. Thus |OPT| > max{n/2, n” — 1}.

We can conclude that ||18I1;)T(|‘ < n(liz{t';z_ﬁ)_/?} < %, being n”” — 1 = n/2 the worst

case. O]

We complement this result with an asymptotically matching lower bound.

Lemma 4 The approximation ratio of the CROSSING-FIRST algorithm is not better
than 3.
3

Proof Consider the following construction: for each k > 2 consider an instance
(Gk, L) of CycAP defined by a cycle of n = 6k nodes (assume that the cycle is
defined by the order of the nodes vy, vy, ..., vgr) and the following set of links (see
Fig. 1 (Left)):

- (unvzgg) € Ly

— Foreachi=1,...,

— Foreachi=1,...
Ly;

— 1, (Wig1, Vup1-i) € Lg;

n
2
&> (V3G—1)+1, V3i—1)+3) € Li and (v3G—1)42, V3i—1)+4) €

)

Notice that the first and second set of links define a feasible solution of size %,
hence being optimal: if we remove any two edges of the cycle, then we are either sat-
isfying the corresponding cut via (vq, U%_H), or one side of the partition is contained
in either {vy, ..., v%} or in {v%+2, ..., Uy} but the links selected form a matching
between those sets.

We will now prove that there exists a sequence of choices performed by our algo-
rithm that outputs a solution of size %" — 1, which implies that the approximation
ratio is at least % - % and this value approaches % as k goes to infinity. Notice first that
the pair of links {(v1, v3), (v2, v4)} € Ly is crossing, and hence the algorithm can
include them in the solution in the first round (and finish the round). Furthermore,

Fig.1 Left: Instance (G2, L>) from the lower bound construction in Lemma 4. Red links define an optimal
solution. Right: If the algorithm in the first phase picks and contracts the crossing links {(vy, v3), (v2, v4)},
this is the obtained CacAP instance
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after these links are contracted no link becomes external as the new cactus instance
consists of a cycle of length n —3, and also the links with endpoints v,, v,—1 and v,_»
are not part of any pair of crossing links (see Fig. 1 (Right)). If we now iteratively pick
all the pairs of crossing links {(v3G—1)+1, V3i—1)+3), (V3G—1)42, V3i—1)+4)} S Lk,
i =2,...,%,after g rounds we end up with a cycle of length 5 without crossing
links, and the algorithm must now take the remaining 5 — 1 links to complete the
solution. Thus, the size of the computed solutionis2- g + 5 — 1 = %n — 1, proving
the claim. O

3.2 A (2 + ¢)-approximation

The family of instances from Lemma 4 suggests that “short” crossing pairs of links,
although being locally profitable, may enforce the algorithm to take expensive deci-

sions in the end. In this section we present a more involved (% + 8)-approximation

for CycAP that tries to avoid this kind of situation. Like in the previous algorithm,
there is a certain kind of links that we want to iteratively add to our solution in a first
phase, and in this case such links correspond to external links and long links, which
are defined as follows.

Definition 5 The length of an internal link (i, v) is the length of the shortest path
between u and v in the corresponding cycle. For a given parameter 0 < ¢ < 1, an
internal link is called long if its length is at least %, and short otherwise.

Our algorithm consists of the following two main phases. In the first phase, we
iteratively check if there exists a long (internal) link £. Otherwise, we check if there
exists an external link £. In both cases, we add £ to the solution under construction
and contract it. Observe that contracting links does not create new long links, hence
we will first select a set Liong of long links, and then a set Lex¢ of external links. After
exhausting the previous choices, we move to the second phase. Here we are left with
an instance where all links are short and internal, so we can solve independently the
sub-instance induced by each cycle. We refer to this algorithm as LONG-FIRST. This
second stage can be solved efficiently, due to the lack of long links, by means of the
following lemma.!

Lemma$5 Given a CycAP instance, there exists an algorithm that returns the optimal
S 2 ) ; .
solution in time poly(n)-2°"nad) | where hay is the maximum length among the links.

Let Lghorx be the collection of edges obtained in the second stage. The final
solution is Liong U Lext U Lghort-

Theorem 3 The LONG-FIRST algorithm is a (% + &)-approximation algorithm for
CycAP.

'This lemma implies that CycAP is FPT with parameter /ipax.
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Proof The running time of the algorithm is upper-bounded by poly(n)29¢/ ¢ Con-
sider next the approximation factor. Note first that | Ljong| < en. Indeed, contracting a
long link always increases the number of cycles in the cactus by one without decreas-
ing the number of edges, and all these cycles always have size at least 1/¢, so there
are at most en of them. Similarly to Theorem 2, we have that |OPT| > |Lgpor| and
|OPT| > 7.

If |Liongl + [Lextl + |Lshortl =< W then we already have a (% + s)-

approximation as |OPT| > % Otherwise, since the contraction of each external link

reduces the number of nodes by at least 2 and the contraction of any other link reduces
the number of nodes by at least 1, we have that |Liong| + 2|Lext| + [Lshort| < 1. So

|Lex| = n— 59 = 039 and hence | Lex|+| Liong| < "2 < (4 + ¢ ) [OPT].

Since |OPT| > |Lghort|, we have that in this case the size of the solution is also at
most (% + €)|OPT], concluding the proof. [

Remark 1 By replacing ¢ with 1/,/logn in the above construction, we can obtain a
slightly improved approximation factor of 3/2 4 o(1) which still runs in polynomial
time.

It remains to prove Lemma 5. To do this, we need some more notations. Given a
link £ = (u, v), we say that the edges of the shortest path between u and v in the
cycle are covered by £ (in case of multiple shortest paths we choose the one going
from u to v in counter-clockwise order along the cycle). Given an edge e of the cycle,
we define the cut-neighborhood of e, namely N (e), as the 2h.x — 1 edges that are
closest to e, e included. We also define N7 (e) as the set of links in L covering at least
one edge from N (e).

Notice that in any feasible solution to a CycAP instance, at most one edge of the
cycle is not covered: if it is not the case, then the cut defined by two uncovered edges
is not satisfied as any link satisfying the cut would cover one of these two edges. We
can use this observation to characterize the feasibility of a solution in terms of the
cut-neighborhoods.

Lemma 6 Consider a CycAP instance and let A be a set of links such that every
edge of the cycle is covered by some link in A. A is feasible iff for each edge e, all
the {e, '}-cuts, where e’ € N (e), are satisfied.

Proof If A is feasible then the required properties are clearly satisfied since every
cut is satisfied. On the other hand, suppose that A satisfies that every edge is covered
by some link in A and the {e, ¢'}-cuts are satisfied for every edge e and ¢’ € N (e).
Consider a pair of edges {e, ¢’} such that ¢ ¢ AN (e). By definition of A/ (e) there
is no link in A covering both edges at the same time, and as e is covered by some
link, this link satisfies the {e, ¢’}-cut. This implies that A is feasible as every cut is
satisfied. O

This lemma is useful as it implies that, given an edge e and a set of links S, we

20(h

can optimally complete S in order to satisfy every {e, ¢'}-cut in time ) just by
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2
max

guessing the subset of links from A7 (e) that must be added, which are O (h
Now we proceed to present the proof.

) only.

Proof of Lemma 5 Let us assume that we deal with instances of CycAP such that
there exists an optimal solution where every edge is covered by some link. If it is
not the case, as there may be only one uncovered edge, we can guess this edge and
contract it; this leads to an equivalent instance of the problem where we can require
that the optimum solution covers all the edges. We say that an edge e is satisfied by
a set of links A if it is covered by some link in A and furthermore every {e, ¢'}-cut is
satisfied by A. In particular A is a feasible solution for the problem iff it satisfies all
the edges.

We next design a dynamic programming algorithm to compute a minimum car-
dinality feasible solution. Let us name the nodes vy, vy, ..., v, in counter-clockwise
order starting from some arbitrary node v, and let the edges be ¢; = (v;, vi+1) for
eachi = 1,...,n (assuming v,4+1 = v1).

For each edge ¢; and S C N (e;), we define a cell T[i][S] which will correspond
to a set S” of links of smallest cardinality such that for each j € {1,...,i}, e; is
satisfied by §’, subject to S € §’. It is then sufficient to return T [n][#].

We initialize the table by computing T [1][S] for each set S € AN (e1), which can
be done by guessing how to complete S in order to satisfy e1 with links from N7 (e;).
Then, for eachi > 2 and S € N} (e;), in order to fill the cell T[i][S], we consider all
the possible subsets A € Ny (¢;) such that S(A) := T[i — 1][(SUA) NN (e;—1)]U
(S U A) satisfies ¢;. Among them we select a set A* that minimizes |S(A)|, and we
set T[i][S] = S(A™*) (see Fig. 2 for a sketch).

Fig.2 Depiction of an iteration of the DP from Lemma 5, where we are currently at edge ¢;. Left: Green
links correspond to § and at this point we must decide which extra links to add to S in order to satisfy the
edges ey, ..., ¢;. Right: This computation is done by looking at a proper previous cell in the table (orange
links) which contains S and satisfies ey, ..., ¢;—1, and then add the extra required links A* (red links) in
order to satisfy e; too
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The correctness of the computation follows by a simple induction on i. The table

can be filled in total time poly(n) - 20(”2max), plus an extra factor n from the initial
guessing of an uncovered edge (that is contracted). O

We complement Theorem 3 with an asymptotically matching lower bound.

Lemma 7 The approximation ratio of the LONG-FIRST algorithm is at least %
Proof Consider the following construction: for each k > ﬁ consider an instance
(G, Ly) of CycAP defined by a cycle of n = 4k nodes (assume that the cycle is
defined by the order of the nodes vy, vy, ..., va) and the following set of links (see
Fig. 3 (Left)):

— Foreachi=1,...,5 — 1, (Wit1, Vpy1-i) € Li;
- (v, vz4y) € Ly
— Foreachi :1,...,%—l,(le,v%H_i)eLk.

As argued in Lemma 4, the first and second set of links define an optimal solution
of size 5. We will now prove that there exists a sequence of choices performed by our

algorithm that outputs a solution of size %l — 1, which implies that the approximation
ratio is at least % - % and this value approaches % as k goes to infinity. Notice first
that the link (U%H, v34i+1) € L has length 2k > % and hence it is long so the first

stage of the algorithm can include it in the solution. After doing that, the second and
third set of links become external and thus the algorithm will include them in the
solution. Once all these links are included and contracted, we get a cactus consisting
of two cycles of % nodes each and without crossing links (see Fig. 3 (Right)). Hence,
the algorithm must pick all the remaining links to complete the solution. The size
then of this solution is § + 1+ 2 (% -1)= %T” -1 O

4 LP Relaxations for CycAP
We start by lower-bounding the integrality gap of the standard cut LP for CycAP.

Lemma 8 The standard cut LP for CycAP has integrality gap at least 2.

Proof Consider a cycle of size k and, for each edge, a parallel link. The optimum
integral solution has size k — 1, while setting each variable to % gives a feasible

fractional solution of cost % ]

This shows that the standard cut LP is not strong enough even for instances
without crossing nor long links, cases that we can handle optimally via combinato-
rial algorithms. We next present a stronger LP that exploits a more general set of
constraints.

Let (G = (V, E), L) be a CycAP instance and S C E. We define the S-reduced
instance (Gg, Lg) as follows: We contract the edges of £ \ S, obtaining a cycle

@ Springer



998 Theory of Computing Systems (2021) 65:985-1008
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OANS

Fig. 3 Left: Instance (G4, L4) from the lower bound construction in Lemma 7. An optimal solution is
defined by red links. Right: If the algorithm picks first the thick red link (which is long) and then the links
which become external (blue links and (v, vg)) we obtain this subinstance without crossing pairs of links

with |S| edges which defines Gg, and the set of links Lg will correspond to the
images of L. Notice that there is a one-to-one relation between Lg and the links in
L which satisfy some cut defined by a pair of edges from S. We denote by OPTy the
optimal solution for the instance (G, Lg)2. The following lemma characterizes the
feasibility of a solution.

Lemma 9 Given an instance (G, L) of CycAP, a solution A C L is feasible iff for
every S C E it holds that |A N Lg| > |OPTs].

Proof Suppose that there exists S € E such that [A N Lg| < |OPTg|. This means
that A N Lg is not a feasible solution for (Gg, Ls) and hence there exist two edges
e;, e;j € §suchthatno link in AN L satisfies the {e;, e;}-cut. As the remaining links
in A \ Lg also do not satisfy the cut by definition, this cut remains unsatisfied in the
original instance, implying that A is not feasible.

On the other hand, suppose that A satisfies the claimed property for every set S. If
we consider just sets S consisting of two edges this is exactly the characterization of
feasibility shown in Observationl, implying that A is feasible. O

This implies that we can add the constraint _,.; x¢ > |OPTg| for S C E.
Unfortunately there is an exponential number of such constraints and most of them
require to compute |OPTg| for large instances. However, if we restrict ourselves to
sets of edges having constant size, we get an LP formulation with polynomially many
constraints that can be written in polynomial time. We call this LP the k-edge-cut

2For |§| < 1, we simply set OPTgs = .
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LP for a given constant £ € N, which is similar in spirit to the bundle-LP for TAP
introduced by Adjiashvili [1].

min Y xg (k-edge-cut LP)
tel

s.t. Y x¢>|OPTg| VS CE,|S| <k
leLg
0<x, <1 V¢ e L

Notice that for k = 2 this is exactly the standard cut LP. Now we will prove some
properties of this relaxation and bound its integrality gap.

Lemma 10 Given ¢ > 0, for k = 31_2 the k-edge-cut LP restricted to instances with
links of length at most é has integrality gap at most (1 + 2¢).

Proof We will assume w.l.0.g. that the set of links L contains every possible link of
length 1. If it is not the case, let us include them obtaining a new set of links L' 2O L.
The optimal LP value can only decrease while the size of the optimal solution cannot
decrease, implying that the integrality gap can only increase due to this operation. To
see this last fact, assume by contradiction that there exists a solution OPT’ for the new
instance having strictly smaller size than OPT. Consider now a solution S consisting
of OPT'N L plus a minimal set of links from L that makes S feasible (this is possible
since the instance admits a feasible solution). If we in parallel iteratively contract the
common links in S and OPT’ we arrive to the same CacAP instance, but now the
remaining links from OPT’ have length 1 and the contraction of each of them reduces
the number of nodes in the instance by exactly one node while the contraction of the
remaining links in S reduces the number of nodes by at least 1. Thus |S| < |OPT'|
which is not possible since S € L.

Let X = (x¢)¢er be an optimal solution for the k-edge-cut LP. We will construct
an integral feasible solution of size at most (1 + ¢) Zee 1. x¢. To do so, we will par-
tition the cycle into disjoint intervals as follows: We will first define an interval of
size k (which we will call a long interval) and then an interval of size é (which
we will call a short interval), and then continue with this procedure until it is not
possible to continue. If in the end there are at most é edges we define a last short
interval consisting of these remaining edges, otherwise we define a short interval
consisting of the last % edges and a long interval consisting of the remaining edges
(which will have size at most k). The number of short intervals is upper bounded by

1+ L/SZ"T/SJ <1+ f% < &?n assuming w.l.o.g. that n is lower bounded by a

large enough constant.

Notice that ) ,.; x¢ > n/2 by a simple averaging argument over the n constraints
corresponding to all the pairs of consecutive edges: every link appears in exactly two
such constraints and the right-hand side of each constraint is 1. Since the total number
of links of length 1 having both endpoints in a short interval is at most £n - % =
en < 2g) ,o; X¢, we can add them to our solution at a negligible cost.

Consider now the set of long intervals Si, S», ..., S7. Notice that no link has
endpoints in different long intervals, and hence the LP constraints associated to
such intervals do not share common variables. This implies that ), , xp >
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ZiT=1 |OPTy, |. Our feasible solution will consist of all the links of length 1 with both
endpoints in a short interval plus the optimal solutions OPTy;, for each long interval
Si. As argued before, the size of this solution is at most (1 4 2¢) > ,.; x¢ and the
feasibility of the solution follows since every {e, ¢'}-cut where e is in a short interval
is satisfied by a link of length 1, while the remaining cuts are satisfied by the links
computed optimally. O

Lemma 11 Given ¢ > 0, for k = - the k-edge-cut formulation has integrality gap
&
at most (1 4 4¢) restricted to instances without crossing pairs of links.

Proof Let X = (x¢)¢cr be an optimal solution for the k-edge-cut LP. Suppose that

1

the instance does not contain links of length at least = then we can conclude the

claim thanks to Lemma 10. Otherwise, we will pick any link of length at least é
and contract it, obtaining a CacAP instance consisting of two cycles without external
links (as there are no crossing links), both of size at least é If any cycle still contains
some long link, we iterate this procedure. Let Liong be the set of long links we picked
during this procedure and Cy, C, ..., Cr be the set of cycles at the end. By the same
argument as in Theorem 3, we have that [Ljong| < en < 2¢ ZZGL Xg.

Applying Lemma 10 to each cycle, we obtain a feasible solution of size at most
(1 4+ 2¢) ZiT=1 OPTLp; + |Liongl, where LP; is the k-edge-cut LP defined by each
cycle C; and its internal links. As there are no external links, the sum of the previous
LP solutions is the optimal solution for the following LP:

min ). xg

€EL\Llong

s.t. Y x¢ > |OPTg| Vi € {l,...,T},VS C E(C)),|S| < 61—2
leLg
0<x <1 Ve € L\ Liong

The set of constraints of this LP is a subset of the constraints of the original LP as
links in Liong do not appear in these constraints and the set of variables is a subset of

the original one. Thus we have Zirzl OPTLp; < ),z X¢, and then we can conclude
that the constructed solution has size at most (1 +4¢) > reL Xe- O]

Following the proof of Theorem 3 plus the previous results we can get the
following bound on the integrality gap for general instances of CycAP.

Corollary 1 For any ¢ > 0, the integrality gap of the k-edge-cut LP for k = 8% is at
most % + O(e).

Proof Let X = (x¢)¢ecr be an optimal solution for the k-edge cut LP and consider the
output of the (% + s)-approximation from Section 3.2 decomposed into Liong, Lext

and Lghor as in the proof of Theorem 3. As argued before, we know that ) tern Xe = ’%
and analogously to the proof of Lemma 11 we have that | Lghort| < (14 2¢) ZeeL Xg.
Hence essentially the same analysis as in Theorem 3 provides the same bound of
3/2 + O(¢e) up to an extra (1 + ¢) factor. O
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5 Hardness of Approximation

In the following two sections we discuss the hardness of approximation for WCycAP
and CycAP, respectively.

5.1 Hardness of Approximation for WCycAP

We now provide an approximation preserving reduction from WCacAP to WCycAP.
Note that finding a better-than-2-approximation for WCacAP is at least as hard as
finding such an approximation for WTAP, a big open problem in the area. Therefore
our reduction shows that achieving a similar result for WCycAP is a very hard task
as well.

Theorem 4 Given an instance A of WCacAP, it is possible to construct in polynomial
time an instance B of WCycAP (whose only possibly new weight value is 0) such that
any feasible solution to A can be mapped in polynomial time into a feasible solution
to B of the same cost and vice versa.

To prove Theorem 4 we make use of the “inverse” of the contraction of a link,
which we call an expansion: Consider a WCacAP instance with a node v with degree
greater than 2. An expansion of v will consist of taking two cycles containing v and
replacing them by the Eulerian tour that traverses them starting from v. Every node
appears exactly once except for v which appears twice, for which we create two
copies: v; the starting node and v, the intermediate one. The links originally incident
to v are replaced by links of the same cost incident to v{, and we also add a link of
cost zero between v and v, (see Fig. 4 for an example). The two main properties of
this procedure are that: (1) the contraction of a link created by an expansion brings
back the graph to the original state and (2) v is replaced by v; and vy, which have
degree deg(v) — 2 and 2, respectively.

Proof of Theorem 4 At high level our proof works as follows. We will build in
polynomial time a chain of WCacAP instances (G, L1), ..., (Gk, L), with the
following properties: (i) (G1, L1) is the input instance and Gy is a cycle; (ii)
(Git1, Liy1),i =1,...,k — 1, is obtained from (G;, L;) via precisely one expan-
sion (so G;41 contains precisely one cycle less than G;, and precisely one new link
£; 1 of cost zero); (iii) a feasible solution to (G;, L;),i =1, ..., k—1, can be turned
in polynomial time into a feasible solution to (G;41, L; 1) of the same cost and vice
versa. The above properties together trivially imply the claim.

Given (Gj, L;), we proceed as follows. Consider any node v € G; of degree at
least 4, and let C; and C; be any two cycles incident to v (that must exist). We apply
an expansion to node v w.r.t. C; and Cj, hence creating a new link ¢; | of cost
zero. Properties (i) and (ii) follow immediately by construction. Observe that (G;, L;)
can be obtained from (G;1, L;11) by contracting ¢; 1. Hence property (iii) follows
directly from Lemma 1. In more detail, given a feasible solution A; 1 to (G;, L;), we
first add ¢; 41 to A; 1 (that keeps the solution feasible, and does not change its cost).
By Lemma 1, A; := A;j4+1 \ £;+1 is a feasible solution to (G;, L;) of the same cost.
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Fig.4 Depiction of an expansion applied to node v in the left graph considering the cycles to the left and
right of v. Dashed edges correspond to links and the highlighted link in the middle graph corresponds to
the extra link of cost zero added by the expansion. The right graph is the final WCycAP instance formed
by another expansion on the middle graph

Vice versa, given a feasible solution A; to (G, L;), Aj4+1 := A; U {4 is a feasible
solution to (G;+1, Li41) of the same cost. O]

5.2 Hardness of Approximation for CycAP

In this section we prove that CycAP is APX-hard via a reduction from a restricted
case of 3-Dimensional Matching (3DM). In the general version of 3DM we are given
three disjoint sets W, X and Y having equal cardinality p and a set of m hyperedges
H C W x X x Y. A (3D) matching is a subset M € H such that each element of
W U X U Y belongs to at most one hyperedge in M, and this matching is perfect if
|M| = p. Notice that in a perfect matching M each element of W U X UY belongs to
precisely one hyperedge. The goal is to determine whether a perfect matching exists.
We will consider the special case 3DM-K, K € N, where we add the constraint that
each element from W U X UY appears in at most K hyperedges. The following result
will help us to conclude our final claim.

Theorem 5 (Petrank [30]) For some fixed ¢9 > O, it is NP-hard to distinguish
whether an instance of 3DM-5 with |W| = |X| = |Y| = q has a perfect matching (of
size q) or every matching has size at most (1 — &g)q.

The proof of the following theorem is similar in spirit to the proof of NP-hardness
for WTAP due to Frederickson and JaJ4 [15] and the extension presented by Kortsarz
et al. [23]. In the first reduction the authors start from an instance A of 3DM with 3p
nodes and m hyperedges, and build a WTAP instance B such that: A has a feasible
solution (with p hyperedges) iff B has a feasible solution with p 4+ m links. By
duplicating the edges in B, one obtains a CacAP instance C with exactly the same
property over some cactus G. Our main idea is to turn C into an instance D of CycAP
by constructing an Euler tour G’ out of G and shortcutting some nodes. However, we
need to carefully choose the ordering in the Euler tour in order to preserve a mapping
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between the feasible solutions of C and D. By following the refined approach from
the second reduction, we will show that it is hard to distinguish solutions with a
gap depending on the maximum degree in the instance and then use Theorem 5 to
conclude the following result.

Theorem 6 For some fixed ¢ > 0, it is NP-hard to approximate CycAP within a
factor 1 + ¢.

Construction of the Instance Let H € W x X x Y be an instance of 3DM with
|H =m, W ={wy,...,wp}, X = {x1,...,xp}and ¥ = {y1,...,yp}. We will
define an instance (G = (V, E), L) of CycAP where nodes are placed on the cycle
in the order as they appear below in counterclockwise direction (see Fig. 5 for a
depiction of the instance):

— For each node x; € X we define a node x;;

— For each node y; € Y we define a node y;;

— Let H(w;) denote the hyperedges in H containing w; € W. For each hyperedge
h € H(w;) we define two nodes, namely hx and hy (hyperedge nodes). These
nodes are added to the cycle in the following order. For each i € {1, ..., p},
we add first nodes hy corresponding to hyperedges in H (w;) (in some arbi-
trary order) and then the corresponding nodes hy respecting the same order used
before. We will denote the first set of nodes by Hy(w;), and the second set by
Hy (w;).

The set of links L is defined as follows:

— For each hyperedge & € H we add the link (hx, hy);
— For each hyperedge 7 € H and anode x € X, we add the link (hx, x) iff x € h;
— For each hyperedge h € H and anode y € Y, we add the link (hy, y) iff y € h.

Lemma 12 [f the 3DM instance H contains a 3D matching M with p hyperedges
then the CycAP instance (G, L) constructed as above admits a solution A of size
p+m.

Proof Suppose that H contains a 3D matching M of size p. We build a solution A
to (G, L) as follows: For each hyperedge h = (w, x, y) € M we add to A the links
(hx, x) and (hy, y). Also, for each hyperedge » € H \ M we add the link (hyx, hy)
to A. Observe that the total number of links in A is 2p + (m — p) = p + m.

Let us show that A is a feasible solution. By Observation 1, it is sufficient to
consider any pair of edges {ej, e2}, and show that there exists some link £ € A
satisfying the corresponding {e;, e;}-cut. Let us denote by S” and S” the sets of nodes
induced by the cut. Let Hy (resp., Hy) be the collection of nodes of type hx (resp.,
hy). We make the following case distinction: Suppose first that e; is incident to
two nodes in X or e; = (xp, y1) (the case e; being incident to two nodes in Y is
symmetric). We distinguish the following 3 subcases depending on e5:

1. Suppose e; is incident to at least one node in X U Y. Then one of the sets in the
cut, say S”, contains all the hyperedge nodes while S’ contains at least one node
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Hx (w2)

Fig.5 Example of the construction in Theorem 6. Red links correspond to hyperedge 1® = (wy, x2, y1)
and green links join the copies of the hyperedges

in z € X UY. By construction each node in X (resp. Y) is adjacent to some node
in Hy (resp., in Hy). Thus this cut is satisfied.

2. Suppose e3 is not incident to any node in Hy (wp). Then one of the sets in the
cut, say S’, contains completely ¥, while S” contains Hy (w,). By construction,
forh = (wp,x,y) € M, £ = (hy, y) € A, hence this cut is satisfied.

3. Suppose e; is incident to some node in Hy (wp). Then one of the sets in the cut,
say S”, contains Hy while the other set contains at least one node x from X.
Again by construction, for h = (w, x,y) € M, £ = (hx, x) € A. Hence this cut
is satisfied.

Suppose on the other hand that ey and e, are incident to at least one hyperedge
node. Notice that one of the sets in the cut, say S’, contains X U Y. We distinguish
the following 2 subcases:

1. If §” contains entirely Hy(w) or Hy(w) for some w € W, then for h =
(w,x,y) € M, (hx, x) or (hy, y) is contained in A and the cut is satisfied.

2. In the remaining case we prove that the following claim holds: There exists an
hyperedge 4 such that hy € §” and hy € S”.
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Suppose by contradiction that for every hyperedge i both hy and iy belong
to the same side of the considered cut. Let w; be such that either Hy (w;) or
Hy (w;) has non-empty intersection with both sides of the cut. Note that such w;
must exist, otherwise there would exist w; such that S” contains either Hx (w;)
or Hy (w;) completely which was already covered by the previous case. Assume
w.lo.g. that Hy (w;) = {hL, ..., h;’(} is the considered set with elements sorted
in counterclockwise direction. Since hi( and h%, are on the same side of the par-
tition and Hy(w;) is not fully contained in any side of the partition, it must
hold that one set of the partition is properly contained in Hx(w;). Then any
node inside that set has its copy on the other side of the partition. This is in
contradiction with the assumption.

Let h be an hyperedge as in the previous claim. We are either adding to the
solution the link that joins both copies of & (i.e. the case when 7 ¢ M) and the
proof is finished, or we are adding the two links joining the two copies of 4 to
elements in X and Y (i.e. the case when 1 € M). Since X U Y is contained in
S’ and both copies of & are in different sides of the partition, one of the links
satisfies the cut. O

For any z € WU X UY in a 3DM instance, let deg(z) be the number of hyperedges
in H containing z. Let also A denote the maximum degree of the instance, i.e., A =
max,;cwuxuy deg(z). By following an analogous approach to the one from Kortsarz
et al. [23], we can prove that even instances with a gap can be mapped.

Lemma 13 [f the CycAP instance (G, L) constructed as above admits a solution A
with |A] < (1 4+ &)(p + m), then the 3DM instance H contains a 3D matching M
with M| > p — 2+ 10A)(p + m)e.

Proof Let A be a feasible solution to (G, L) with |A| < (1 4 &)(p + m). Note
that G contains 2(p + m) nodes and the links must form an edge cover (otherwise
the resulting graph would not be 3-edge-connected). Call a node permissible if it is
adjacent to exactly one link in A and impermissible otherwise. Let Vperm and Vimperm
be the set of permissible and impermissible nodes respectively. We will first prove
that the number of impermissible nodes is upper bounded by 2e(p + m). In fact, if
deg 4 (v) denotes the number of links in A incident to v, we have that

20 =) ldega )= Y degy)+ Y degs(®) = [Vperml + 2l Vimperm|

veV V€ Vperm V€ Vimperm

where the last inequality comes from the fact that impermissible nodes are adjacent
to at least two links. Since |A| < (14+¢)(p+m), and | Vperm|+ | Vimperm| = 2(p+m),
we can conclude the claim.

We will now compute a set M” which is almost a matching. We initialize M’ =
and then, iteratively for j = 1,..., p, we try to add an hyperedge to M’ as fol-
lows: if x; is permissible, then it is adjacent to one node h)((] ) € Hy (let us assume
h)(cj) € Hx (w;)); if both h)(cj) and its copy hfvj) € Hy (w;) are permissible, then hy) is
adjacent to one node yy. If y; is permissible, then we add (w;, x;, yr) to M ’. Notice
that hyperedges added by this procedure are indeed in H by construction. Our claim
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is that |[M'| > p — 2A(p + m)e. Actually, if x;, 1Y or h(y]) are impermissible, then
only one iteration fails (the one indexed by j). If yx is impermissible then it can cause
at most A iterations to fail, since it can be connected to at most A nodes in Hy. If
we denote by n, the number of impermissible nodes yj involved in the procedure,
then the number of iterations that fail is at most (2¢(p + m) — ny) + nyA. Since
ny < 2&(p + m) (the total number of impermissible nodes), the number of iterations
that fail is at most 2A(p + m)e, proving the claim.

By construction, hyperedges in M’ have different elements from X and Y but
elements from W might be repeated. Thus, for every w; belonging to more than one
hyperedge in M’, we remove from M’ all but one of such hyperedges, obtaining
M" which is now a matching. Let £ = p — |[M”| be the number of vertices w;
not appearing in any hyperedge of M’ (equivalently of M"). Since |[M'| — |M"| <
p — [M"| = u, we can find a lower bound on the size of M” by bounding above /.
We indeed claim that © < (2 + 8A4)(p + m)e.

Let L' be the links in L of the form (x, h()g)) and (yg, h(yj)) where hg{) corresponds

to a hyperedge (w;, x;, yx) € M’ and h;j) corresponds to its copy. We have that
IL'| =2|M'| > 2p — 4A(p + m)e, hence

JANL < (+e)(p+m)—2p+4A(p+m)e =m—p+(1+4A)(p+m)e.

Consider on the other hand the u nodes w; which are not intersected by hyper-
edges in M’. Since A is a feasible solution, for each such w; there must be a link in
A connecting Hy (w;) U Hy (w;) and X U Y, because otherwise we could disconnect
Hy (w;j)U Hy (w;) from the rest of the graph by removing the two edges in the bound-
ary of Hy (w;) U Hy (w;), contradicting the feasibility of A. Notice that these y links
are part of A\ L’. Furthermore, since A is an edge cover, the remaining 2m —2p — 1
nodes in Hy U Hy untouched by L’ plus the u aforementioned links must be incident
to some link in A, implying that

, 2
[ANL| = p+
Combining both inequalities we get that © < (2 + 8A)(p + m)e, and hence we
conclude that the size of M” is at least
M| —u=>p—2A4(p+m)s—Q2+8A)(p+me=p—2+10A)(p +m)s,
completing the proof. O

We can now use Lemmas 12 and 13 together with Theorem 5 to conclude the proof
of Theorem 6. Notice that in 3DM-5, since A = 5, we have thatm = |H| < 5|W| =

5p.

Proof of Theorem 6 We will show that our reduction presented above is gap-
preserving. Specifically, we will show that if H is an instance of 3DM-5 and (G, L)
is the corresponding CycAP instance, then

1. If H admits a matching of size p, then (G, L) admits a feasible solution of size
p+m;
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2. If H does not admit a matching of size at least p(1 — &g), then (G, L) does not
admit a feasible solution of size at most (p + m)(1 + 3%).

The first statement follows directly from Lemma 12, while the second is the
contrapositive of Lemma 13 when setting ¢ = 38]—02, as in this case we have that
p—24+104)Sp+ pe=p —312¢) = p(1 — ). O]
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