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Abstract
We extend the Mobile Server problem introduced in Feldkord and Meyer auf der
Heide (TOPC 6(3), 14:1–14:17 2019) to a model where k identical mobile resources,
here named servers, answer requests appearing at points in the Euclidean space. To
reduce communication costs, the positions of the servers can be adapted by a limited
distance ms per round for each server. The costs are measured similarly to the clas-
sical Page Migration problem: i.e., answering a request induces costs proportional
to the distance to the nearest server, and moving a server induces costs proportional
to the distance multiplied with a weight D. We show that, in our model, no online
algorithm can have a constant competitive ratio: i.e., one which is independent of the
input length n, even if an augmented moving distance of (1+ δ)ms is allowed for the
online algorithm. Therefore we investigate a restriction of the power of the adversary
dictating the sequence of requests: We demand locality of requests: i.e., that consec-
utive requests come from points in the Euclidean space with distance bounded by
some constant mc. We show constant lower bounds on the competitiveness in this
setting (independent of n, but dependent on k, ms and mc). On the positive side, we
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present a deterministic online algorithm with bounded competitiveness when an aug-
mented moving distance and locality of requests is assumed. Our algorithm simulates
any given algorithm for the classical k-Page Migration problem as guidance for its
servers and extends it by a greedy move of one server in every round. The resulting
competitive ratio is polynomial in the number of servers k, the ratio between mc and
ms , the inverse of the augmentation factor 1/δ and the competitive ratio of the sim-
ulated k-Page Migration algorithm. We also show how to directly adapt the Double
Coverage algorithm (Chrobak et al. SIAM J. Discrete Math. 4(2), 172–181 1991) for
the k-Server problem to receive an algorithm with improved competitiveness on the
line.

Keywords Online algorithms · k-server problem · Resource augmentation

1 Introduction

Assume there is a provider offering a service which cannot be realized with a tradi-
tional cloud solution due to the high amount of induced network traffic. Instead of
one centralized instance, the provider chooses to maintain multiple copies of the ser-
vice which are located close to the end users such that data only has to be sent over
a short distance. However, since the different instances might still have to exchange
some data for coordination and maintaining an instance comes with a cost, the num-
ber of such instances should be limited. In conclusion, given a network topology, the
provider wants to distribute k copies of the service onto nodes of the topology such
that they are close to the end user devices to guarantee short response times. Natu-
rally, the user devices appear at different positions in the network over time and the
future is unknown to the provider. Each request for the service is answered by the
nearest copy. To account for the shifting user base, the provider can move a copy
of the service. However, each time a copy is moved the respective service has to
be stopped, migrated, and started again which results in the copy being inaccessible
while being moved. Therefore, the provider wants to avoid moving a copy over long
distances to guarantee high availability.

In a previous work [12], a subset of the authors considered the scenario with only
one mobile resource. The scenario described above was modeled based on the classi-
cal Page Migration problem [8]: A single resource can be moved between two points
a and b for costs D · d(a, b), where d(a, b) is the distance between a and b and
D ≥ 1 is a constant. In every round a request appears at some point r , and if the
current position of the resource is p, it is served for costs d(p, r). The analysis is
conducted in the standard framework of online algorithms and competitive analysis.
This problem was extended to the Mobile Server problem in [12], which puts a limit
on how much the resource (called server) can move in each time step reflecting the
idea that the resource can only be moved locally to avoid congestion and have the
service available again shortly after the decision to move it.

In our work, we extend the Mobile Server problem to multiple resources: We
consider k identical servers located in the Euclidean space (of arbitrary dimension).
We use the Euclidean space as an abstraction from concrete topologies and as an
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idealization of a fine grained network, where each router or base station is a candi-
date for holding a service instance. Each of the servers may move a distance of at
most ms per time step. In each time step, a request appears which has to be served by
one of the servers by the end of the time step. The cost function is the same as in the
Page Migration problem described above, i.e., the cost for serving a request is equal
to the distance to the nearest server and moving a server induces cost equal to the
distance times some constant D. We evaluate our algorithms using competitive anal-
ysis, where the costs of an algorithm on an instance is compared to the optimal cost
on the same instance. Formally, let CAlg(I ) be the costs of an algorithm Alg on an
input I and COpt (I ) the minimal possible cost on I . Algorithm Alg is c-competitive,
if CAlg(I ) ≤ c · COpt (I ) + a for all instances I , where a is a constant independent
of I . If a = 0, Alg is strictly c-competitive. Our goal is to state strictly competitive
online algorithms where the competitive ratio should not depend on the length of the
input sequence.

1.1 RelatedWork

Besides being a direct extension of the Mobile Server problem [12], our work builds
on and is related to results surrounding the k-Server and Page Migration problems.
These problems have been examined in many variants and especially for the k-Server
problem there are many algorithms for special metrics. In this overview we only
focus on most relevant results for our problem, which are mostly algorithms with an
(asymptotically) optimal competitive ratio.

In the classical k-Server problem as introduced by Manasse et al. [18], k identical
servers are located in a metric space and requests are answered by moving at least
one of the servers to the point of the request. The associated costs are equal to the
total distance moved. Manasse et al. showed that no online algorithm could be better
than k-competitive on every metric with at least k + 1 points. They stated as the
k-Server Conjecture that there is a k-competitive online algorithm for every metric
space. Further, the conjecture is shown to hold for k = 2 and k = n − 1 where n is
the number of points in the metric space.

Since its introduction, many algorithms have been designed for special cases
of the problem. Most notable is the Double-Coverage algorithm [11], which is k-
competitive on trees. For general metrics, the best known result is the Work-Function
algorithm, which is shown to be 2k − 1-competitive [16]. Although this algorithm
seems generally inefficient with respect to runtime and memory, there have been
studies showing that an efficient implementation of this algorithm is indeed possi-
ble [19, 20]. It was also shown that the algorithm has an optimal competitive ratio of
k on line and star metrics, as well as metrics with k + 2 points [5]. Recently, an alter-
native upper bound of n − 1 was shown for the algorithm [22] which improves the
results for metrics with less than 2k points.

The study of randomized online algorithms was initiated by Fiat et al. [13] who
gave a log(k)-competitive algorithm for the complete graph. It is speculated that this
factor can be obtained for all metrics, however the question is still open. For general
metrics, the first algorithm with polylogarithmic competitive ratio was an O(log3 n ·
log2 k)-competitive algorithm by Bansal et al. [3]. This was recently improved by
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Bubeck et al. [10] who gave anO(log2 k)-competitive algorithm for HSTs which can
be turned into an O(log9(k) · log log(k))-competitive one for general metrics by a
dynamic embedding of general metrics into HSTs [17].

Regarding the Page Migration problem [8] (also known as File Migration prob-
lem), most results focus on online algorithms which handle only a single page.
Contrary to the k-Server problem, the design of such algorithms is not trivial for the
Page Migration problem. To the best of our knowledge, the current best results are
a 4-competitive deterministic algorithm by Bienkowski et al. [7] and a collection of
randomized algorithms with competitive ratio of at most 3 by JefferyWestbrook [21].
The most relevant results for our problem are two constructions by Bartal et al. [4]
who give both a deterministic and a randomized algorithm which transform a given
algorithm for the k-Server problem into a deterministic / randomized algorithm for
the k-Page Migration problem. If the given k-Server algorithm is c-competitive, the
deterministic algorithm is O(c2)-competitive, the randomized algorithm is O(c)-
competitive. Conversely, we use the resulting algorithms as a black box in our
constructions.

For our problem, we consider the locality of requests, which is a variant where
requests accessing the server are in close proximity. Similar variants have also been
considered in traditional problems. The idea with these problems is that in prac-
tice, requests to memory by a program will often abide certain locality properties.
Making these properties part of the model has the potential to lower the achievable
competitive ratio and to bring the results for theory and practice closer together. Pop-
ular models benefiting from such locality are the List Update problem [1, 2] and
the Paging problem [9, 14], which can be regarded as a special case of the k-Server
problem.

1.2 Our Results & Outline of the Paper

In [12] it was already shown that no online algorithm for our problem can be compet-
itive even on the real line and with just k = 1 server. As a consequence, we employ
the following methods to derive bounds independent of the number of requests for
the problem: On the one hand we apply resource augmentation as in [12]: i.e., we
allow the online algorithm to use a maximum movement distance of (1+δ)ms . Other
than in the case of k = 1, this is not enough to receive algorithms with a competitive
ratio independent of time. Therefore, on the other hand, we restrict the adversary to
the case with locality of requests: i.e., we introduce a parameter mc by which we can
define families of instances classified by the maximum distance between two consec-
utive requests. We show that, for k ≥ 2, both methods are needed to yield competitive
bounds independent of the length of the instance. For k = 1, it was shown in [12]
that a locality of requests can improve the competitiveness, but is not necessary to
achieve a constant upper bound.

The parameters mc and ms have a crucial impact on the resulting competitive-
ness and thus separate simple from hard instances. We are able to show that these
parameters seem to naturally describe the problem, since we can prove a lower
bound of Ω(mc

ms
). For fast moving resources (mc < (1 + δ)ms), our algorithm

has an almost optimal competitive ratio when given an optimal k-Page Migration
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algorithm. For the case of slow moving resources (mc ≥ (1+ δ)ms), we can achieve
bounds independent of the length of the input stream. In detail, we obtain a bound of
O( 1

δ4
·k2 · mc

ms
+ 1

δ3
·k2 · mc

ms
·c(K)), where c(K) is the competitiveness of a given k-Page

Migration algorithm. For the case D = 1, which we call the unweighted problem, the
k-Page Migration algorithm can be replaced by a k-Server algorithm. Our results for
the Euclidean space of arbitrary dimension are listed in Table 1. Note that the param-
eter ε is indirectly given as the relative difference between mc and ms . If mc < ms ,
then in the first row we have ε > δ. Alternatively, if δ = 0, this case still yields an
almost optimal upper bound up to a factor of 1/ε.

Finally, we construct an algorithm for the line based on the Double Coverage (DC)
algorithm for the k-Server problem to demonstrate how direct implementations of
algorithms, as opposed to the general simulation technique, can help to reduce the
resulting competitive ratio.

The paper is structured as follows: A formal definition of our model can be found
in Section 2. All relevant lower bounds are established in Section 3, showing that
resource augmentation and locality of requests are necessary to obtain competitive
algorithms. In terms of upper bounds, we first give an algorithm for the unweighted
problem in Section 4. The analysis for instances with mc < (1 + δ)ms consists of
a simple potential function argument found in Section 4.1. The analysis of the other
case is much more challenging and is conducted in Section 4.2. The weighted case
(D > 1) is discussed in Section 5. While the basic approach stays the same, we need
to modify the movement of the online algorithm due to the higher movement costs.
We show how the algorithm can be adapted and present the resulting competitive
ratio following a similar structure as in the unweighted case. Finally, the adaption of
the DC algorithm for the line is presented and analyzed in Section 6.

2 Model & Notation

In this section we formally describe the model and some common notation used
throughout the paper.

Time is considered discrete and divided into time steps 1, . . . , n. An input to the k-
Mobile Server problem is given by a sequence of requests r1, . . . , rn where rt occurs
in time step t and is represented by a point in the Euclidean space of arbitrary dimen-
sion. We are given k servers a1, . . . , ak controlled by our online algorithm. At each
point in time, one server occupies exactly one point in the Euclidean space.We denote

Table 1 An overview of the results, using the best known deterministic algorithms for k-Server / k-Page
Migration

Lower bound Unweighted (D = 1), Weighted (D > 1) Case

mc ≤ (1 + δ − ε)ms Ω(k) O(1/ε · k),O(1/ε · k2)

mc ≥ (1 + δ)ms Ω(k + mc

ms
) O(1/δ4 · k3 · mc

ms
), O(1/δ4 · k4 · mc

ms
)

The results in the first row also hold without resource augmentation when mc ≤ (1 − ε)ms
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by a
(t)
i the position of server ai at end of time step t , and by d(a, b) the Euclidean

distance between two points a and b. For the distance between two servers a
(t)
i and

a
(t)
j in the same time step t , we also use the notation dt (ai, aj ). We may also leave

out the time t entirely if it is clear from the context.
In each time step t , the current request rt is revealed to the online algorithm. The

algorithm may then move each server, such that d(a
(t−1)
i , a

(t)
i ) ≤ ms for all servers

ai . The movement incurs cost of D · ∑k
i=1 d(a

(t−1)
i , a

(t)
i ) for a constant D ≥ 1. The

request rt is then served by a closest server a
(t)
i , which incurs cost of d(a

(t)
i , rt ).

Note that the variables indexed with the time t represent the configuration at the end
of the time step t .

In our model, we consider the locality of requests dictated by a parameter mc

limiting the distance between consecutive requests, i.e., d(rt , rt+1) ≤ mc. We will
often refer to the distance which objects move within one time step as speed. We also
consider a resource augmentation setting, where the maximum distance an online
algorithm may move is in fact (1 + δ)ms for some δ ∈ (0, 1). The cost of our online
algorithm is denoted by CAlg . We compare the costs of an online algorithm to an
offline optimum, whose servers are denoted by o1, . . . , ok and whose cost is COpt .

3 Lower Bounds

In this section, we will prove lower bounds for the competitive ratio of our prob-
lem. They show the importance both of the resource augmentation and the locality
of requests introduced above. All our lower bounds already hold on the line (and
therefore in arbitrary dimensions, too). Since our model is an extension of the k-Page
Migration problem, Ω(k) is a lower bound for deterministic algorithms inherited
from that problem (which itself inherits the bound from the k-Server problem, see
[4, 18]). Even when mc is restricted, the lower bound instance can simply be scaled
down such that the distance limits are not relevant for the instance. We derive new
bounds which hold even for randomized algorithms against oblivious adversaries
(and therefore for deterministic algorithms as well).

We start by discussing the model without any restriction on the distance between
the requests in two consecutive time steps, i.e., the parameter mc is unbounded. We
also consider the case that there is no resource augmentation: i.e., the maximum
movement distance of the online algorithm and of the offline solution are the same.
The following lower bound, originally formulated for k = 1, carries over from [12]:

Theorem 1 Every randomized online algorithm for the Mobile Server problem (with

k = 1) has a competitive ratio of Ω(
√

n
D

) against an oblivious adversary, where n is
the length of the input sequence.

For more than one server, we obtain an additional bound which cannot be resolved
with the help of resource augmentation. In the proofs of the following lower bounds,
we use Yao’s principle: we construct a probability distribution over inputs and show
a lower bound for general deterministic online algorithms (on the same sequence).
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According to the principle, the resulting competitive ratio then applies to random-
ized online algorithms against oblivious adversaries (who may generate sequences
adapted to the concrete algorithm).

Theorem 2 For k ≥ 2, every randomized online algorithm for the k-Mobile Server
problem has a competitive ratio of at least Ω( n

Dk2
) against an oblivious adversary,

where n is the length of the input sequence.

Proof We divide the line to the right of the starting point into 4(k − 1) segments of
size x · ms each. The segments are divided into k − 1 groups of size 4. Each group
has two inner and two outer segments, where the outer segments neighbor segments
of other groups. The adversary now chooses in each group one of the two inner
segments uniformly at random. We refer to the middle point in each of the chosen
segments as Z1, . . . , Zk−1. During the first phase, 4kx requests appear at the start-
ing point, and the adversary moves one server to Z1, . . . , Zk−1 each, the last server
remains at the starting point. The moving costs for the adversary are O(Dk2x · ms)

(Fig. 1).
In the second phase, on each point Z1, . . . , Zk−1, x

4 requests appear in order of
distance to the starting point. If at the first time when a request appears on Zi the
online algorithm does not have one server in the corresponding segment, then the

costs for serving requests for the online algorithm are at least
∑ x

4
i=1(

x
2ms − i ·ms) =

Ω(x2ms). Now we iterate over the groups of segments: Consider the group which
contains Z1. At the time of the first request on Z1 the online algorithm either covers
both, one or no inner segment of that group. In case of only one covered segment,
Z1 lies in the other inner segment with probability 1/2. Consider a server in one of
the inner segments: This server cannot move into a neighboring group within x/4
time steps. Hence we can regard the servers which cover inner segments as “used up”
for the following groups and hence we may apply the arguments inductively. Let a,
b and c the number of groups where the online algorithm covers both, one and no
inner segment of that group respectively. We have a + b + c = k − 1, 2a + b ≤ k

and the expected number of segments for which the online algorithm incurs costs of
Ω(x2ms) are at least c + 1

2b. It is easy to see that the number of these segments are
in Ω(k): If c ≤ k

4 − 1, then a + b ≥ 3
4k and hence b ≥ k

4 .

Fig. 1 The line as used in the proof of Theorem 2. The circles indicate a possible configuration of the
servers of the online algorithm and the optimal solution at the beginning of the second phase. The adversary
has successfully chosen two segments which the online algorithm does not occupy
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For the ratio we compare the costs and get Ω(kx2ms)

O(Dk2x·ms)
= Ω( x

Dk
) = Ω( n

Dk2
).

Note that the dependence on n does not disappear in this bound, even if the online
algorithmmay move its servers a distance of (1+δ)ms in each time step: By reducing
the number of requests on each point to x

4(1+δ)
, the bound gets a term of 1

1+δ
. This is

not sufficient, since we want δ to be independent of n and especially also be smaller
than 1.

Since we often consider input sequences for problems such as ours to be poten-
tially infinite, we deem competitive ratios dependent on the input length undesirable.
Hence, as a consequence of the bounds shown so far, we apply two modifications to
our model which help us to achieve a competitive ratio independent of the length of
the input sequence. We use the concept of resource augmentation just as in [12] to
allow the online algorithm to utilize a maximum movement distance of (1+ δ)ms for
some δ ∈ (0, 1) as opposed to the distance ms used by the optimal offline solution.
This measure alone does not address the bound from Theorem 2 (the ratio shrinks,
but still depends on n). Hence, we introduce the locality of requests: We restrict
the distance between two consecutive requests to a maximum distance of mc. Note
that only restricting the distance between consecutive requests does not remove the
dependence on n either, as was shown in [12]. The following theorem can be obtained
in a similar way as Theorem 2:

Theorem 3 For k ≥ 2, every randomized online algorithm for the k-Mobile Server
problem, where the distance between consecutive requests is bounded by mc, has a
competitive ratio of at least Ω(mc

ms
) against an oblivious adversary.

Proof We use a similar construction as in the proof of Theorem 2, but now divide
the line to the right of the starting point into 5(k − 1) segments of size x · ms each.
The segments are divided into k − 1 groups of 5. Each group has three inner and
two outer segments, where the outer segments neighbor segments of other groups.
The adversary now chooses in each group one of the two inner segments, which
neighbor an outer segment uniformly at random. We refer to the middle point in
each of the chosen segments as Z1, . . . , Zk−1. During the first phase, 5kx requests
appear at the starting point, and the adversary moves one server to Z1, . . . , Zk−1
each, the last server remains at the starting point. The moving costs for the adversary
are O(Dk2x · ms) (Fig. 2).

In the second phase, on each point Z1, . . . , Zk−1, x
4 requests appear in order

of distance to the starting point, with requests in between to have a distance mc

between requests, e.g., between Z1 and Z2, there will be
d(Z1,Z2)

mc
requests. The dis-

tance between two points Zi and Zi+1 is at most 8xms , hence the number of requests
between them is at most 8x ms

mc
. The total cost for requests in this phase for the offline

solution is therefore at most (k − 1) · 8xms · 8x ms

mc
= O(k

x2m2
s

mc
).

The costs of the online algorithm can be bounded similarly as in the previous theo-
rem: As there are two potential choices for each Zi which are chosen with probability
1
2 each, Ω(k) of the chosen segments are initially uncovered when the first request
occurs in the respective group of segments. Consider a server of the online algorithm
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Fig. 2 The line as used in the proof of Theorem 3. The circles indicate a possible configuration of the
servers of the online algorithm and the optimal solution at the beginning of the second phase. The adversary
has successfully chosen two segments which the online algorithm does not occupy

which initially covers one of the candidate segments forZi but is then moved to cover
a different candidate segment. Since there is at least one segment in between, the
travel distance is at least xms . In order to cover the original segment, the online server
cannot start moving until the first request occurs in the segment. From this point,
there are at most 8x ms

mc
time steps until the first request is in the next segment. This

means that for ms

mc
≤ 1

8 , the online server cannot cover requests in two segments over

a distance smaller than x
2 . The costs for the online algorithm are therefore Ω(kx2ms).

For the ratio we compare the costs and get Ω(kx2ms)

O(Dk2x·ms+k
x2m2

s
mc

)

= Ω(mc

ms
) for

sufficiently large x.

From [12], we get a lower bound of Ω(1/δ) for k = 1 if mc ≥ ms . This result
can be extended for larger k as well, using the k-dimensional space and adapting the
technique accordingly.

4 An Algorithm for the Unweighted Problem

In this section we consider the unweighted problem (D = 1). Our algorithm does
the following: We mainly follow around a simulated k-Server algorithm, but always
move a closest server greedily towards the request. After formally introducing our
algorithm, we will briefly argue why both of these ideas need to be part of it to
achieve a competitive ratio independent of the input length.

We use the following notation in this section: Denote by a1, . . . , ak the servers of
the online algorithm, c1, . . . , ck the servers of the simulated k-server algorithm and
o1, . . . , ok the servers of the optimal solution. For an offline server oi , we denote
by oa

i the closest server of the online algorithm to oi (this might be the same server
for multiple offline servers). Furthermore, we denote by a∗, c∗ and o∗ the closest
server to the request of the algorithm, the k-server algorithm, and the optimal solution
respectively. Ties for the closest servers can be broken arbitrarily. For a fixed time
step t , we add a “′” to any variable to denote the state at the end of the current time
step, e.g., a1 = at−1

1 is the position of the server at the beginning of the time step and
a′
1 = at

1 is the position at the end of the current step.
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Our algorithm Unweighted-Mobile Servers (UMS) works as follows:
Take any k-Server algorithmKwith bounded competitiveness in the Euclidean space.
Upon receiving the next request r ′, simulate the next step ofK. Calculate a minimum
weight matching (with the distances as weights) between the servers a1, . . . , ak of the
online algorithm and the servers c′

1, . . . , c
′
k of K. There must be a server ci for which

c′
i = r ′. If the server matched to c′

i can reach r ′ in this turn, move all servers towards
their counterparts in the matching with the maximum possible speed of (1 + δ)ms .
Otherwise, select a server ã which is closest to r ′ and move it to r ′ with speed at most
(1 + δ

2 )ms . All other servers move towards their counterparts in the matching with
speed (1 + δ)ms .

In the second case of the algorithm, the server which moves greedily towards the
request does so only a distance of (1 + δ

2 )ms . This is to guarantee that we always
move more towards the simulated algorithm than away from it, and hence in a sense
always catch up to it. We briefly want to discuss the fact that both the greedy move
and the movement towards the simulated servers are necessary for a bounded com-
petitiveness. For the classical k-Server problem, a simple greedy algorithm, which
always moves the closest server onto the request has an unbounded competitive ratio.
We can show that a simple algorithm which just tries to imitate any k-Server algo-
rithm as best as possible is not successful either. Intuitively, the simulated algorithm
can move many servers towards the request within one time step and serve the fol-
lowing sequence with them, while the online algorithm needs multiple time steps to
get the corresponding servers in position due to the speed limitation. At the same
time, the closest server of the online algorithm to the request might be matched to a
server further away from the request, and hence it would move that server away from
it.

Simple algorithm: Let K be any given k-Server algorithm. The k-Mobile Server
algorithm does the following: Simulate K. Compute a minimum weight matching
(with the distances as weights) between the own servers and the servers of K. Move
every server towards the matched server at maximum speed.

Theorem 4 For k ≥ 2, there are competitive k-Server algorithms such that the sim-
ple algorithm for the k-Mobile Server problem does not achieve a competitive ratio
independent of n.

Proof Consider the following instance: All servers and the request start at the same
point on the real line. The requests moves x times to the right by a distance of ms

each. It then moves y < x
4 steps to the left again and remains at that point for the

remaining x − 2y time steps.
An optimal solution may be to just follow the request around with a single server

which induces cost (x+y)ms . Assume the k-Server algorithm does the following: As
long as the request moves to the right, it gets served by a single server, the requests
after that are served by a second server (this k-server algorithm would be at most 2-
competitive in this instance). As a result, the online algorithm will move one server to
the rightmost point in the sequence and then begin to move a second server towards
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the request. When the request has reached its final position, the second server of the
online algorithm has moved a distance of yms to the right and hence it takes x − 3y
more time steps for it come closer than a distance of yms to the request. The server of
the online algorithm who followed the request initially to the rightmost point has now
a distance of yms to the request. It follows that the costs of the online algorithm are
at least xms + (x − 3y)yms . By setting y = Θ(

√
x), the competitive ratio becomes

as large as Ω(
√

n).

The remainder of this section is devoted to the analysis of the competitive ratio
of the UMS algorithm. In Section 4.1, we first consider the case that the distance
between consecutive requests mc is smaller than the movement speed of the algo-
rithm’s servers. This case is easier than the case of slower servers since we can always
guarantee that the online algorithm has one server on the position of the request. In
the other case (mc ≥ (1 + δ)ms), described in Section 4.2, we need to extend our
analysis to incorporate situations in which our online algorithm has no server near
the request although the optimal offline solution might have such a server.

4.1 Fast Resource Movement

We first deal with the case that mc ≤ (1 − ε) · ms for some ε ∈ (0, 1). We show
that we can achieve a result independent of the input length, even without resource
augmentation. At the end of this section, we briefly discuss how to extend the result
to incorporate resource augmentation: i.e., if the online algorithm has a maximum
movement distance of (1 + δ)ms , we handle all cases with mc ≤ (1 + δ − ε) · ms .

Theorem 5 Ifmc ≤ (1−ε)·ms for some ε ∈ (0, 1), the algorithm UMS is 2/ε ·c(K)-
competitive, where c(K) is the competitive ratio of the simulated k-server algorithm
K.

Proof We assume the servers adapt their ordering a1, . . . , ak according to the min-
imum matching in each time step. Based on the matching, we define the potential
ψ := 2

ε
· ∑k

i=1 d(ai, ci). Note that the algorithm reaches the point of r in each
time step, and hence only pays for the movement of its servers, i.e., CAlg =
∑k

i=1 d(ai, a
′
i ). We assume that c1 is on the request after the current time step, i.e.,

c′
1 = r ′.
First, consider the case that a1 can reach r ′ in this time step. Since each server

moves directly towards their counterpart in the matching, we have

Δψ = 2
ε

· ∑k
i=1 d(a′

i , c
′
i ) − 2

ε
· ∑k

i=1 d(ai, ci)

≤ 2
ε

· ∑k
i=1 d(ci, c

′
i ) − 2

ε
· ∑k

i=1 d(ai, a
′
i )

= 2
ε

· CK − 2
ε

· CAlg .

Now assume that a1 cannot reach r ′ in this time step. The server moves at full
speed and hence d(a′

1, c
′
1) − d(a1, c

′
1) = −ms . Now, let a2 be the server which is at
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range at most mc to r ′ and does the greedy move possibly away from c′
2 onto r ′. It

holds d(a′
2, c

′
2) − d(a2, c

′
2) ≤ mc. In total, we get

Δψ ≤ 2
ε
(
∑k

i=1 d(a′
i , c

′
i ) − ∑k

i=1 d(ai, c
′
i )) + 2

ε

∑k
i=1 d(ci, c

′
i )

≤ 2
ε
(d(a′

1, c
′
1) − d(a1, c

′
1) + d(a′

2, c
′
2) − d(a2, c

′
2))

− 2
ε

∑k
i=3 d(ai, a

′
i ) + 2

ε

∑k
i=1 d(ci, c

′
i )

≤ −2ms − 2
ε

∑k
i=3 d(ai, a

′
i ) + 2

ε
· CK

≤ − ∑k
i=1 d(ai, a

′
i ) + 2

ε
· CK.

We can extend this bound to the resource augmentation scenario, where the online
algorithm may move the servers a maximum distance of (1+ δ) · ms . When relaxing
the condition appropriately to mc ≤ (1 + δ − ε) · ms , we get the following result:

Corollary 1 If mc ≤ (1 + δ − ε) · ms for some ε ∈ (0, 1), the algorithm UMS
is 2·(1+δ)

ε
· c(K)-competitive, where c(K) is the competitive ratio of the simulated

k-server algorithm K.

The proof works the same as above by replacing occurrences of ms by (1 + δ)ms

and changing the potential to 2·(1+δ)
ε

∑k
i=1 d(ai, ci).

At first glance, the result seems to become weaker with increasing δ if ε stays
the same. The reason is that by fixing the absolute distance ε the relative difference
((1 + δ)ms − mc)/ms between mc and (1 + δ)ms actually decreases: i.e., relatively
speaking, mc gets closer to (1 + δ)ms . It can be seen that if instead we fix the value
of mc and increase δ, the value of ε increases by the same amount and hence the
competitive ratio tends towards 2 · c(K).

4.2 Slow Resource Movement

This section considers the case mc ≥ (1 + δ)ms and is structured as follows: To
support our potential argument, we first introduce a transformation of the simulated
k-Server algorithm which ensures that the simulated servers are always located near
the request. We then introduce an abstraction of the offline solution, reducing it to
the positioning of a single server ô which acts as a reference point for a new potential
function. The server ô approximates the optimal positioning of the servers while
at the same time obeying certain movement restrictions necessary in our analysis.
Finally, we complete the analysis by combining the new derived potential function
with the methods from the previous section.

4.2.1 The k-Server Projection

Our goal is to transform a k-Page Migration algorithm K into a k-Page Migration
algorithm K̂ which serves the requests of a k-Mobile Server instance such that all
servers keep relatively close to the current request r . We formulate the projection
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for general D ≥ 1 as we will also use it in the next section. Note that using a k-
Server algorithm for K also yields a k-Server algorithm for K̂, i.e., there will always
be a server at the point of the request. For the case mc ≥ (1 + δ)ms , we want our
algorithm to use this projection as a simulated algorithm as opposed to a regular k-
Server algorithm, hence we must ensure that this projection is computable online
with the information available to our online algorithm. The servers of K are denoted
as c1, . . . , ck and the servers of K̂ as ĉ1, . . . , ĉk .

We define two circles around the request r: The inner circle inner(r) has a radius
of 16kD · mc and the outer circle outer(r) has a radius of (32kD + 1) · mc. We will
maintain ĉi ∈ outer(r) for all i for the entirety of the execution. The time is divided
into phases, where the phase starting at time t with the request at point rt ends on the
smallest t ′ > t such that d(rt , rt ′) ≥ 16kD ·mc. During a phase the simulated servers
move to preserve the following: If ci ∈ inner(r), then ĉi = ci . At the end of the
phase the servers move such that additionally, the following holds: If ci /∈ inner(r),
then ĉi is on the boundary of inner(r) such that d(ci, ĉi ) is minimized. It is obvious
that the definition of the algorithm guarantees ĉi ∈ outer(r) for all i at each point in
time. Intuitively, the upper bound ofO(k) for the factor between the new and previous
algorithms stems from instances where the optimal algorithm will only have to send
one server along with the request, while the transformed algorithm will always keep
all k servers nearby.

Proposition 1 For the servers ĉ1, . . . , ĉk of K̂ it holds d(ĉi , r) ≤ (32kD + 1) · mc

during the whole execution. The costs of K̂ are at most O(k) times the costs of K.

Proof We define the following potential: φ = D ·∑k
i=1 d(ci, ĉi ). During a phase, the

potential decreases every time ĉi moves to ci by D times the amount ĉi moves. Each
time ci moves, φ increases by at most D times the amount that ci moves. Let ci = c∗
be a closest server of K to r . If ci ∈ inner(r), then ĉi = ci and hence the serving
costs of the algorithms are the same. Otherwise, ci /∈ inner(r), ĉi ∈ outer(r) and
hence the serving costs differ at most by a factor of 3.

We show that during each phase, K has costs of Ω(1) · kD2 · mc. Consider the
movement of the request from its starting point r to the final point r ′. We know
that d(r, r ′) ≥ 16kD · mc. Imagine drawing a straight line between r and r ′ and
separating it into segments of length mc by hyperplanes orthogonal to the line. There
are now at least 16kD such segments. Every server of K has two segments adjacent
to its own. Denote the segments which do not contain a server of K and are not
adjacent to a segment containing such a server unoccupied segments. Since there are
16kD segments in total and k servers of K, there are at least (16D − 3)k ≥ 13kD

unoccupied segments at the beginning of a phase. Since the maximum movement
distance of r is mc, there is at least one request per segment.

The k servers ofK divide the unoccupied segments into at most k+1 many groups
of segments right next to each other. We now analyze the cost of a group of size x.
We only consider one half of the group and argue that the other half has at least the
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same cost. Requests in the given x/2 segments can be served the following way: An
adjacent server moves into the first y segments and then serves the remaining x/2−y

segments over the distance. The costs incurred are at least y ·Dmc +∑x/2−y

i=1 i ·mc ≥
y ·Dmc + (x/2−y)2

2 ·mc. This term is minimized by setting y = x
2 −D which implies

cost of at least x
2Dmc − D2

2 mc. No matter how the 13kD unoccupied segments are
divided into k + 1 groups, this gives a total cost of at least Ω(1) · kD2mc.

We can now bound the costs at the end of the phase: The argument when ci ∈
inner(r) is the same as before. Otherwise, φ increases by at most
D · d(ĉi , ĉ

′
i ) ≤ 32kD2 · mc. This yields CK′ ≤ O(k) · CK.

4.2.2 The Offline Helper

We define a new offline server ô, which approximates the optimal position o∗ while
managing the role change of o∗ in a smooth manner. By â, we denote the server of the
online algorithm with minimal distance to ô. For a formal description of the behavior,
we need the following definitions:

– The inner circle innert (oi) contains all points p with

dt (oi, p) ≤ δ2

48960k · dt (oi, o
a
i ).

– The outer circle outert (oi) contains all points p with
dt (oi, p) ≤ δ

48 · dt (oi, o
a
i ).

Recall that oa
i is the server of the online algorithm closest to oi . Abusing notation, we

also refer to innert (oi) and outert (oi) as distances equal to the radius defined above.
This section is devoted to proving the following:

Proposition 2 There exists a virtual server ô which moves at a speed of at most
(2+ 1020k

δ
)·mc per time step, for which d(â, ô) ≤ 2·d(o∗, o∗a)+d(a∗, r) at all times,

and for which the following conditions hold as long as dt (o
∗, o∗a) ≥ 2 · 51483 kmc

δ2
:

1. If r ∈ inner(o∗) at the end of the current time step, ô moves at a maximum speed
of (1 + δ

8 )ms , i.e., rt ∈ innert (o
∗) ⇒ d(ô(t−1), ô(t)) ≤ (1 + δ

8 )ms .
2. If r ∈ inner(o∗) at the end of the current time step, then ô ∈ outer(o∗) at the

end of the current time step, i.e., rt ∈ innert (o
∗) ⇒ ô(t) ∈ outert (o

∗).

Before formally describing the algorithm for ô, we will give an intuition on the
pattern and why it is useful for the analysis: In essence, ô follows the point of the
request r , but will always slow down when the request is near a server (in its inner
radius) of the optimal solution. It will then not be able to match the exact position,
but be within the outer radius of the same server. Due to the higher speed of ô, it can
quickly catch up to r once it leaves the area near the optimal server. This statement
will help us in the analysis, since the online algorithm will close the distance towards
ô when it is near an optimal server. We choose the potential to be a function in the
distance to ô and hence can pay for the potentially high costs the algorithm has in
such a step. When the request is not near an optimal server however, we can afford
to pay into the potential since the optimal solution has high costs in such a step.
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In the following, we show that it is possible to define a movement pattern
for ô in a way, such that invariants 1 and 2 of Proposition 2 hold as long as
d(o∗, o∗a) ≥ 51483 kmc

δ2
. Otherwise, ô will simply follow r and restore the proper-

ties once d(o∗, o∗a) ≥ 2 · 51483 kmc

δ2
. In order to describe the movement in detail, we

introduce the concept of transitions.
In the input sequence and a given optimal solution, we define a transition between

two steps t1 < t2, if there are oi, oj such that oi = o∗ and r ∈ innert1(oi) at time step
t1 and oj = o∗ and r ∈ innert2(oj ) at time step t2. In between these two time steps,
r /∈ inner(o∗). For such a transition, we define the transition time as t∗ := t2 − t1. If
t∗ > innert1(o

∗)/mc + 2, we call this a long transition. Otherwise, we call it a short
transition. We say that oi passes the request after t1 and oj receives the request in t2.
The concept is illustrated in Fig. 3.

The behavior of ô can be computed as follows:

1. During a long transition between time steps t1 and t2, move with speed
d(ô(t−1), ô(t)) ≤ (2+ 1020k

δ
) · mc towards rt during steps t1 + 1 to t2 − 2. In the

last two steps t2 −1 and t2, move such that ô(t2−1) = rt2 at time t2 −1 and do not
move in t2 at all. Informally, ô moves one step ahead of r such that ô = r after
the transition, as soon as r ∈ inner(o∗).

2. For a sequence of short transitions starting with o∗ = oi in t1, determine which
of the following events terminating the current sequence occurs first:

Fig. 3 Example for a transition from oi to oj . By definition, r crosses the border of inner(oi ) after time
step t1 (oi passes r after t1). The transition stops at step t2 when r has entered innert2 (oj ) (oj receives r in
t2). Note that oj ’s position and the radius of its inner circle may change from t1 to t2. The distance moved
by r is at most (t2 − t1) · mc . The dotted line represents the estimation of dt1 (oi , oj ) used in Lemma 2
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(a) A long transition from a server o	 to oj between time t2 and t3 occurs. In

this case, ô simply moves towards o
(t)
	 in each step t with speed at most

(1 + δ
8 )ms until t2.

(b) A short transition from a server o	 to oj between time t2 and t3 occurs,
where at one point prior in the sequence d(oj , o

∗) > outer(o∗)/3. If ô can
move straight towards the final position of oj in t3 with speed (1 + δ

8 )ms

without ever leaving outer(o∗), then do that. Otherwise move towards a
point p with d(p, o	) = 2δ

145 · d(o	, o
a
	 ). Among those candidates, p mini-

mizes d(p, o
(t3)
	 ). When this point is reached, keep the invariant d(ô, o	) =

2δ
145 · d(o	, o

a
	 ) whenever the final position of oj is not within 2δ

145 · d(o	, o
a
	 )

around o	. The position of ô on the circle around o	 should be the one clos-
est to oj ’s final position. When o

(t3)
j is inside the circle, the position of ô

should be equal to o
(t3)
j .

3. If dt1(o
∗, o∗a) < 51483 kmc

δ2
, treat the time until dt2(o

∗, o∗a) ≥ 2 · 51483 kmc

δ2
as a

long transition between t1 and t2: i.e., move towards r with speed (2+ 1020k
δ

) ·mc

and skip one step ahead of r during the last 2 time steps. (Steps 1 and 2 are not
executed during this time.)

Note that the server ô is a purely analytical tool and hence the behavior as
described above does not have to be computable online.

Our goal is to show that all invariants described in Proposition 2 hold induc-
tively over all transitions. We divide the entire timeline into sequences, where
each sequence starts with both r and ô being in inner(o∗). A sequence ends
when one of the events stated in step 2 of the algorithm completes. The
following lemma states that the initial condition is restored after every long
transition.

Lemma 1 If ô ∈ outert1(o
∗) at the beginning of a long transition between t1 and t2,

then ô ∈ innert2(o
∗) at the end of the transition.

Proof During the transition time t∗ := t2 − t1, r moves a distance of at most t∗ · mc.
At the beginning, ô ∈ outert1(o

∗) and r ∈ innert1(o
∗), hence dt1(ô, r) ≤ dt1(ô, o∗)+

dt1(o
∗, r) ≤ innert1(o

∗)+outert1(o
∗). During the first 	innert1(o

∗)/mc
 time steps,
ô can catch up to r a distance of

innert1 (o∗)
mc

· (1 + 1020k
δ

) · mc = innert1(o
∗) + 1020k

δ
· innert1(o

∗)
= innert1(o

∗) + outert1(o
∗)

and therefore reaches r (the speed of ô is an additional mc higher which accounts for
the movement of r). Since t∗ > innert1(o

∗)/mc + 2, there are at least 2 time steps
remaining where ô can move to the final position of r .

Our next goal is to analyze a sequence of short transitions. During these transi-
tions, r moves faster than ô and hence the distance of ô to o∗ increases due to the role
change after a transition. The next lemma establishes an upper bound on that increase.
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Since we use the lemma in another context as well, the formulation is slightly more
general.

Lemma 2 Every short transition between oi in step t1 and oj in step t2 can increase
or reduce the distance of some server s, which moves at speed at most (1 + δ)ms , to
o∗ by at most

min{6.001 · δ2

48960k ·dt1(o
∗, o∗a)+8.001mc , 6.002 · δ2

48960k ·dt2(o
∗, o∗a)+8.002mc}.

Proof We consider a short transition from offline server oi to oj in between time
steps t1 and t2. By definition, t∗ = t2 − t1 ≤ innert1(oi)/mc + 2.

We show that since oi and oj must be relatively close together, their distance to
the closest server of the online algorithm must be similar. We first upper bound the
distance between oi and oj in step t1: The request travels a distance of at most t∗ ·mc

between the two. During this time, oj could have moved a distance of at most t∗ ·ms ,
and the inner radius could have changed by at most t∗ · δ

16ms . Since after the t∗ time
steps r enters the inner circle of oj , we can use the above information to trace the
distance between the two servers and the inner circle’s radius of oj back to time step
t1 (see Fig. 3).

With this knowledge, we get

dt1(oj , o
a
j ) ≥ dt1(oi, o

a
i ) − dt1(oi, oj )

≥ dt1(oi, o
a
i ) − t∗ · (mc + ms + δ

16ms)

−innert1(oi) − innert1(oj )

≥ dt1(oi, o
a
i ) − 3 · innert1(oi) − innert1(oj ) − 4mc

≥ (1 − 3 · δ2

48960k ) · dt1(oi, o
a
i ) − δ2

48960k · dt1(oj , o
a
j ) − 4mc

⇔ dt1(oj , o
a
j ) ≥ 1−3· δ2

48960k

1+ δ2
48960k

· dt1(oi, o
a
i ) − 4

1+ δ2
48960k

· mc

⇒ dt1(oj , o
a
j ) ≥ (1 − 4

48960k+1 ) · dt1(oi, o
a
i ) − 4mc.

In reverse, we can bound

dt1(oi, o
a
i ) ≥ dt1(oj , o

a
j ) − dt1(oi, oj )

≥ dt1(oi, o
a
i ) − 3 · innert1(oi) − innert1(oj ) − 4mc

≥ (1 − δ2

48960k ) · dt1(oj , o
a
j ) − 3δ2

48960k · dt1(oi, o
a
i ) − 4mc

⇔ dt1(oi, o
a
i ) ≥ 1− δ2

48960k

1+ 3δ2
48960k

· dt1(oj , o
a
j ) − 4

1+ 3δ2
48960k

· mc

⇒ dt1(oi, o
a
i ) ≥ (1 − 4

48960k ) · dt1(oj , o
a
j ) − 4mc.

Since s can move away from oj during the transition and oj itself moves at speed
at most ms , we get

dt2(s, oj ) ≤ dt1(s, oj ) + t∗ · (2 + δ)ms

≤ dt1(s, oi) + dt1(oi, oj ) + t∗ · (2 + δ)ms

≤ dt1(s, oi) + t∗ · (mc + ms + δ
16ms) + innert1(oi)

+innert1(oj ) + t∗ · (2 + δ)ms

≤ dt1(s, oi) + 5 · innert1(oi) + innert1(oj ) + 8mc

≤ dt1(s, oi) + 5 · δ2

48960k · dt1(oi, o
a
i ) + δ2

48960k · dt1(oj , o
a
j ) + 8mc.
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To derive the first bound, we get

dt2(s, oj ) ≤ dt1(s, oi) + 5 · δ2

48960k · dt1(oi, o
a
i ) + δ2

48960k · 1
1− 4

48960k
· dt1(oi, o

a
i )

+(8 + δ2

48960k · 4
1− 4

48960k
) · mc

≤ dt1(s, oi) + 6.001 δ2

48960k · dt1(oi, o
a
i ) + 8.001mc.

For the second bound, we continue with

dt2(s, oj ) ≤ dt1(s, oi) + 5 · δ2

48960k · dt1(oi, o
a
i ) + δ2

48960k · dt1(oj , o
a
j ) + 8mc

≤ dt1(s, oi) + (1 + 5
1− 4

48960k+1
) · δ2

48960k · dt1(oj , o
a
j )

+(8 + 5 · δ2

48960k · 4
1− 4

48960k+1
)mc

≤ dt1(s, oi) + 6.001 · δ2

48960k · dt1(oj , o
a
j ) + 8.001 · mc.

Next we bound the change in d(oj , o
a
j ) during the transition:

dt1(oj , o
a
j ) ≤ dt2(oj , o

a
j ) + t∗ · (2 + δ)ms

≤ dt2(oj , o
a
j ) + 2 · innert1(oi) + 4mc

≤ dt2(oj , o
a
j ) + 2 · δ2

48960k · dt1(oi, o
a
i ) + 4mc

≤ dt2(oj , o
a
j ) + 2.001 · δ2

48960k · dt1(oj , o
a
j ) + 4.001mc

⇔ dt1(oj , o
a
j ) ≤ 1

1−2.001· δ2
48960k

· dt2(oj , o
a
j ) + 4.002mc.

This gives us

dt2(s, oj ) ≤ dt1(s, oi) + 1

1−2.001· δ2
48960k

· 6.001 · δ2

48960k · dt2(oj , o
a
j )

+(8.001 + 6.001 · δ2

48960k · 4.002) · mc

≤ dt1(s, oi) + 6.002 · δ2

48960k · dt2(oj , o
a
j ) + 8.002mc.

For the bound of decreasing the distance, the same proof can be applied: Start with
dt2(s, oj ) ≥ dt1(s, oj )− t∗ · (2+ δ)ms ≥ dt1(s, oi)− dt1(oi, oj )− t∗ · (2+ δ)ms and
use the same estimations as before from there.

We want to show that ô ∈ inner(o∗) holds after a sequence of short transitions is
terminated by one of the conditions described in step 2 of the algorithm. During the
sequence, we must also show that ô ∈ outer(o∗). The main idea for the following
lemma is that o	 never leaves outer(o∗)/3 per definition and hence following it keeps
ô inside outer(o∗).

Lemma 3 Consider a sequence of short transitions which is terminated by a long
transition. If ô ∈ inner(o∗) at the beginning of the sequence, then ô ∈ inner(o∗)
after the long transition. During the sequence of short transitions, ô ∈ outer(o∗).

Proof As in step 2 of the algorithm, we assume the sequence starts at time t1 with
o∗ = oi , and terminates with a long transition from o	 to oj between time steps t2
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and t3. ô selects the server o	 which passes r on to oj over the long transition and
follows it. Since d(o	, o

∗) ≤ outer(o∗)/3 for the duration of the sequence, we have
ô ∈ outer(o	) at the beginning of the sequence and therefore ô ∈ outer(o	) holds
for the entire duration. At the beginning, with

dt1(o
∗, o∗a) ≤ dt1(o

∗, oa
	 )≤ dt1(o

∗, o	) + dt1(o	, o
a
	 )

≤ δ
144 · dt1(o

∗, o∗a) + dt1(o	, o
a
	 )

⇔ dt1(o
∗, o∗a) ≤ 1

1− δ
144

· dt1(o	, o
a
	 )

we get

dt1(ô, o	) ≤ dt1(ô, o∗) + dt1(o
∗, o	)

≤ ( δ2

48960k + δ
144 ) · dt1(o

∗, o∗a)

≤ 1
1− δ

144
· ( δ2

48960k + δ
144 ) · dt1(o	, o

a
	 )

≤ 0.01 · δ · dt1(o	, o
a
	 ).

Furthermore, since ô at least holds its relative distance to o	, during any step t during
the sequence,

dt (ô, o∗) ≤ dt (ô, o	) + dt (o	, o
∗)

≤ dt1 (ô,o	)

dt1 (o	,o
a
	 )

· dt (o	, o
a
	 ) + dt (o	, o

∗)
≤ 0.01 · δ · dt (o	, o

a
	 ) + δ

144 · dt (o
∗, o∗a)

≤ 0.01 · δ · dt (o	, o
∗a) + δ

144 · dt (o
∗, o∗a)

≤ 0.01 · δ · (dt (o	, o
∗) + dt (o

∗, o∗a)) + δ
144 · dt (o

∗, o∗a)

≤ 0.01 · δ · ( δ
144 · dt (o

∗, o∗a) + dt (o
∗, o∗a)) + δ

144 · dt (o
∗, o∗a)

≤ δ
48 · dt (o

∗, o∗a)

and therefore ô ∈ outert (o
∗) during the whole sequence. By Lemma 1, we have

ô ∈ inner(o∗) after the long transition.

We show with the help of Lemma 2 that during the sequence of transitions, ô

does not lose too much distance to o∗, while oj , since at one point d(oj , o
∗) >

outer(o∗)/3, takes enough time to get into position for a short transition such that ô
can reach the final position of oj in time.

Lemma 4 Consider a sequence of short transitions which is terminated by a short
transition from o	 to oj , where at one point prior in the sequence d(oj , o

∗) >

outer(o∗)/3. If ô ∈ inner(o∗) at the beginning of the sequence and d(o∗, o∗a) ≥
51483 kmc

δ2
at all times, then ô ∈ inner(o∗) after the transition to oj . During the

sequence, ô ∈ outer(o∗).

Proof We assume the sequence starts at time t1 with o∗ = oi , and terminates with a
short transition from o	 to oj between time steps t2 and t3.
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We first consider the case that ô would run outside outer(o∗) if it moved directly
to its target point. First, we need to show that d(ô, o	) = 2δ

145 · d(o	, o
a
	 ) is reached

before this happens. In the beginning, it holds

dt1(ô, o	) ≤ dt1(ô, o∗) + dt1(o
∗, o	)

≤ ( δ2

48960k + δ
144 ) · dt1(o

∗, o∗a).

With
d(o∗, o∗a) ≤ d(o∗, o	) + d(o	, o

a
	 )

≤ δ
144 · d(o∗, o∗a) + d(o	, o

a
	 )

⇔ (1 − δ
144 ) · d(o∗, o∗a) ≤ d(o	, o

a
	 )

we get dt1(ô, o	) ≤ 1
1− δ

144
· ( δ2

48960k + δ
144 ) · dt1(o	, o

a
	 ) < 2δ

145 · dt1(o	, o
a
	 ).

Now assume d(ô, o	) ≤ 2δ
145 · d(o	, o

a
	 ). Then

d(ô, o∗) ≤ d(ô, o	) + d(o	, o
∗)

≤ 2δ
145 · d(o	, o

a
	 ) + δ

144 · d(o∗, o∗a)

≤ 2δ
145 · (d(o	, o

∗) + d(o∗, o∗a)) + δ
144 · d(o∗, o∗a)

≤ 2δ
145 · (1 + δ

144 ) · d(o∗, o∗a) + δ
144 · d(o∗, o∗a)

≤ δ
48 · d(o∗, o∗a),

meaning ô ∈ outer(o∗) for the duration of the sequence. Taking the negation of
that statement it also follows that d(ô, o	) = 2δ

145 · d(o	, o
a
	 ) is reached before ô /∈

outer(o∗).
Note that ô can maintain the point at the fixed distance to o	 which is closest to the

final position of oj : Imagine the radius 2δ
145 · d(o	, o

a
	 ) stays fixed and only o	 moves

by at most ms . Then the point at the fixed radius closest to o
(t3)
j only changes by at

most ms . Afterwards the radius changes by at most 3ms · 2δ
145 < δ

20ms and hence the
movement speed of (1 + δ

8 )ms is sufficient.
We now need to determine that at the final time step t3, dt3(oj , o	) ≤ 2δ

145 ·
dt3(o	, o

a
	 ). Apply Lemma 2 by setting s = o	 and we can bound

dt3(oj , o	) ≤ 6.002 · δ2

48960k · dt3(o
∗, o∗a) + 8.002mc

≤ 1
1− δ

144
· ( 6.002δ

2

48960k + 8.002δ2
43170 ) · dt3(o	, o

a
	 )

< 2δ
145 · dt3(o	, o

a
	 ).

Now assume it holds true that ô can move straight towards the final position of
oj with speed (1 + δ

8 )ms without ever leaving outer(o∗). In this case, we compute
a path which constitutes an upper bound on the distance ô has to traverse, using the
following definition:

Definition 1 (Transition Path) Assume om = o∗ at time step t and on = o∗ at
some later time step t ′. Consider the path constructed as follows. Start at the position
of om in time step t . Let ti be the last time step before t ′ in which om = o∗ and
r ∈ inner(om). The first part of the path goes from om’s position at time step t to
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om’s position in time step ti . Afterwards, a short transition from om to some other
server ox between time step ti and tj occurs, in which case our path goes from om in
ti to ox in tj . Continue the procedure recursively until on in time step t ′ is reached.
We call the constructed path a (t, t ′)-transition path. See Fig. 4 for an illustration of
one of the recursion steps.

Now consider the (t1, t3)-transition path. The distance traveled by ô is bounded by
the distance of ô to o∗ at time t1 plus the length of the transition path. The former has

a length of dt1(ô, o∗) ≤ δ2

48960k · dt1(o
∗, o∗a).

To upper bound the length of the (t1, t3)- transition path, we divide it into two
types of edges (excluding the first edge): The first type is between the same offline
server in different time steps. If the total time is t̂ = t3 − t1, the maximum distance
induced is t̂ · ms .

The second type of edges are between different offline servers and represent a
short transition. By construction, there are at most k such edges. With the help of

Lemma 2 we may upper bound the length of an edge by 6.001 · δ2

48960k ·dt ′(o∗, o∗a)+
8.001mc, where t ′ is the time the transition begins (in the lemma, set s to a static
server at the position of the server who passes the request at time t ′).

The distance d(o∗, o∗a) can change in two ways over time: It changes due to the
movement of the servers or due to a role change of o∗, where it suffices to consider
only those short transitions included in our constructed path. Let t ′1, . . . , t ′k be the
points in time where the short transitions inducing the second type edges begin. We

can upper bound their total length as
∑k

i=1(6.001 · δ2

48960k · dt ′i (o
∗, o∗a) + 8.001mc).

Assuming the highest possible distance for each of the dt ′i (o
∗, o∗a), we get the total

distance of the movement during the sequence added to the original length, which is
dt1(o

∗, o∗a) + t̂ · (2 + δ)ms , for the first transition. The transitions after that build
inductively on the resulting lengths. Define T0 := dt1(o

∗, o∗a) + t̂ · (2 + δ)ms . The

Fig. 4 The construction of a transition path. The transition path is marked by black points, while the
movement of om is depicted by dashed arrows. The movement of r is marked by the gray arrows. Starting
at the position of om at t , the last time step ti is identified at which om = o∗ and r ∈ inner(om). Note that
the role of o∗ might change multiple times between t and ti
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first edge length is upper bounded by A1 := 6.001δ2
48960k · T0 + 8.001mc, the resulting

value for d(o∗, o∗a) is T1 := T0 +A1. In general, Ai := 6.001δ2
48960k ·Ti−1 + 8.001mc and

Ti := Ti−1 + Ai = T0 + ∑i
j=1 Aj . We can bound the total increase by

∑k
i=1 Ai = ∑k

i=1

(
6.001δ2
48960k · (T0 + ∑i−1

j=1 Aj) + 8.001mc

)

≤ k · 6.001δ2
48960k · (T0 + ∑k

j=1 Aj) + k · 8.001mc

⇔ (1 − 6.001δ2
48960 ) · ∑k

i=1 Ai ≤ 6.001δ2
48960 · T0 + 8.001kmc

⇒ ∑k
i=1 Ai ≤ 0.0002δ2 · T0 + 8.002kmc.

The total path length may hence bounded by t̂ · ms + 0.0002δ2 · (dt1(o
∗, o∗a) + t̂ ·

(2 + δ)ms) + 8.002kmc + δ2

48960k · dt1(o
∗, o∗a).

For comparison, we lower bound the time it takes oj to move into position such
that a short transition can occur. Take the last time step t where
oj /∈ outert (o

∗)/3 ⇒ dt (oj , o
∗) > δ

144 · dt (o
∗, o∗a). We may assume that t = t1,

otherwise the travel time for oj simply increases. For a short transition between time
steps t2 and t3 to oj to occur, we need r ∈ innert2(o	), r ∈ innert3(oj ) and t∗ :=
t3 − t2 ≤ innert2(o	)/mc + 2. We have dt2(oj , o	) ≤ t∗ · (mc + ms + δ

16ms) +
innert2(o	) + innert2(oj ) (see Fig. 3 and the proof of Lemma 2).

With dt2(oj , o
a
j ) ≤ dt2(oj , o	) + dt2(o	, o

a
	 ) we get

dt2(oj , o	) ≤ innert2(oj ) + innert2(o	) + t∗ · 2mc

≤ δ2

48960k · dt2(oj , o
a
j ) + 3 · innert2(o	) + 4mc

≤ 4·δ2
48960k · dt2(o	, o

a
	 ) + δ2

48960k · dt2(oj , o	) + 4mc

⇔ (1 − δ2

48960k ) · dt2(oj , o	) ≤ 4·δ2
48960k · dt2(o	, o

a
	 ) + 4mc

⇒ dt2(oj , o	) ≤ 4.001·δ2
48960k · dt2(o	, o

a
	 ) + 4.001mc.

Comparing the distances at t1 and t2, we conclude that

dt1(oj , o
∗)−dt2(oj , o

∗) ≥ δ
144 ·dt1(o

∗, o∗a)−4.001 · δ2

48960k ·dt2(o
∗, o∗a)−4.001mc.

In order to lower bound the number of time steps t̂ := t2 − t1 needed for bridging
that distance, we first examine the change in d(o∗, o∗a). Recall that o∗ = oi in t1
and o∗ = o	 in t2. We can represent the movement of o∗ with the (t1, t2)-transition
path. The distance d(o∗, o∗a) can change in two ways over time: It changes due to the
movement of the servers or due to a role change of o∗, where it suffices to consider
only those short transitions included in our constructed path. If we set the beginnings
of the short transitions at time steps t ′1, . . . , t ′k , we get the upper bound similar to
before:

dt2(o
∗, o∗a) ≤ dt1(o

∗, o∗a) + t̂ · (2 + δ)ms

+ ∑k
i=1(6.001 · δ2

48960k · dt ′i (o
∗, o∗a) + 8.001mc)

≤ dt1(o
∗, o∗a) + t̂ · (2 + δ)ms

+0.0002δ2 · (dt1(o
∗, o∗a) + t̂ · (2 + δ)ms) + 8.002kmc
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Continuing from above, we have

dt1(oj , o
∗) − dt2(oj , o

∗) ≥ δ
144 · dt1(o

∗, o∗a) − 4.001 · ( δ2

48960k dt2(o
∗, o∗a) + mc)

≥ δ
144 · dt1(o

∗, o∗a) − 4.001δ2
48960k · (1.0002 · (dt1(o

∗, o∗a)

+t̂ · (2 + δ)ms) + 8.002kmc) − 4.001mc.

Now we consider the ways in which d(oj , o
∗) shrinks: The first is the movement

of oj and o∗, reducing the distance by at most 2ms per time step: i.e., if the entire
sequence lasts t̂ steps, the maximum reduction is t̂ · 2ms . The other way is by the
role change of o∗. Note that above, we just accounted for the change of the distance
d(o∗, o∗a) due to the role change, and not for the change of d(oj , o

∗). Lemma 2

gives us that the distance of oj to any server decreases by at most 6.001 · δ2

48960k ·
dt (o

∗, o∗a)+8.001mc. This decrease is maximized the same as above, i.e., 0.0002δ2 ·
(dt1(o

∗, o∗a) + t̂ · 2ms) + 8.002kmc.
We can now lower bound the number of time steps it takes to complete the

sequence: It is bounded by the minimum time t̂ , such that

t̂ · 2ms + 0.0002δ2 · (dt1(o
∗, o∗a) + t̂ · 2ms) + 8.002kmc

≥ δ
144 · dt1(o

∗, o∗a) − 4.001δ2
48960k · (dt1(o

∗, o∗a) + t̂ · (2 + δ)ms

+1.0002 · (dt1(o
∗, o∗a) + t̂ · (2 + δ)ms) + 8.002kmc) − 4.001mc

⇔ t̂ · 2.0004ms + 4.001δ2
48960k · 2.0002 · t̂ · (2 + δ)ms

≥ δ
144 · dt1(o

∗, o∗a) − 4.001δ2
48960k · 2.0002 · dt1(o

∗, o∗a) − 0.0002δ2 · dt1(o
∗, o∗a)

−8.002kmc − 4.001δ2
48960k · 8.002kmc − 4.001mc

⇒ 2.0009 · t̂ · ms ≥ 0.0065δ · dt1(o
∗, o∗a) − 12.0047kmc.

To finish the proof, we show that ô has enough time to reach its destination by
comparing the lower bound of the time oj takes to move into position to the upper
bound of the travel path of ô:

t̂ · (1 + δ
8 ) · ms

≥ t̂ · ms + 0.0002δ2 · (dt1(o
∗, o∗a) + t̂ (2 + δ) · ms) + 8.002kmc

+ δ2

48960k · dt1(o
∗, o∗a)

⇔ t̂ · (1 + δ
8 ) · ms − (1 + 0.0006δ2) · t̂ · ms

≥ (0.0002δ2 + δ2

48960k ) · dt1(o
∗, o∗a) + 8.002kmc

⇐ t̂ · ( δ
8 − 0.0006δ2)ms

≥ (0.0002δ2 + δ2

48960k ) · dt1(o
∗, o∗a) + 8.002kmc

⇐ 1
2.0009·ms

· (0.0065δ · dt1(o
∗, o∗a) − 12.0047kmc) · ( δ

8 − 0.0006δ2)ms

≥ (0.0002δ2 + δ2

48960k ) · dt1(o
∗, o∗a) + 8.002kmc

⇐ 0.0004δ2 · dt1(o
∗, o∗a) − 0.75δkmc

≥ (0.0002δ2 + δ2

48960k ) · dt1(o
∗, o∗a) + 8.002kmc

⇐ 0.00017δ2 · dt1(o
∗, o∗a) ≥ (8.002 + 0.75δ)kmc

⇐ dt1(o
∗, o∗a) ≥ 51483k mc

δ2
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Our analysis of the movement pattern of ô leads directly to the following lemma,
in which we mostly need to argue that either ô ∈ outer(o∗) or ô = r .

Lemma 5 During the execution of the algorithm, d(â, ô) ≤ 2 ·d(o∗, o∗a)+d(a∗, r)
as long as the algorithm is in step 1 or 2.

Proof We argue that ô ∈ outer(o∗) or ô = r . We have demonstrated that during
a sequence of short transitions, ô never leaves outer(o∗). It remains to show that
the statement holds during a long transition. We observe ô during the transition time
t∗ = t2 − t1. Before the first step, r ∈ innert1(o

∗) and ô ∈ outert1(o
∗). We have

already shown that for t∗ ≥ innert1(o
∗)/mc, ô catches up to r within the time t∗ in

the proof of Lemma 1. Expressed in distance, ô catches up to r when r is a distance
of innert1(o

∗) outside the inner circle of o∗. We show that at this time, r is still in
outer(o∗): Let t̂ = ⌈

innert1(o
∗)/mc

⌉
. We have

dt1+t̂ (r, o
∗) ≤ dt1(r, o∗) + t̂ · 2mc

≤ δ2

48960k · dt1(o
∗, o∗a) + 2 · innert1(o

∗) + 2mc

≤ 3 · δ2

48960k · dt1(o
∗, o∗a) + 2mc.

With

dt1+t̂ (o
∗, o∗a) ≥ dt1(o

∗, o∗a) − t̂ · (2 + δ)ms

≥ dt1(o
∗, o∗a) − 2 · innert1(o

∗) − 2mc

⇔ dt1+t̂ (o
∗, o∗a) + 2mc ≥ (1 − 2δ2

48960k ) · dt1(o
∗, o∗a)

⇒ 2 · dt1+t̂ (o
∗, o∗a) + 4mc ≥ dt1(o

∗, o∗a)

we get

dt1+t̂ (r, o
∗) ≤ 6δ2

48960k · dt1+t̂ (o
∗, o∗a) + 3mc

≤ δ
48 · dt1+t̂ (o

∗, o∗a)

as long as dt1+t̂ (o
∗, o∗a) > 145mc.

This implies that at all times, either ô ∈ outer(o∗) or r = ô.
We now turn to the claim of the lemma. If ô ∈ outer(o∗), then d(â, ô) ≤

d(o∗a, ô) ≤ 2 · d(o∗, o∗a). If ô = r , then â = a∗ and therefore d(â, ô) =
d(a∗, r).

So far we have shown that all claims of Proposition 2 hold as long as the algorithm
is not in step 3. It remains to analyze step 3 of the algorithm, using similar arguments
as for analyzing the long transitions earlier.

Lemma 6 After the execution of step 3 it holds ô = r . Furthermore, d(â, ô) ≤
2 · d(o∗, o∗a) + d(a∗, r) during step 3 of the algorithm.

Proof We define time steps t1 and t2 such that they encompass step 3 of the algo-
rithm: i.e., t1 and t2 are chosen minimal such that dt1(o

∗, o∗a) < 51483mc

δ2
and

dt2(o
∗, o∗a) ≥ 2 · 51483mc

δ2
. Since d(o∗, o∗a) changes by at most (2 + δ)ms ≤ 2mc

in each time step, t2 − t1 ≥ 25741.5 · 1
δ2
.
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If at time t1, the procedure is in a long transition, the algorithm already follows
r and can continue as usual (the result for the long transition holds indepen-
dently of d(o∗, o∗a)). Otherwise, we have ô, r ∈ outer(o∗). Hence dt1(ô, r) ≤
δ
24 · dt1(o

∗, o∗a) ≤ 51483
24 · mc

δ
. The server ô catches up to r a distance of at least

(1 + 1020k
δ

) · mc per time step. Clearly, (t2 − t1) · (1 + 1020k
δ

) · mc > 51483
24 · mc

δ
and

therefore ô = r at time t2.
The second claim, d(â, ô) ≤ 2 · d(o∗, o∗a)+ d(a∗, r) can be shown the same way

as in the previous lemma, where it is clear that r is reached before d(o∗, o∗a) falls
below 145mc.

4.2.3 Algorithm Analysis

We now turn our attention back to the analysis of the UMS algorithm. In the follow-
ing, we assume K to be a k-Server algorithm as described in Section 4.2.1. We use
a potential composed of two major parts which balance the main ideas of our algo-
rithm against each other: φ will measure the costs of the greedy strategy, while ψ

will cover the matching to the simulated k-Server algorithm.
Let ô be an offline server which fulfills the invariants stated in Proposition 2.

Recall that â denotes the currently closest server of the online algorithm to ô. The
first part of the potential is then defined as

φ :=
{
4 · d(â, ô) if d(â, ô) ≤ 107548 · kmc

δ2

4 · 1
δms

d(â, ô)2 − A if 107548 · kmc

δ2
< d(â, ô)

with A := 4 · ( 1
δms

(107548 kmc

δ2
)2 − 107548 kmc

δ2
).

For the second part, we set

ψ := Y · mc

δms

k∑

i=1

d(ai, ci)

where the online servers ai are always sorted such that they represent a minimum
weight matching to the simulated servers ci . We choose Y = Θ( k

δ2
) to be sufficiently

large.
If we understand φ as a function in d(â, ô), then we can rewrite it as

φ(d(â, ô)) = max{4 · d(â, ô), 4 · 1

δms

d(â, ô)2 − A}.

Hence, when estimating the potential difference Δφ = φ(d(â′, ô′)) − φ(d(â, ô)),
we can upper bound it by replacing the term φ(d(â, ô)) with the case identi-
cal to φ(d(â′, ô′)). This mostly reduces estimating Δφ to bounding the difference
d(â′, ô′) − d(â, ô).

For some of our estimations we use a slightly altered result from [12] (simply
replace δ by δ

2 ). Note that while this lemma might hold for some other metrics as
well, it explicitly requires the Euclidean space in the proof provided in [12].
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Lemma 7 Let s be some server with d(s′, r ′) ≤
√

δ
4 · d(a′

i , r
′) and ai moves towards

r ′ a distance of d(ai, a
′
i ), then d(ai, s

′) − d(a′
i , s

′) ≥ 1+ 1
4 δ

1+ 1
2 δ

d(ai, a
′
i ).

We start the analysis by bounding the second potential difference Δψ . The bounds
can be obtained by similar arguments as in the proof of Theorem 5.

Lemma 8 Δψ ≤ Y · mc

δms
· CK − ∑k

i=1 d(ai, a
′
i ).

Proof Assume that a∗ = a1. Every other server ai moves towards its counterpart ci ,
hence

Δψ ≤ Y · mc

δms

k∑

i=1
(d(a′

i , c
′
i ) − d(ai, ci))

≤ Y · mc

δms

(

d(a′
1, c

′
1) − d(a1, c1) +

k∑

i=2
(d(ci, c

′
i ) − d(ai, a

′
i ))

)

.

Now, if K serves the request with c1, i.e., c′
1 = r ′, then

Δψ ≤ Y · mc

δms

k∑

i=i

(d(ci, c
′
i ) − d(ai, a

′
i )).

Otherwise, K serves the request with another server (assume c2). Since a2 was not
chosen as a∗, it moves the full distance of (1 + δ)ms and hence

Δψ ≤ Y · mc

δms

(
d(a1, a

′
1) + d(c1, c

′
1) + d(c2, c

′
2) − d(a2, a

′
2)

+
k∑

i=3
(d(ci, c

′
i ) − d(ai, a

′
i ))

)

≤ Y · mc

δms

(
k∑

i=1
d(ci, c

′
i ) − δ

2ms −
k∑

i=3
d(ai, a

′
i )

)

.

The lemma follows by setting Y ≥ 8, as d(a1, a
′
1) + d(a2, a

′
2) ≤ 4ms .

Lemma 9 If d(a∗′
, r ′) > 0, then Δψ ≤ Y mc

δms
· CK −

k∑

i=1
d(ai, a

′
i ) − Y−4

2 mc.

Proof We assume a∗ = a1. Since d(a∗′
, r ′) > 0, we have d(a1, a

′
1) = (1 + δ

2 )ms . If
r is served by c1, then

Δψ = Y · mc

δms

k∑

i=1
(d(a′

i , c
′
i ) − d(ai, ci))

≤ Y · mc

δms

k∑

i=1
(d(ci, c

′
i ) − d(ai, a

′
i ))

≤ Y · mc

δms
CK − mc

δms

k∑

i=1
d(ai, a

′
i ) − (Y − 1) · mc

δms
(1 + δ

2 )ms .
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If r is served by a different server of K (assume c2), then

Δψ = Y · mc

δms

k∑

i=1
(d(a′

i , c
′
i ) − d(ai, ci))

≤ Y · mc

δms

k∑

i=1
d(ci, c

′
i ) − mc

δms

k∑

i=3
d(ai, a

′
i ) − Y · mc

δms
· δms

2

≤ Y · mc

δms
CK −

k∑

i=1
d(ai, a

′
i ) − Y−4

2 mc.

This term is larger then the former one for sufficiently large Y .

Now consider the case that r ′ /∈ inner(o∗′
). We have

d(a∗′
, r ′) ≤ d(o∗a′

, r ′)
≤ d(o∗′

, o∗a′
) + d(o∗′

, r ′)
≤ ( 48960k

δ2
+ 1) · d(o∗′

, r ′).

The movement cost are canceled by Δψ as in Lemma 8. It only remains to bound the
possible increase of φ. We use d(â′, ô′) − d(â, ô) ≤ (3 + 1020k

δ
) · mc.

Lemma 10 If r ′ /∈ inner(o∗′
), then Δφ ≤ O( k2

δ4
mc

ms
) · COpt .

Proof 1. d(â′, ô′) ≤ 107548 · kmc

δ2
:

Δφ ≤ 4 ·d(â′, ô′) ≤ 8 ·d(o∗′
, o∗a′

)+4 ·d(a∗′
, r ′) ≤ (12 · 48960k

δ2
+4) ·d(o∗′

, r ′).
2. 107548 · kmc

δ2
< d(â′, ô′):

Δφ ≤ 4
δms

(d(â′, ô′)2 − d(â, ô)2)

≤ 4
δms

(d(â′, ô′)2 − (d(â′, ô′) − (3 + 1020k
δ

) · mc)
2)

≤ O( k
δ
) · mc

δms
d(â′, ô′)

≤ O( k2

δ3
) · mc

δms
d(o∗′

, r ′).

In all of the above, the competitive ratio is bounded by

O(
k2

δ3
) · mc

δms

+ Y · mc

δms

· c(K).

Finally, we consider the case r ′ ∈ inner(o∗′
). When d(a∗, r ′) > 102970 kmc

δ2
, we

use Lemma 7 to obtain the following:

Lemma 11 If d(a∗, r ′) > 102970 kmc

δ2
and r ′ ∈ inner(o∗′

),

then d(â′, ô′) − d(â, ô) ≤ − δ
8ms .
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Proof By our construction of the simulated k-Server algorithm, we have

d(c′
i , r

′) ≤ 9kmc ≤ δ2

9724 · d(a∗′
, r ′) for all i. Furthermore,

d(o∗′
, o∗a′

) ≤ d(o∗′
, a∗′

)

≤ d(o∗′
, r ′) + d(r ′, a∗′

)

⇔ (1 − δ2

48960k ) · d(o∗′
, o∗a′

) ≤ d(r ′, a∗′
).

Hence

d(c′
i , ô

′) ≤ d(c′
i , r

′) + d(r ′, o∗′
) + d(o∗′

, ô′)
≤ δ2

9724 · d(a∗′
, r ′) + ( δ

48 + δ2

48960k ) · d(o∗′
, o∗a′

)

≤ 0.021δ · d(a∗′
, r ′)

≤ 0.021δ · d(a′
i , r

′)

and with Lemma 7, we get d(a′
i , ô

′) − d(ai, ô
′) ≤ − 1+ 1

4 δ

1+ 1
2 δ

d(ai, a
′
i ) for all i.

In order to bound the movement of ô, we need to show that
d(o∗, o∗a) ≥ 2 · 51483 kmc

δ2
.

We use

d(a∗, r ′) ≤ mc + d(a∗′
, r ′)

≤ mc + d(o∗a′
, r ′)

≤ mc + (1 + δ2

48960k ) · d(o∗′
, o∗a′

)

⇔ 1

1+ δ2
48960k

(d(a∗, r ′) − mc) ≤ d(o∗′
, o∗a′

).

The bound follows from d(a∗, r ′) > 102970 kmc

δ2
.

From Proposition 2 we get d(ô, ô′) ≤ (1 + δ
8 )ms and therefore

d(â′, ô′) − d(â, ô) ≤ − 1+ 1
4 δ

1+ 1
2 δ

d(ai, a
′
i ) + d(ô, ô′)

≤ −(1 + δ
4 )ms + (1 + δ

8 )ms

≤ − δ
8ms

where i is chosen such that ai is closest to ô′.

With this lemma, φ can be used to cancel the costs of the algorithm in case of a
high distance to r .

Lemma 12 If r ′ ∈ inner(o∗′
), then CAlg +Δφ +Δψ ≤ Y · mc

δms
·CK +2 ·d(o∗′

, r ′).

Proof 1. d(â′, ô′) ≤ 107548 · kmc

δ2
: We use

d(a∗′
, r ′) ≤ d(â′, r ′)

≤ d(â′, ô′) + d(ô′, r ′)
≤ d(â′, ô′) + 2 · δ

48 · d(o∗′
, o∗a′

)

≤ (1 + 2δ
47 ) · d(â′, ô′)
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to get CAlg + Δφ ≤ 6 · d(â′, ô′) + ∑k
i=1 d(ai, a

′
i ). Furthermore,

Δψ ≤ Y · mc

δms
CK −

k∑

i=1
d(ai, a

′
i ) − Y−4

2 mc due to Lemma 9. In total,

CAlg + Δφ + Δψ ≤ Y · mc

δms
· CK with Y ≥ Ω( k

δ2
).

2. 107548 · kmc

δ2
< d(â′, ô′): We show that the condition of Lemma 11 applies:

d(â′, ô′) ≤ d(a∗′
, ô′)

≤ d(a∗′
, a∗) + d(a∗, r ′) + d(r ′, ô′)

≤ mc + d(a∗, r ′) + 2 · δ
48 · d(o∗′

, o∗a′
)

≤ mc + d(a∗, r ′) + 2
47 · d(â′, ô′)

⇔ 45
47 · d(â′, ô′) − mc ≤ d(a∗, r ′)

⇒ 102970 kmc

δ2
≤ d(a∗, r ′)

Hence the lemma gives us

Δφ ≤ 4 · 1
δms

(
d(â′, ô′)2 − d(â, ô)2

)

≤ 4 · 1
δms

(
d(â′, ô′)2 − (d(â′, ô′) + δ

8ms)
2
)

= −d(â′, ô′).
Furthermore, we have

CAlg ≤ d(â′, r ′) + ∑k
i=1 d(ai, a

′
i )

≤ d(â′, ô′) + d(ô′, o∗′
) + d(o∗′

, r ′) + ∑k
i=1 d(ai, a

′
i )

≤ d(â′, ô′) + (1 + δ
48 ) · d(o∗′

, r ′) + ∑k
i=1 d(ai, a

′
i )

and Δψ ≤ Y · mc

δms
· CK − ∑k

i=1 d(ai, a
′
i ) due to Lemma 8. In total, we get

CAlg + Δφ + Δψ ≤ Y · mc

δms
· CK + 2 · d(o∗′

, r ′).

The resulting competitive ratio of Y · mc

δms
· c(K) + 2 is less than the

O( k2

δ3
) · mc

δms
+ Y · mc

δms
· c(K) bound from the former set of cases. Accounting for

the loss due to the transformation of the simulated k-Server algorithm, we obtain the
following result:

Theorem 6 If mc ≥ (1 + δ)ms , the algorithm UMS is
O( 1

δ4
· k2 · mc

ms
+ 1

δ3
· k2 · mc

ms
· c(K))-competitive, where c(K) is the competitive ratio

of the simulated k-server algorithm K.

5 Extension to theWeighted Problem

In this section we consider our general model in which the movement costs are
weighted with a factor D > 1. We assume throughout the section that D ≥ 2 for
convenience in the analysis. In case D < 2, we may just apply the algorithm from
the previous section, whose costs increase by at most a factor of 2 as a result.

The main difference to the unweighted case is that our algorithm uses a k-Page
Migration algorithm as guidance, whose best competitive ratio in the deterministic
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case so far is a factor Θ(k) worse than that of a k-Server algorithm for general met-
rics. The analysis is slightly more involved since unlike in the k-Server problem, a
k-Page Migration algorithm does not always have to have one page at the point of
the request. In case of small distances to r , the movement costs have to be balanced
against the serving costs by scaling down the movement distance by a factor of D.
Throughout this section, we use the same notation as for the unweighted version.

Our algorithmWeighted-Mobile Servers (WMS) works as follows:
Take any k-Page Migration algorithm K. Upon receiving the next request r ′, simu-
late the next step of K. Calculate a minimum weight matching (with the distances
as weights) between the servers a1, . . . , ak of the online algorithm and the pages
c′
1, . . . , c

′
k of K. Select a closest server ã to r ′ and move it to r ′ at most a dis-

tance min{mc,
1
D

(1 − ε) · d(ã, r ′)} in case mc ≤ (1 + δ − ε)ms and at most
min{(1+ δ

2 )ms,
1
D

(1− δ
2 )·d(ã, r ′)} in casemc ≥ (1+δ)ms . All other servers ai move

towards their counterparts in the matching c′
i with speed min{(1+δ)ms,

1
D

·d(ã, r ′)}.
If another server than ã is closer to r ′ after movement, then move all servers towards
their counterpart in the matching with speed ms instead.

The remainder of this section is devoted to the analysis of the WMS algorithm and
is structured similar to Section 4.

We start by analyzing the case that mc ≤ (1 − ε) · ms for some ε ∈ (0, 1
2 ]. For

ε ≥ 1
2 , our algorithm simply assumes ε = 1

2 . It can be easily verified that this does
not hinder the analysis.

Theorem 7 If mc ≤ (1 − ε) · ms for some ε ∈ (0, 1
2 ], the algorithm WMS is√

2 · 11/ε · c(K)-competitive, where c(K) is the competitive ratio of the simulated
k-Page Migration algorithm K.

Proof We assume the servers adapt their ordering a1, . . . , ak according to the min-
imum matching in each time step. Based on the matching, we define the following
potential: ψ := √

2 · 4D
ε

∑k
i=1 d(ai, ci). We observe that in all time steps it holds

d(a∗, r) ≤ D
1−ε

· mc ≤ 2Dmc. This is because the distance does not increase if
the movement towards r is mc, and this is done as soon as mc is less or equal
1
D

(1 − ε) · d(ã, r ′) at the beginning of the time step. We fix a time step and assume
ã = a1.

First examine the case that ã moves towards its matching partner instead of
r ′. Then Δψ ≤ √

24D
ε

∑k
i=1 d(ci, c

′
i ) − √

24D
ε

∑k
i=1 d(ai, a

′
i ) and CAlg = D ·

∑k
i=1 d(ai, a

′
i )+d(a∗′

, r ′) ≤ D ·∑k
i=1 d(ai, a

′
i )+2Dmc. Consider the server which

is matched to c∗′
: Either it reaches c∗′

or it moves a distance of ms . In the first
case d(a∗′

, r ′) ≤ d(c∗′
, r ′) which gives a competitive ratio of

√
24

ε
· c(K) imme-

diately. In the latter case, there is a server aj such that d(aj , a
′
j ) = ms and hence

Δψ ≤ √
24D

ε

∑k
i=1 d(ci, c

′
i ) − √

2D
ε

∑k
i=1 d(ai, a

′
i ) − √

23D
ε

ms which implies a

competitive ratio of at most
√
24

ε
· c(K) as well.
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Now assume ã = a1 moves towards r ′ and hence a∗′ = a′
1. We have d(a′

1, c
′
1) −

d(a1, c
′
1) ≤ min{mc,

1
D

(1 − ε) · d(ã, r ′)}. In all of the following cases, we make use
of

Δψ = √
24D

ε

(∑k
i=1 d(a′

i , c
′
i ) − ∑k

i=1 d(ai, ci)
)

≤ √
24D

ε

∑k
i=1 d(ci, c

′
i ) + √

24D
ε

(∑k
i=1 d(a′

i , c
′
i ) − ∑k

i=1 d(ai, c
′
i )

)
.

We distinguish the following cases with respect to the positioning of the pages of
K:

1. d(a∗′
, r ′) ≤ d(c∗′

, r ′):
Since we assume D ≥ 2, we have

D · d(a1, a
′
1) ≤ d(a1, r

′)
≤ d(a1, a

′
1) + d(a′

1, r
′)

⇒ D
2 · d(a1, a

′
1) ≤ d(c∗′

, r ′).
It follows CAlg ≤ 3 · d(c∗′

, r ′) + D · ∑k
i=2 d(ai, a

′
i ) and

Δψ ≤ √
24D

ε

∑k
i=1 d(ci, c

′
i ) + √

28
ε

· d(c∗′
, r ′) − D · ∑k

i=2 d(ai, a
′
i ).

2. d(a∗′
, r ′) > d(c∗′

, r ′) and c∗′ = c′
1:

We know that
d(a′

1, c
′
1) − d(a1, c

′
1) ≤ − 1√

2
· d(a1, a

′
1) = − 1√

2
· min{mc,

1
D

(1 − ε) · d(ã, r ′)}
and hence

Δψ ≤ √
24D

ε

∑k
i=1 d(ci, c

′
i )− 4D

ε
·min{mc,

1
D

(1−ε)·d(ã, r ′)}−D·
k∑

i=2
d(ai, a

′
i ).

If d(a1, a
′
1) = mc then CAlg ≤ 3Dmc + D · ∑k

i=2 d(ai, a
′
i ), otherwise

CAlg ≤ 2 · d(ã, r ′) + D · ∑k
i=2 d(ai, a

′
i ).

3. d(a∗′
, r ′) > d(c∗′

, r ′) and c∗′ = c′
1:

We assume c∗′ = c′
2. It must hold a′

2 = c′
2 and hence d(c′

2, a
′
2) − d(c′

2, a2) ≤
−min{ms,

1
D

· d(ã, r ′)}.
In the case d(a2, a

′
2) = 1

D
· d(ã, r ′), it holds

d(a′
1, c

′
1) − d(a1, c

′
1) + d(a′

2, c
′
2) − d(a2, c

′
2) ≤ − ε

D
· d(ã, r ′). This gives us

Δψ ≤ √
24D

ε
(
∑k

i=1 d(ci, c
′
i ) − ε

D
· d(ã, r ′) − ∑k

i=3 d(ai, a
′
i )).

With CAlg = d(a′
1, r

′) + D · ∑k
i=1 d(ai, a

′
i ) ≤ 3 · d(ã, r ′) + D · ∑k

i=3 d(ai, a
′
i )

the bound follows.
In case d(a2, a

′
2) = ms , we have d(a′

1, c
′
1)−d(a1, c

′
1)+d(a′

2, c
′
2)−d(a2, c

′
2) ≤

mc − ms ≤ −εms . Similar as before,
Δψ ≤ √

24D
ε

(
∑k

i=1 d(ci, c
′
i ) − εms − ∑k

i=3 d(ai, a
′
i )) and

CAlg ≤ 4Dms + D · ∑k
i=3 d(ai, a

′
i ).
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We can extend this bound to the resource augmentation scenario, where the online
algorithm may move the servers a maximum distance of (1+ δ) · ms . When relaxing
the condition appropriately to mc ≤ (1+δ−ε) ·ms , then we get the following result:

Corollary 2 If mc ≤ (1 + δ − ε) · ms for some ε ∈ (0, 1
2 ], the algorithm WMS is√

2·11·(1+δ)
ε

· c(K)-competitive, where c(K) is the competitive ratio of the simulated
k-Page Migration algorithm K.

From here on we assume K to be a k-Page Migration algorithm obtained from
the transformation in Section 4.2.1. The offline helper and its invariants as stated in
Proposition 2 do not depend on the simulated algorithm and therefore all insights
gained from Section 4.2.2 are still valid. We use a potential composed of two major
parts just as for the unweighted case.

Let ô be an offline server which fulfills the invariants stated in Proposition 2. The
first part of the potential is then defined as

φ :=
{
4 · d(â, ô) if d(â, ô) ≤ 107548D · kmc

δ2

4 · 1
δms

d(â, ô)2 + A if 107548D · kmc

δ2
< d(â, ô)

with A := 4 · (107548D kmc

δ2
− 1

δms
(107548D kmc

δ2
)2).

For the second part, we set

ψ := Y · D
mc

δms

k∑

i=1

d(ai, ci)

where the online servers ai are always sorted such that they represent a minimum
weight matching to the simulated servers ci . We choose Y = Θ( k

δ2
) to be sufficiently

large.
We begin by analyzing ψ , reusing ideas from the proof of Theorem 7.

Lemma 13 Δψ ≤ O(1) · Y · mc

δms
· CK − D · ∑k

i=1 d(ai, a
′
i ).

Proof Assume that a∗ = a1. Every other server ai moves towards its counterpart ci ,
hence

Δψ ≤ Y · D mc

δms

k∑

i=1
(d(a′

i , c
′
i ) − d(ai, ci))

≤ Y · D mc

δms

(

d(a′
1, c

′
1) − d(a1, c1) +

k∑

i=2
(d(ci, c

′
i ) − d(ai, a

′
i ))

)

.

First examine the case that ã moves towards its matching partner instead of r ′.
Then Δψ ≤ Y · D mc

δms
· ∑k

i=1 d(ci, c
′
i ) − Y · D mc

δms
· ∑k

i=1 d(ai, a
′
i ).

Now assume ã = a1 moves towards r ′. We have
d(a1, a

′
1) ≤ min{(1+ δ

2 )ms,
1
D

(1− δ
2 ) · d(ã, r ′)}. We distinguish the following cases

with respect to the positioning of the pages of K:

1. d(a∗′
, r ′) ≤ d(c∗′

, r ′):
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Since we assume D ≥ 2, we have

D · d(a1, a
′
1) ≤ d(a1, r

′)
≤ d(a1, a

′
1) + d(a′

1, r
′)

⇒ D
2 · d(a1, a

′
1) ≤ d(c∗′

, r ′).

It follows Δψ ≤ YD mc

δms
· ∑k

i=1 d(ci, c
′
i ) + Y mc

δms
· d(c∗′

, r ′) − D ·
∑k

i=2 d(ai, a
′
i ).

2. d(a∗′
, r ′) > d(c∗′

, r ′) and c∗′ = c′
1:

We know that d(a′
1, c

′
1) − d(a1, c

′
1) ≤ − 1√

2
· d(a1, a

′
1) and hence

Δψ ≤ √
24D

ε

∑k
i=1 d(ci, c

′
i ) − 4D

ε
· d(a1, a

′
1) − D · ∑k

i=2 d(ai, a
′
i ).

3. d(a∗′
, r ′) > d(c∗′

, r ′) and c∗′ = c′
1:

We assume c∗′ = c′
2. It must hold a′

2 = c′
2 and hence

d(c′
2, a

′
2) − d(c′

2, a2) ≤ −min{ms,
1
D

· d(ã, r ′)}. This gives us
d(a′

1, c
′
1) − d(a1, c

′
1) + d(a′

2, c
′
2) − d(a2, c

′
2) ≤ −ε · d(a2, a

′
2). It follows

Δψ ≤ √
24D

ε
(
∑k

i=1 d(ci, c
′
i ) − ε · d(a2, a

′
2) − ∑k

i=3 d(ai, a
′
i ))

≤ √
24D

ε

∑k
i=1 d(ci, c

′
i ) − D · ∑k

i=1 d(ai, a
′
i ).

Lemma 14 If d(a∗′
, r ′) > d(c∗′

, r ′), then

Δψ ≤ Y · mc

δms
CK − D ·

k∑

i=1
d(ai, a

′
i ) − Y−4

2 D mc

δms
· min{ms,

1
D

· d(ã, r ′)}.

Proof Assume that a∗ = a1. Every other server ai moves towards its counterpart ci ,
hence

Δψ ≤ Y · D mc

δms

k∑

i=1
(d(a′

i , c
′
i ) − d(ai, ci))

≤ Y · D mc

δms

(

d(a′
1, c

′
1) − d(a1, c1) +

k∑

i=2
(d(ci, c

′
i ) − d(ai, a

′
i ))

)

.

First examine the case that ã moves towards its matching partner instead of r ′.
Then

Δψ ≤ Y · D mc

δms
· ∑k

i=1 d(ci, c
′
i ) − Y · D mc

δms
· ∑k

i=1 d(ai, a
′
i )

≤ Y · mc

δms
CK − D ·

k∑

i=1
d(ai, a

′
i ) − (Y − 1) · D mc

δ

since the server matched to c∗′
moves the full distance.

Now assume ã moves towards r ′. If c∗′ = c′
1, we know that d(a′

1, c
′
1)−d(a1, c

′
1) ≤

− 1√
2

· d(a1, a
′
1) and hence

Δψ ≤ Y · D mc

δms

∑k
i=1 d(ci, c

′
i ) − D mc

δms
· ∑k

i=1 d(ai, a
′
i ) − Y√

2
· D mc

δms
d(a1, a

′
1) with

d(a1, a
′
1) = min{(1 + δ

2 )ms,
1
D

(1 − δ
2 ) · d(ã, r ′)}.
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Otherwise, we assume c∗′ = c′
2. It must hold a′

2 = c′
2 and hence d(c′

2, a
′
2) −

d(c′
2, a2) ≤ −min{ms,

1
D

· d(ã, r ′)}. This gives us
d(a′

1, c
′
1) − d(a1, c

′
1) + d(a′

2, c
′
2) − d(a2, c

′
2) ≤ − δ

2 · d(a2, a
′
2). It follows

Δψ ≤ Y · D mc

δms
(
∑k

i=1 d(ci, c
′
i ) − δ

2 · d(a2, a
′
2) − ∑k

i=3 d(ai, a
′
i ))

≤ Y · D mc

δms

∑k
i=1 d(ci, c

′
i ) − D · ∑k

i=1 d(ai, a
′
i ) − Y−4

2 D mc

δms
· d(a2, a

′
2).

Now consider the case that r ′ /∈ inner(o∗′
). We have

d(a∗′
, r ′) ≤ d(o∗a′

, r ′)
≤ d(o∗′

, o∗a′
) + d(o∗′

, r ′)
≤ ( 48960k

δ2
+ 1) · d(o∗′

, r ′).

The movement costs are canceled by Δψ as in Lemma 13. The increase of φ can
be bound with Lemma 10. In all of the above, the competitive ratio is bounded by

O( k2

δ3
) · mc

δms
+ Y · mc

δms
· c(K).

Finally, we consider the case r ′ ∈ inner(o∗′
). As in the previous Section, when-

ever d(a∗, r ′) > 102970D kmc

δ2
, we make use of Lemma 7 to obtain the following

result, which then helps us bound Δφ:

Lemma 15 If d(a∗, r ′) > 102970D kmc

δ2
and r ′ ∈ inner(o∗′

), then

d(â′, ô′) − d(â, ô) ≤ − δ
8ms .

Proof By our construction of the simulated k-Page Migration algorithm, we have

d(c′
i , r

′) ≤ 33Dkmc ≤ δ2

2652 · d(a∗′
, r ′) for all i. Furthermore,

d(o∗′
, o∗a′

) ≤ d(o∗′
, a∗′

)

≤ d(o∗′
, r ′) + d(r ′, a∗′

)

⇔ (1 − δ2

48960k ) · d(o∗′
, o∗a′

) ≤ d(r ′, a∗′
).

Hence
d(c′

i , ô
′) ≤ d(c′

i , r
′) + d(r ′, o∗′

) + d(o∗′
, ô′)

≤ δ2

2652 · d(a∗′
, r ′) + ( δ

48 + δ2

48960k ) · d(o∗′
, o∗a′

)

≤ 0.022δ · d(a∗′
, r ′)

≤ 0.022δ · d(a′
i , r

′)

and with Lemma 7, d(a′
i , ô

′) − d(ai, ô
′) ≤ − 1+ 1

4 δ

1+ 1
2 δ

d(ai, a
′
i ) follows for all i.

In order to bound the movement of ô, we need to show that d(o∗, o∗a) ≥ 2 ·
51483 kmc

δ2
. We use

d(a∗, r ′) ≤ mc + d(a∗′
, r ′)

≤ mc + d(o∗a′
, r ′)

≤ mc + (1 + δ2

48960k ) · d(o∗′
, o∗a′

)

⇔ 1

1+ δ2
48960k

(d(a∗, r ′) − mc) ≤ d(o∗′
, o∗a′

).
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The bound follows from d(a∗, r ′) > 102970 kmc

δ2
.

From Proposition 2 we get d(ô, ô′) ≤ (1 + δ
8 )ms and therefore

d(â′, ô′) − d(â, ô) ≤ − 1+ 1
4 δ

1+ 1
2 δ

d(ai, a
′
i ) + d(ô, ô′)

≤ −(1 + δ
4 )ms + (1 + δ

8 )ms

≤ − δ
8ms

where i is chosen such that ai is closest to ô′.

Lemma 16 If r ′ ∈ inner(o∗′
), then CAlg +Δφ +Δψ ≤ Y · mc

δms
·CK +2 ·d(o∗′

, r ′).

Proof 1. d(â′, ô′) ≤ 107548D · kmc

δ2
:

First consider the case d(a∗′
, r ′) ≤ d(c∗′

, r ′). With Lemma 13 we can bound the
movement costs of the algorithm. Furthermore, we use

d(o∗′
, o∗a′

) ≤ d(o∗′
, â′)

≤ d(o∗′
, ô′) + d(ô′, â′)

≤ δ
48 · d(o∗′

, o∗a′
) + d(ô′, â′)

⇔ (1 − δ
48 ) · d(o∗′

, o∗a′
) ≤ d(ô′, â′)

to get

d(ô′, â′) ≤ d(ô′, a∗′
)

≤ d(a∗′
, r ′) + d(r ′, o∗′

) + d(o∗′
, ô′)

≤ d(a∗′
, r ′) + 2 · δ

48 · d(o∗′
, o∗a′

)

≤ d(a∗′
, r ′) + 2δ

47 · d(ô′, â′)
⇒ d(ô′, â′) ≤ 2 · d(a∗′

, r ′).

Hence Δφ ≤ 4·d(â′, ô′) ≤ 8·d(c∗′
, r ′). In total, CAlg +Δφ+Δψ ≤ Y · mc

δms
·CK

with Y ≥ 9.
Otherwise, Lemma 14 applies which gives us

Δψ ≤ Y · mc

δms
CK − D ·

k∑

i=1
d(ai, a

′
i ) − Y−4

2 D mc

δms
· min{ms,

1
D

· d(ã, r ′)}. We

may either use CAlg + Δφ ≤ 9 · d(ã, r ′) + D ·
k∑

i=1
d(ai, a

′
i ), or

d(a∗′
, r ′) ≤ d(â′, r ′)

≤ d(â′, ô′) + d(ô′, r ′)
≤ d(â′, ô′) + 2 · δ

48 · d(o∗′
, o∗a′

)

≤ (1 + 2δ
47 ) · d(â′, ô′)

gives us

CAlg +Δφ ≤ 6·d(â′, ô′)+D ·
k∑

i=1
d(ai, a

′
i ) ≤ 6·91414D · kmc

δ2
+D ·

k∑

i=1
d(ai, a

′
i ).

In any case, CAlg + Δφ + Δψ ≤ Y · mc

δms
· CK with Y ≥ Ω( k

δ2
).

2. 107548D · kmc

δ2
< d(â′, ô′):
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We show that the condition of Lemma 15 applies:

d(â′, ô′) ≤ d(a∗′
, ô′)

≤ d(a∗′
, a∗) + d(a∗, r ′) + d(r ′, ô′)

≤ mc + d(a∗, r ′) + 2 · δ
48 · d(o∗′

, o∗a′
)

≤ mc + d(a∗, r ′) + 2
47 · d(â′, ô′)

⇔ 45
47 · d(â′, ô′) − mc ≤ d(a∗, r ′)

⇒ 102970D kmc

δ2
≤ d(a∗, r ′)

Hence the lemma gives us

Δφ ≤ 4 · 1
δms

(
d(â′, ô′)2 − d(â, ô)2

)

≤ 4 · 1
δms

(
d(â′, ô′)2 − (d(â′, ô′) + δ

8ms)
2
)

= −d(â′, ô′).
Furthermore, we have

CAlg ≤ d(â′, r ′) + D · ∑k
i=1 d(ai, a

′
i )

≤ d(â′, ô′) + d(ô′, o∗′
) + d(o∗′

, r ′) + D · ∑k
i=1 d(ai, a

′
i )

≤ d(â′, ô′) + (1 + δ
48 ) · d(o∗′

, r ′) + D · ∑k
i=1 d(ai, a

′
i )

and Δψ ≤ Y · mc

δms
· CK − D · ∑k

i=1 d(ai, a
′
i ) due to Lemma 14. In total, we

get CAlg + Δφ + Δψ ≤ Y · mc

δms
· CK + 2 · d(o∗′

, r ′).

The resulting competitive ratio Y · mc

δms
· c(K) + 2 is less than the

O( k2

δ3
) · mc

δms
+ Y · mc

δms
· c(K) bound from the former set of cases. Accounting for

the loss due to the transformation of the simulated k-Page Migration algorithm, we
obtain the following upper bound:

Theorem 8 Ifmc ≥ (1+δ)ms , the algorithmWMS isO( 1
δ4

·k2·mc

ms
+ 1

δ3
·k2·mc

ms
·c(K))-

competitive, where c(K) is the competitive ratio of the simulated k-Page Migration
algorithm K.

6 Improved Competitiveness on the Line

In this section, we show how to use our offline abstraction from Section 4.2.2 to
analyze an algorithm not based on the simulation of an existing k-Page Migration
algorithm. We take the well known Double Coverage algorithm for the line and adapt
it to our setting with restricted movement. Note that we will only state the algorithm
and its analysis for D = 1. It is easy to see how to extend it to an arbitrary D ≥ 1.

Our algorithm Restricted Double Coverage (RDC) works as follows:
Let a1, . . . , ak be the servers ordered by their position on the line from left to

right. If the new request r ′ is to the left of a1 or to the right of ak , move the respective
server ai a distance of min{d(ai, r

′), (1 + δ)ms} towards r ′. Otherwise, r ′ is located
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between two servers ai and ai+1. In this case, let aj be a closest server to r ′. Move
ai and ai+1 a distance of min{d(aj , r

′), (1 + δ)ms} towards r ′.
The following analysis, specifically the potential function ψ and its use in the

analysis, is adapted from [11]. The overall structure is the same as in the previous
sections.

We use the abstraction ô from Proposition 2 and use as before the potential

φ :=
{
4 · d(â, ô) if d(â, ô) ≤ 107548 · kmc

δ2

4 · 1
δms

d(â, ô)2 + A if 107548 · kmc

δ2
< d(â, ô)

with A := 4 · (107548 kmc

δ2
− 1

δms
(107548 kmc

δ2
)2).

To handle shorter distances to the request, we use an adaption of the potential used
in the proof for DC:

ψ := X · mc

ms

∑

i<j

d(ai, aj ) + Y · mc

ms

k∑

i=1

d(ai, oi)

where both the online servers ai and the optimal servers oi are always sorted from
left to right. It is easy to see that every offline solution can be transferred such that

the servers never change their ordering. We choose X = Θ( k

δ2
), Y = Θ(k2

δ2
) to be

sufficiently large.
Similar to the original analysis we obtain the following result:

Lemma 17 Δψ ≤ 2Y mc

ms
· COpt − min{ 12Y, X} · mc

ms
· ∑k

i=1 d(ai, a
′
i ).

Proof We distinguish two major cases: First, assume the request is either to the left
of a1 or to the right of an. Both are analogous, hence we deal only with r ′ being to
the left of a1.

If o′
1 is not the closest server of the optimal solution to r ′, then it is

to the left of r ′ and hence d(o′
1, a

′
1) − d(o′

1, a1) ≤ −d(a1, a
′
1). Otherwise,

d(o′
1, a

′
1) − d(o′

1, a1) ≤ d(o′
1, r

′) + d(a′
1, r

′) − (d(a1, r
′) − d(r ′, o′

1))≤ 2d(o′
1, r

′) − d(a1, a
′
1).

For the potential it therefore holds

Δψ = X · (k − 1)mc

ms
· d(a1, a

′
1) + Y mc

ms

(

d(o′
1, a

′
1) − d(o′

1, a1) +
k∑

i=1
d(oi, o

′
i )

)

≤ 2Y · mc

ms
· COpt + X · (k − 1)mc

ms
· d(a1, a

′
1) − Y · mc

ms
d(a1, a

′
1)

≤ 2Y · mc

ms
· COpt − 1

2Y · mc

ms
d(a1, a

′
1)

for Y ≥ 2kX.
In the second major case, the request r ′ is in between ai and ai+1. We assume that

ai is closest to r ′, the other case is analogous. Both servers move min{d(ai, r
′), (1+

δ)ms} towards r ′.
Consider first the term X · mc

ms

∑

i<j

d(ai, aj ). Servers ai and ai+1 decrease their

distance by 2d(ai, a
′
i ). For the servers right of ai+1, ai decreases the distance by
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d(ai, a
′
i ) and ai+1 moves away from the same servers by the same distance. The same

argument applies for the servers left of ai . Hence
X · mc

ms

∑

i<j

d(a′
i , a

′
j ) − X · mc

ms

∑

i<j

d(ai, aj ) ≤ −2X mc

ms
· d(ai, a

′
i ).

For the second term Y · mc

ms

k∑

i=1
d(ai, oi). If o′

i is to the right of r ′ or o′
i+1 to the left

of r ′ then
k∑

i=1
d(a′

i , o
′
i ) −

k∑

i=1
d(ai, o

′
i ) ≤ 0. Otherwise, let j ∈ {i, i + 1} such that

o∗′ = o′
j . Then

d(o′
j , a

′
j ) − d(o′

j , aj ) ≤ d(o′
j , r

′) + d(a′
j , r

′) − (d(aj , r
′) − d(r ′, o′

j ))

≤ 2d(o′
j , r

′) − d(aj , a
′
j ).

Since d(o′
	, a

′
	) − d(o′

	, a	) ≤ d(a	, a
′
	), we have

d(o′
i , a

′
i ) − d(o′

i , ai) + d(o′
i+1, a

′
i+1) − d(o′

i+1, ai+1) ≤ 2d(o∗′
, r ′).

Summarizing this case, we got

Δψ ≤ −2X mc

ms
· d(ai, a

′
i ) + 2Y mc

ms
· d(o∗′

, r ′) + Y mc

ms
·

k∑

i=1
d(oi, o

′
i )

≤ 2Y mc

ms
· COpt − X · mc

ms

∑k
i=1 d(ai, a

′
i ).

Now consider the case that r ′ /∈ inner(o∗′
). We have

d(a∗′
, r ′) ≤ d(o∗a′

, r ′) ≤ d(o∗′
, o∗a′

) + d(o∗′
, r ′) ≤ ( 48960k

δ2
+ 1) · d(o∗′

, r ′). The
movement costs are canceled by Δψ as in Lemma 17. The increase of φ can be
bounded as in Lemma 10. In all of the above, the competitive ratio is bounded by

O( k2

δ3
· mc

δms
+ Y · mc

ms
).

Finally, we consider the case r ′ ∈ inner(o∗′
). In contrast to the previous sections,

we can simplify the use of φ due to the line metric and the DC algorithm:

Lemma 18 If d(a∗, r ′) > 102970 kmc

δ2
and r ′ ∈ inner(o∗′

), then d(â′, ô′)−d(â, ô) ≤
− δ

2ms .

Proof Since we are on the line, it is guaranteed by the algorithm that the servers
which move in the current time step move directly towards ô′, and hence we get
d(a′

i , ô
′) − d(ai, ô

′) = −d(ai, a
′
i ) = −(1 + δ)ms .

In order to bound the movement of ô, we need to show that d(o∗, o∗a) ≥ 2 ·
51483 kmc

δ2
. We use

d(a∗, r ′) ≤ mc + d(a∗′
, r ′)

≤ mc + d(o∗a′
, r ′)

≤ mc + (1 + δ2

48960k ) · d(o∗′
, o∗a′

)

⇔ 1

1+ δ2
48960k

(d(a∗, r ′) − mc) ≤ d(o∗′
, o∗a′

).

The bound follows from d(a∗, r ′) > 102970 kmc

δ2
.
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From Proposition 2 we get d(ô, ô′) ≤ (1 + δ
8 )ms and therefore

d(â′, ô′) − d(â, ô) ≤ −d(ai, a
′
i ) + d(ô, ô′)

≤ −(1 + δ)ms + (1 + δ
8 )ms

≤ − δ
2ms

where i is chosen to be closest to ô′.

Lemma 19 If r ′ ∈ inner(o∗′
), then CAlg + Δφ + Δψ ≤ 4Y mc

ms
· COpt .

Proof 1. d(â′, ô′) ≤ 107548 · kmc

δ2
: We use

d(a∗′
, r ′) ≤ d(â′, r ′)

≤ d(â′, ô′) + d(ô′, r ′)
≤ d(â′, ô′) + 2 · δ

48 · d(o∗′
, o∗a′

)

≤ (1 + 2δ
47 ) · d(â′, ô′).

to get CAlg + Δφ ≤ 6 · d(â′, ô′) + ∑k
i=1 d(ai, a

′
i ). Furthermore,

Δψ ≤ 2Y mc

ms
· COpt − min{ 12Y, X} · mc

ms
· ∑k

i=1 d(ai, a
′
i )

≤ 2Y mc

ms
· COpt − ∑k

i=1 d(ai, a
′
i ) − (min{ 12Y, X} − 1) · mc

due to Lemma 17. In total, CAlg + Δφ + Δψ ≤ 2Y mc

ms
· COpt with

X, Y ≥ Ω( k

δ2
).

2. 107548 · kmc

δ2
< d(â′, ô′): We show that the condition of Lemma 18 applies:

d(â′, ô′) ≤ d(a∗′
, ô′)

≤ d(a∗′
, a∗) + d(a∗, r ′) + d(r ′, ô′)

≤ mc + d(a∗, r ′) + 2 · δ
48 · d(o∗′

, o∗a′
)

≤ mc + d(a∗, r ′) + 2
47 · d(â′, ô′)

⇔ 45
47 · d(â′, ô′) − mc ≤ d(a∗, r ′)

⇒ 102970 kmc

δ2
≤ d(a∗, r ′).

Hence the lemma gives us

Δφ ≤ 4 · 1
δms

(
d(â′, ô′)2 − d(â, ô)2

)

≤ 4 · 1
δms

(
d(â′, ô′)2 − (d(â′, ô′) + δ

2ms)
2
)

= −4 · d(â′, ô′).
Furthermore, we have

CAlg ≤ d(â′, r ′) + ∑k
i=1 d(ai, a

′
i )

≤ d(â′, ô′) + d(ô′, o∗′
) + d(o∗′

, r ′) + ∑k
i=1 d(ai, a

′
i )

≤ d(â′, ô′) + (1 + δ
48 ) · d(o∗′

, r ′) + ∑k
i=1 d(ai, a

′
i )

and Δψ ≤ 2Y mc

ms
·COpt −min{ 12Y, X} · mc

ms
·∑k

i=1 d(ai, a
′
i ) due to Lemma 17.

In total, we get CAlg + Δφ + Δψ ≤ 4Y mc

ms
· COpt .
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The resulting competitive ratio O(1) · Y · mc

ms
is less than the

O( k2

δ3
· mc

δms
+ Y · mc

ms
) bound from the former set of cases. We therefore conclude:

Theorem 9 The RDC algorithm is O( k2

δ4
· mc

ms
)-competitive.

7 Open Problems

The gap between the upper and lower bound is closely related to the question
of the deterministic upper bound for k-Page Migration: Not only would an O(k)-
competitive algorithm for k-Page Migration directly improve the bound for D > 1,
it could also give an idea how to improve the analysis of the greedy step in our algo-
rithm, such that the costly transformation of the simulated algorithm would no longer
be needed. This would potentially reduce the upper bound by another factor of k.

We can argue from previous work that we have a lower bound of Ω(1/δ) for when
the dimension of the space is as large as k. It would be an interesting problem to
explore the problem without this resource augmentation on the line, and whether a
competitive algorithm exists in this case for k > 1. For higher dimensions, intuitively
there should be a lower bound depending on 1/δ but decreasing with k, as there are
more initial places the algorithm can cover as a “guess”, and hence smaller distances
between the adversary and the algorithm can be achieved at the time where the target
position of the request is revealed.

In Section 6 we have shown how to circumvent the use of the transformation by
stating an explicit algorithm for the problem. For the original k-Server problem, the
DC algorithm also works for trees. Similarly, we believe this result is also extendable
to continuous trees, where the servers can occupy any place on the paths within the
tree. Furthermore, it would be interesting to adopt other algorithms as well if pos-
sible. If one wants to use the scheme of analysis we used here, there needs to be a
potential function for the algorithm which cancels the cost in every time step where
the distance to the requests is small such that our offline abstraction cannot be utilized
yet.

If Ω(k2) is a lower bound for k-Page Migration, this carries over to our model as
well. We believe that the main algorithmic idea is suitable to reach an asymptotically
optimal competitive ratio, but it remains an open problem to derive a proof of that.
The high constants in our proofs are partially due to allowing easier argumentation
in certain segments of the proof. There is however also great potential in reducing
constants by trying to extend the potential analysis to operate in longer phases instead
of doing a step-by-step analysis.

If we allow randomization, we can get k-Page Migration algorithms with poly-
logarithmic competitive ratio from [4]. As discussed in the related work section,
the question of the best possible competitive ratio of randomized algorithms for
the k-Server problem is still open, however we know that a result polylogarith-
mic in k can be achieved [17]. As our construction is entirely deterministic,
apart from potentially the simulated algorithm, it would be interesting whether
randomization can be used to significantly improve the competitive ratio. The

982 Theory of Computing Systems (2021) 65:943–984



desired result would be an algorithm with a competitive ratio polylogarithmic in
k.

Finally, it would be interesting to know whether a competitive ratio independent
of time can be achieved if instead of restricting the distance between consecutive
requests, we would analyze the problem under a weak adversary who has less servers
than the online algorithm. This problem is also considered for the classical k-Server
problem [15], where the question of the competitive ratio is also still unresolved. In
our problem, this extension could not just replace the restriction to the parameter
mc, but also reduce the competitive ratio with respect to the number of servers. For
Euclidean metrics, not much is known in this regard, with only a recent bound show-
ing that no matter how high the difference in the number of servers, the dependence
on the number of optimal servers can never be removed [6].
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