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Abstract
We study the complexity of evaluating well-designed pattern trees, a query language
extending conjunctive queries with the possibility to define parts of the query to
be optional. This possibility of optional parts is important for obtaining meaning-
ful results over incomplete data sources as it is common in semantic web settings.
Recently, a structural characterization of the classes of well-designed pattern trees
that can be evaluated in polynomial time was shown. However, projection—a cen-
tral feature of many query languages—was not considered in this study. We work
towards closing this gap by giving a characterization of all tractable classes of simple
well-designed pattern trees with projection (under some common complexity theo-
retic assumptions). Since well-designed pattern trees correspond to the fragment of
well-designed {AND, OPTIONAL}-SPARQL queries this gives a complete description
of the tractable classes of queries with projections in this fragment that can be charac-
terized by the underlying graph structures of the queries. For non-simple pattern trees
the tractability criteria for simple pattern trees do not capture all tractable classes.
We thus extend the characterization for the non-simple case in order to capture some
additional tractable cases.
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1 Introduction

Well-designed pattern trees (wdPTs) are a query formalism well-suited to deal
with the ever increasing amount of incomplete data. Well-designed pattern trees
over SPARQL triple patterns are equivalent to the class of well-designed {AND,
OPTIONAL}-SPARQL queries, see Pérez et al. [21], and were in fact originally intro-
duced as a formalism to more easily study SPARQL queries. By replacing triple
patterns with relational atoms, wdPTs can also be seen as an extension of Conjunc-
tive Queries (CQs): a wdPT is a rooted tree where each node represents a conjunction
of atoms, and the tree structure represents a nesting of optional matching. The idea is
to start evaluating the CQ at the root and to iteratively extend the retrieved results as
much as possible by the results of the CQs in the other nodes. This allows wdPTs to
return partial answers in cases where mapping the complete query into the database
is impossible—unlike CQs which in such a situation return no answer.

Well-designed pattern trees and the corresponding SPARQL fragment represent
an important class of SPARQL queries and have been studied intensively within the
last decade, see Pérez et al. [21], Letelier et al. [17], Arenas and Pérez [1], Pich-
ler and Skritek [23], Picalausa and Vansummeren [22], Kostylev et al. [15], Barceló
et al. [3], Arenas et al. [2], Romero [24]. Thus, many properties of and problems
related to these queries are now well understood. For example, the evaluation prob-
lem for wdPTs (i.e., given a wdPT, a database and a mapping, is this mapping an
answer to the wdPT over the database?) is coNP-complete for projection free wdPTs
[21] and �P

2 -complete in the presence of projection [17]. However, certain tractable
classes of wdPTs have been identified [3]. The main idea there is to extend known
tractability conditions for CQs to wdPTs. However, the question of characterizing
exactly the classes of wdPTs for which tractable query evaluation is possible—and
thus the question of how suitable the approach of extending tractability conditions of
CQs to wdPTs is for describing the space of tractable classes of wdPTs—has been
largely ignored. Only very recently, this question was addressed for wdPTs with-
out projection, and a characterization of the classes for which query evaluation is in
PTIME was given by Romero [24]. Notably, as also observed for Boolean Conjunc-
tive Queries by Grohe et al. [13] and Grohe [12], for wdPTs without projection these
classes coincide with the ones for which evaluation is in FPT.

However, Romero [24] does not consider projection, an essential and central fea-
ture of query languages. Thus, the question “What are all tractable classes of wdPTs
with projection?” remains open. We work towards closing this gap.

One observation consistently made in all aforementioned work on wdPTs is that
problems become much more complex once projection is included. This is true for
the computational complexity of the problems (e.g., as mentioned, for the evaluation
problem it increases from coNP- to �P

2 -completeness; for classical query contain-
ment, the NP-complete problem becomes even undecidable [23]) as well as for
establishing these results.

This is because of the particular semantics of well-designed SPARQL with projec-
tion. For wdPTs without projection, given some database, the set of answers consists
of all variable mappings such that there exists a subtree of the wdPT satisfying the
following conditions: first, it must contain the root node of the tree. Second, the set
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of variables occurring in the subtree must be the same as the domain of the mapping.
Third, the mapping must map each atom in the subtree into the database, and fourth,
no extension of the mapping is allowed to map all atoms of any node outside the sub-
tree that is a child node of a node in the subtree into the database. This is illustrated
by the following example (a precise definition is given in Section 2).

Example 1 Fig. 1 shows a wdPT p with four nodes r , t1, t2, and t3 where r is the root
node.

At its root node, the query is looking for information on flights: the airline oper-
ating the flight, the flight number, origin and destination. This information shall
be extended by some contact information (t1), and information on available seats
on the flight (t2) in case any of this information is available. If, in addition to
the information on available seats also some ratings of the free seats are avail-
able (t3), these shall be returned as well. Observe that the extensions to t1 and
t2 are independent of each other. An equivalent SPARQL query (replacing rela-
tional atoms by triple patterns, and abbreviating variable and predicate names)
would be

{{?airl operates ?fn . ?fn from ?origin . ?fn to ?dest}

OPTIONAL {?airl contact ?cd} }

OPTIONAL { {?fn avail_seats ?sn}

OPTIONAL {?sn reviews ?r} }

For the database instance D also shown in the figure, the mapping μ defined as
μ(airline) = “XYZ”, μ(flight number) = 1, μ(origin) = “LHR”, μ(destination) =
“LIS”, and μ(contact details) = “e@ma.il” is an answer to p over D. This is because
of the subtree of p consisting of the nodes r and t1. It can be checked that it satis-
fies all four conditions mentioned earlier. For the fourth condition, just observe that
there exists no extension of μ that maps available seats(flight number, seat number)
into D. Because of the fourth condition, the mapping ν with ν(airline) =
“XYZ”, ν(flight number) = 2, ν(origin) = “LHR”, ν(destination) = “LIS”,
and μ(contact details) = “e@ma.il” is no solution, because this mapping can
be extended by ν(seat number) = “1A” in a way that maps available seats(
flight number, seat number) also into D.

Fig. 1 The wdPT p and database D from Example 1
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Without projection, the only hard part in deciding whether some mapping is a solu-
tion is to check for the existence of an extension. This requires a homomorphism test
which is well known to be an NP-hard problem. However, for wdPTs with projection,
a mapping is a solution if there exists an extension of this mapping to some subset of
the existential variables in the tree, such that the extended mapping is a solution to
the wdPT considered without projection.

Example 2 Consider the wdPT from Example 1, but now assume that the variables
flight number and airline are not part of the output but projected away. Then the map-
ping μ with μ(origin) = “LHR”, μ(destination) = “LIS”, and μ(contact details) =
“e@ma.il” is a solution because of the extension μ(flight number) = 1 and
μ(airline) = “XYZ”. Observe that the extension μ(airline) = “XYZ” and
μ(flight number) = 2 does not witness μ to be a solution, since, as already dis-
cussed before, this mapping is not maximal. As a result both, μ and its extension
ν with ν(seat number) = “1A” (and otherwise defined like μ) are solutions in
this case.

As a consequence, besides testing some mapping for maximality, as a second
source of hardness, different mappings on the existential variables have to be taken
into account. In addition to the increased complexity of the evaluation problem, this
also has the effect that the classes of wdPTs with projection for which query eval-
uation is in PTIME and in FPT no longer coincide, as observed by Kröll et al. [16].
Thus, in this setting, the choice of the tractability notion makes a difference when
describing all tractable classes.

We choose to study the complexity of query evaluation in the model of parameter-
ized complexity where, as usual, we take the size of the query as the parameter. As
already argued by Papadimitriou and Yannakakis [20], this model allows for a more
fine-grained analysis than the classical perspectives of data- and query complex-
ity. In parameterized complexity, query answering is considered tractable, formally
in FPT, if, after a preprocessing that only depends on the query, the actual evalu-
ation can be done in polynomial time [10, 11]. This allows for potentially costly
preprocessing on the generally small query while the dependency on the gener-
ally far bigger database is polynomial for an exponent independent of the query.
Parameterized complexity has found many applications in the complexity of query
evaluation problems, see, e.g., Grohe et al. [13], Grohe [12], Marx [18], Chen [4],
Romero [24].

In our efforts to better understand the tractability frontier for wdPTs, we provide
a complete characterization of the tractable classes of simple wdPTs, i.e., wdPTs
where no two atoms share the same relation symbol. Because of the relationship
between wdPTs and well-designed {AND, OPTIONAL}-SPARQL queries, this imme-
diately gives a complete description of the tractable classes of well-designed {AND,
OPTIONAL}-SPARQL queries with projection that can be characterized by only con-
sidering the graph structures of the queries, similar, e.g., to the work of Grohe et al.
[13] and Chen [4]. We note that the results showing the existence of classes of wdPTs
for which the evaluation problem is NP-hard but in FPT can be easily extended to
simple wdPTs.
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Our tractability criteria are not restricted to simple wdPTs. In fact, the same
tractability criteria can also directly be applied to give tractable classes of non-simple
wdPTs, i.e., such in which the same relational symbol may appear several times.
However, in this case, there are classes of queries that do not satisfy our tractabil-
ity criteria for simple queries and are still tractable. This shows that the restriction to
simple wdPTs is crucial for the lower bounds. To extend the applicability of our tech-
niques in the case of non-simple queries, we generalize our criteria by incorporating
the notion of cores into well-designed pattern trees as it was done in the projection
free case by Romero [24] and for conjunctive queries by Dalmau et al. [7]. While this
allows us to show tractability for more classes of wdPTs, we do not achieve a full
dichotomy in this setting.

Summary of Results and Organization of the Paper We study the following deci-
sion problem: Given a wdPT, a database, and a mapping, is the mapping a solution
of the wdPT over the database? This is the standard formulation of the evalua-
tion problem usually studied, cf. Letelier et al. [17], Kaminski and Kostylev [14],
Romero [24], Barceló et al. [3]. It reveals the influence of the optional query parts
on the evaluation problem, which is lost, e.g., when considering Boolean queries.
Instead of just SPARQL triple patterns, we consider the more general case of
wdPTs with arbitrary relational atoms where we always assume that the classes of
queries we consider have bounded arity. Our main result is a characterization of the
classes of simple wdPTs with projection that allow fixed-parameter tractable query
evaluation.

After some preliminaries in Section 2, we define two tractability conditions in
Section 3. By comparing these conditions with the tractability criterion given by
Romero [24] for the projection free case, we discuss how they describe the additional
complexity introduced by projection. Note that some of the conditions provided here
have precursors in Barceló et al. [3] and Kröll et al. [16] that had to be carefully
refined to provide a fine-grained complexity analysis.

In Section 4 we prove that the two tractability conditions imply FPT membership
of the evaluation problem by presenting an algorithm that exploits these conditions.

In Section 5 we then show that both tractability conditions are indeed necessary
for a class of simple wdPTs to be tractable. That is, we show that if either of them is
not satisfied by a class of wdPTs, the evaluation problem for this class is either W[1]-
or coW[1]-hard.

In Section 6 we show how to extend our tractability criteria for the non-simple case
by incorporating the notion of cores and show how this allows us to capture more
tractable classes. Besides a generalization of the tractability criteria from Section 3,
we also introduce a generalization of the homomorphism problem, and completely
characterize its tractable classes.

In Section 7, we discuss our results and potential extensions to conclude the paper.
This article is an extended version of the conference paper [19]. The main

additional contribution compared to the conference version consists of Section 6,
which is completely new. In addition, several minor improvements have been made
throughout the article, including the extension of existing and addition of new
examples.
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2 Preliminaries

Basics Let Const and Var be two disjoint countable infinite sets of constants and
variables, respectively. A relational schema σ is a set {R1, . . . , Rn} of relation
symbols Ri , each having an assigned arity ri ≥ 0. A relational atom Ri(v) over σ

consists of a relation symbol Ri ∈ σ and a tuple v ∈ (Const ∪ Var)ri . For an atom
τ = Ri(v), let dom(τ ) denote the set of variables and constants occurring in v. This
extends to sets R = {τ1, . . . , τm} of atoms as dom(R) = ⋃m

i=1 dom(τi). Further-
more, var(τ ) = dom(τ ) ∩ Var and var(R) = dom(R) ∩ Var . Observe that, by slight
abuse of notation, we use the operators ∪, ∩, \ also between sets V and tuples v of
variables and constants. For example, var(τ ) = v∩Var . We call a set of atoms simple
if no relation symbol appears more than once in it.

Similarly, for a mapping μ we denote with dom(μ) the set of elements on which μ

is defined. For a mapping μ and a set V ⊆ Var , we use μ|V to describe the restriction
of μ to the variables in dom(μ) ∩ V . We say that a mapping μ is an extension of a
mapping ν if μ|dom(ν) = ν, and that two mappings are compatible if they agree on
the shared variables.

For a set A of atoms and a set A ⊆ dom(A), we write A\A to denote the restriction
of A to dom(A) \ A. That is, we substitute every atom R(v) ∈ A by an atom Rs(v′),
where v′ is obtained from v by removing elements of A, and s is the list of the
removed positions and their values.

A database D over σ is a finite set of atoms over σ with var(D) = ∅. For a
database D and relation symbol R we denote by RD the set of all atoms in D with
relation symbol R.

Homomorphisms and Cores A homomorphism h between two sets A and B of atoms
over σ is a mapping h : dom(A) → dom(B) such that for all atoms R(v) ∈ A we
have R(h(v)) ∈ B, and such that h(x) 
= x is only allowed if x ∈ var(A) (through-
out the article, when defining homomorphisms we therefore only state the mapping
on var(A), and assume the extension to constants via the identity mapping to be
implicit). We write h : A → B to denote a homomorphism h from A to B.

Let A be a set of atoms. A minimal subset A′ ⊆ A such that there is a homomor-
phism A → A′ is called a core of A. We recall that all cores of A are unique up to
isomorphism and thus speak of the core of A which we denote by core(A).

Conjunctive Queries We write conjunctive queries (short CQs) q as Ans(x) ← B,
where the body B = {R1(v1), . . . , Rm(vm)} is a set of atoms and x are the free
variables. A Boolean CQ (BCQ) is a CQ with no free variables. We define var(q) =
var(B). The existential variables are implicitly given by var(B)\x. The result q(D) of
q over a database D is the set of tuples {h(x) | h : B → D}, i.e., every homomorphism
mapping the body of the query into the database is projected onto the values assigned
to the free variables.

Graphs We consider only undirected, simple graphs G = (V , E) with standard
notations. We sometimes write t ∈ G to refer to a node t ∈ V (G). A graph G2
is a subgraph of a graph G1 if V (G2) ⊆ V (G1) and E(G2) ⊆ E(G1). For a
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graph G = (V , E) and a set V ′ ⊆ V , the induced graph G[V ′] is the subgraph
G[V ′] = (V ′, {{vi, vj } ∈ E | vi, vj ∈ V ′}). A tree is a connected, acyclic graph.
A subtree is a connected, acyclic subgraph. A rooted tree T is a tree with one node
r ∈ T marked as its root. Given two nodes t, t̂ ∈ T , we say that t̂ is an ancestor of t

if t̂ lies on the path from r to t . Likewise, t̂ is the parent node of t (and t is a child of
t̂) if t̂ is an ancestor of t and {t, t̂} ∈ E(T ). For a subtree T ′ of T , a node t ∈ T is a
child of T ′ if t /∈ T ′ and t̂ ∈ T ′ for the parent node t̂ of t . We write ch(T ′) for the set
of all children of T ′. For a node t ∈ T the set of nodes on the path from the root r to
the parent node of t is denoted by branch(t). Moreover, cbranch(t) = branch(t)∪{t}.

For a set A of atoms, the Gaifman graph of A is the graph G = (V , E) with
V = {vi | vi ∈ var(A)} and E contains an edge {vi, vj } if vi and vj occur together
in some atom in A.

Tree Decompositions and Treewidth A tree decomposition of a graph G = (V , E) is
a pair (T , ν), where T is a tree and ν : V (T ) → 2V , that satisfies the following:

1. For each u ∈ V the set {s ∈ V (T ) | u ∈ ν(s)} is a connected subset of V (T ), and
2. each edge of E is contained in at least one of the sets ν(s), for s ∈ V (T ).

The width of (T , ν) is (max {|ν(s)| | s ∈ V (T )}) − 1. The treewidth of G is the
minimum width of its tree decompositions.

The treewidth of a set of atoms is the treewidth of its Gaifman graph.

Well-Designed Pattern Trees (wdPTs) A pattern tree (short: PT) p over a relational
schema σ is a tuple (T , λ,X ) where T is a rooted tree and λ maps each node t ∈ T

to a set of relational atoms over σ . We may write ((T , r), λ,X ) to emphasize that
r is the root node of T . The set X of variables denotes the free variables of the
PT. For a PT (T , λ,X ) and a subtree T ′ of T , let λ(T ′) = ⋃

t∈V (T ′) λ(t). We may
write var(t) instead of var(λ(t)), and var(T ′) instead of var(λ(T ′)). We further define
fvar(t) = var(t) ∩X as the free variables in t . Again this definition extends naturally
to subtrees T ′ of T . We call a PT (T , λ,X ) projection free if X = var(T ) and may
write (T , λ) to emphasize a PT to be projection free. The size |p| of a pattern tree is∑

t∈V (T ) |λ(t)|.
Well-designed PTs restrict the distribution of variables among their nodes.

Definition 1 (Well-Designed Pattern Tree (wdPT)) A PT (T , λ,X ) is well-
designed if for every variable y ∈ var(T ), the set of nodes of T where y appears is
connected.

As an immediate consequence of this restriction, in a wdPT p = (T , λ,X ), for every
variable y ∈ var(T ) there exists a unique node t ∈ T such that y ∈ var(t) and all
nodes t ′ ∈ T with y ∈ var(t ′) are descendants of t .

Evaluating a wdPT p with free variables X over a database D returns a set p(D)

of mappings μ : V → dom(D) with V ⊆ X . We follow the characterization of p(D)

in terms of maximal subtrees introduced by Letelier et al. [17], but borrow the term
pp-solution from Kaminski and Kostylev [14].
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Definition 2 (pp-solution) For a wdPT p = ((T , r), λ) and a database D, a
mapping μ : V → dom(D) (with V ⊆ var(T )) is a potential partial solution
(pp-solution) to p over D if there is a subtree T ′ of T containing r such that
μ : λ(T ′) → D.

The semantics of wdPTs can now be defined in terms of maximal pp-solutions.

Definition 3 (Semantics of wdPTs) Let p = (T , λ,X ) be a wdPT, and let p′ =
(T , λ, var(T )), i.e., the projection-free wdPT retrieved from p by considering all of
its variables as free, and let D be a database. The set p′(D) contains all pp-solutions
μ to p′ over D such that there exists no pp-solution μ′ to p′ over D that is a proper
extension of μ.

The set p(D) is then defined as p(D) = {μ|X | μ ∈ p′(D)}.

Example 3 Consider the PT p = (T , λ,X ) depicted in Fig. 2, where k may be any
integer with k ≥ 2, and X = {x1, x2, x3, x4, x5}.

All variable occurrences in p are connected, thus it is well-designed. If for
example the atom node2(y2) was missing in the root node, the tree would not be
well-designed because of the occurrences of y2 in both, t1 and t2. Similarly, the
wdPT in Fig. 1 is also well-designed. If there, in node t3 one would ask for a review
of the airline instead of the seat (i.e., having λ(t3) = review(airline, rating)), the
resulting tree would no longer be well-designed, since the variable airline does not
occur in t2.

Returning to the wdPT in Fig. 2, consider a database D that, for each atom R(v)

in λ(T ) contains one atom R(1, . . . , 1) (i.e., with the value 1 at each position) and
in addition the atoms b1(1, 2), b2(2, 2), and b3(2, 1). Then p(D) = {μ1, μ2} where
dom(μ1) = {x1, . . . , x5}, dom(μ2) = {x1, x2}, and μi(x) = 1 for i ∈ {1, 2}
and all x ∈ dom(μi). This is because of the following extensions μ′

1 and μ′
2 of

μ1 and μ2, respectively. For μ′
1, we have dom(μ′

1) = var(T ) and μ′
1(x) = 1

for all x ∈ dom(μ′
1), and for μ′

2 we have dom(μ′
2) = var(λ({r, t1, t2, t3})) with

μ′
2(x) = 1 for all x ∈ dom(μ′

2) except for u1 and u2, for which μ′
2(ui) = 2.

Observe that μ′
2 maps r , t1, t2, and t3 into D, but cannot be extended to neither

t4 nor t5.

Fig. 2 The well-designed pattern tree p = (T , λ,X ) of Example 3 that will serve as running example
through Section 3. The free variables x1, . . . , x5 are underlined
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Orthogonally to wdPTs, simple pattern trees restrict the occurrences of relation
symbols among their nodes: in a simple pattern tree, no relation symbol is allowed to
occur more than once.

Definition 4 (Simple PTs) A PT p = (T , λ,X ) over σ is a simple pattern tree if
λ(T ) is simple and λ(t) ∩ λ(t ′) = ∅ for all t, t ′ ∈ T with t 
= t ′.

Parameterized Complexity We only give a bare-bones introduction to parameterized
complexity and refer the reader to [9] for more details. Let � be a finite alphabet. A
parameterization of �∗ is a polynomial time computable mapping κ : �∗ → N. A
parameterized problem over � is a pair (L, κ) where L ⊆ �∗ and κ is a parameteri-
zation of �∗. We refer to x ∈ �∗ as the instances of a problem, and to the numbers
κ(x) as the parameters.

A parameterized problem E = (L, κ) belongs to the class FPT of fixed-parameter
tractable problems if there is an algorithm A deciding L, a polynomial pol, and a
computable function f : N → N such that the running time of A on every input
x ∈ �∗ is at most f (κ(x)) · pol(|x|).

In this paper, for classes P of wdPTs, we study the problem p-EVAL(P) defined
as follows.

We always assume that the arity of all atoms of the queries in P is bounded by a
constant, i.e., that there is a constant c (possibly depending on P) such that no atom
in the queries in P has an arity of more than c.

Let E = (L, κ) and E′ = (L′, κ ′) be parameterized problems over � and �′,
respectively. An FPT-reduction from E to E′ is a mapping R : �∗ → (�′)∗ such
that (1) for all x ∈ �∗ we have x ∈ L if and only if R(x) ∈ L′, (2) there is a
computable function f and a polynomial pol such that R(x) can be computed in
time f (κ(x)) · pol(|x|), and (3) there is a computable function g : N → N such that
κ ′(R(x)) ≤ g(κ(x)) for all x ∈ �∗.

Of the rich hardness theory for parameterized problems, we will only use the
classes W[1] and coW[1]. To keep this introduction short, we define a parameter-
ized problem (L, κ) to be W[1]-hard if there is a W[1]-hard problem (L′, κ ′) that
FPT-reduces to (L, κ). We define (L, κ) to be coW[1]-hard if its complement is
W[1]-hard. It is generally conjectured that FPT 
= W[1] and thus in particular W[1]-
hard problems and coW[1]-hard problems are not in FPT. We will take the hardness
results for problems (L′, κ ′) from the literature. One important such problem is the
homomorphism problem p−HOM(C) for a class C of sets of atoms defined as follows
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Theorem 1 (Grohe [12]) Let C be a decidable class of sets of atoms. Then
p-HOM(C) is in FPT if there exists some constant c such that the treewidth of the
core of each set in C is bounded by c, and W[1]-hard otherwise.

Since simple sets of atoms are their own core, this immediately implies that for
simple sets C of atoms, p-HOM(C) is in FPT if the treewidth of each set in C is
bounded by c, and W[1]-hard otherwise. We remark that this result was in fact shown
by Grohe et al. [13] in a predecessor paper of Grohe [12].

3 Tractability Conditions for Simple wdPTs

In this section we will introduce our tractability conditions for simple wdPTs. While,
as mentioned, these criteria also apply to arbitrary wdPTs, they are not optimal in
this case as we will see in Section 6. There we will also show generalizations of
the conditions we give here that, for general wdPTs, describe more tractable classes.
However, to simplify the presentation, in this section we tailor the definitions towards
simple wdPTs.

We start by recalling that in simple pattern trees, no relation symbol is allowed to
occur more than once. Our overall idea for solving p- EVAL(P) is as follows: given a
wdPT p, a database D, and a mapping μ, construct a set of CQs q with free variables x
and associated databases D′ such that μ ∈ p(D) if and only if for at least one of these
CQs q the tuple μ(x) is in q(D′). We give two tractability criteria ensuring that this
algorithm is in FPT. Intuitively, one condition guarantees that deciding μ(x) ∈ q(D′)
is in PTIME, while both conditions in combination guarantee that D′ can be computed
efficiently.

We will state the tractability conditions with respect to a class P of wdPTs. So in
the remainder of this section let P be an arbitrary but fixed class of wdPTs.

We start with some additional notation and results. First of all, as already observed
by Letelier et al. [17], some nodes of a wdPT may not be relevant for the answers
returned by the query, in the following sense.

Definition 5 (Relevant Nodes) Let p = (T , λ,X ) be a wdPT. A node t ∈ T is
relevant if there exists a database D such that p(D) 
= p′(D) where p′ is constructed
from p by removing from T the subtree rooted in t . We use relv(T ) to denote the set
of relevant nodes in T .

Example 4 Recall the wdPT from Fig. 2, and consider the node t3. Given any map-
ping μ on at least var(λ(r) ∪ λ(t1)), whether this mapping can be extended to t3 or
not has no effect on the result, since an extension to t3 does not include any new free
variable. Note, however, that due to the clique of fresh existential variables s1, . . . , sk
in λ(t3), deciding whether a mapping can be extended to t3 is actually expensive.
Thus, nodes like t3 that do not influence any solution can safely be omitted.

Letelier et al. [17] introduced a normal form excluding non-relevant nodes. Here,
in order to make our results more explicit, we do not follow this approach but allow
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wdPTs to contain non-relevant nodes. Luckily, it follows from Letelier et al. [17] that
these nodes can be easily detected.

Proposition 1 (Letelier et al. [17]1) Let p = (T , λ,X ) be a wdPT. Then a node
t ∈ T is relevant if and only if fvar(T ′) \ fvar(t̂) 
= ∅, where T ′ is the subtree of T

rooted in t and t̂ is the parent node of t .

When testing whether a mapping can be extended to a node t in a wdPT, the
variables shared between t and its parent node play a crucial role. First, they describe
the relevant domain of the mapping to be extended. Second, the values for these
variables are already determined. This not only reduces the number variables in t for
which a value must be found, but may also allow to partition the atoms in t and then
test each partition separately instead of all atoms in t at once. We call these shared
variables the interface of t .

Definition 6 (Interface I(t) of a Node) Let (T , λ,X ) be a wdPT, t ∈ T (but not
the root node), and t̂ the parent node of t . The interface I(t) of t is the set I(t) =
var(t) ∩ var(t̂). The interface of the root node r is I(r) = ∅.

It was already remarked, e.g., by Barceló et al. [3] and Kröll et al. [16] that restrictions
on the number of variables shared between different sets of nodes can be used to
define tractable classes. The above definition however differs slightly from the notion
of interfaces in these works. E.g., in Kröll et al. [16], the interface of a node describes
the set of variables shared between the node and any of its neighbors, while here it is
restricted to the variables shared with its parent node.

Restrictions on the size of node interfaces turn out to be quite coarse, and we
provide more fine grained tractability criteria here. To this end, we implement the
idea of partitioning the set of atoms in a node using its interface. For this, we recall the
notion of S-components from Durand and Mengel [8]. Originally, they were defined
for graphs and then extended to sets of atoms. Since we will only use S-components
of sets of atoms, we provide their definition directly, omitting the graph case. Let
A be a set of atoms and S ⊆ var(A) a set of variables. Consider the dual graph
GA = (VA, EA) with VA = {τ ∈ A | var(τ ) � S} and EA = {{τi, τj } | τi, τj ∈
A s.t. (var(τi) ∩ var(τj )) \ S 
= ∅}. The connected components of GA are the S-
components of A.

Definition 7 (Kröll et al. [16]; Node Components) Let p = (T , λ,X ) be a wdPT
and t ∈ T . The set of node components NC(t) of t is a set of sets of atoms, defined
as the union of:

1. The set {{τ } | τ ∈ λ(t) and var(τ ) ⊆ I(t)} consisting of singleton sets for every
atom τ ∈ λ(t) which contains only “interface variables”, i.e., variables from
I(t).

1While not stated explicitly by Letelier et al. [17], it is an immediate consequence of their Theorem 3.21.
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2. The set of all I(t)-components of λ(t).

In the following, node components of type (1) are the singleton sets of condition 1
and node components of type (2) are the I(t)-components of condition 2.

Example 5 Fig. 3 shows again the wdPT p from Example 3, but omitting the non-
relevant node t3. In addition, at each node the node components are depicted by dotted
boxes. To emphasize the difference between interface- and non interface variables
and to highlight which variables connect atoms to node components, the interface
variables at each node are grayed.

Consider the node t2, which has the following node components: each atom
ycliqueij (yi, yj ) forms a node component of type (1) since all variables yi occur
also in r . In addition, there are several node components of type (2): each atom
edgei (yi, ri) is such a node component (they contain a variable in var(t2) \ I(t2) but
do not share such a variable with another atom), and there are the two node com-
ponents {b1(x1, u1), b2(u1, u2), b3(u2, y1)} and {b4(u3, y1)}. Observe that these two
sets are connected by y1, but y1 ∈ I(t2) separates them into two node components.
In contrast, the atoms b1(x1, u1), b2(u1, u2), and b3(u2, y1) are connected by u1 and
u2, which are not in I(t2).

Also, note the effect of considering interface variables and node components
instead of looking at the complete node at once. For example, the Gaifman graph of
λ(t2) has a treewidth of k. Thus, finding, e.g., values for r1, . . . , rk is a hard prob-
lem. However, by taking into account interface variables and node components, each
of the resulting sets has a treewidth of 1. Therefore, the existence of an extension of
some mapping on the interface variables to each node component independently can
be decided efficiently.

To understand why node components are essential for our results, recall that solu-
tions to wdPTs must be maximal, i.e., they map some subtree into the database, but
cannot be extended to map some child node of this subtree into the database as well.
But such an extension to a node exists if and only if the mapping can be extended
to all of its node components. Thus, instead of testing extensions to the complete
node at once (which might be intractable), we test the maximality of a mapping

Fig. 3 The well-designed pattern tree from Fig. 2, with the non-relevant node t3 omitted and the interface
variables at each node grayed to emphasize the node components, which are depicted by the dotted boxes
(see Example 5)
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independently for each node component (which might be tractable). This is possi-
ble because for all variables shared between any two node components, the values
are already determined by the mapping to be extended. Extensions to different node
components are thus independent of each other.

For node components, we are in particular interested in the contained interface
variables.

Definition 8 (Interface of a Node Component) For a wdPT (T , λ,X ) and a node
t ∈ T , the interface of a node component S ∈ NC(t) is I(S, t) = (I(t) ∩ var(S)),
and the existential interface is I∃(S, t) = I(S, t) \ X .

We are now ready to formulate our first tractability condition. Intuitively, it guar-
antees that for each node component S, given some mapping on the variables in its
interface, one can decide in polynomial time whether this mapping can be extended
to map all atoms in the node component into a given database. It exploits (and formal-
izes) the fact that once a mapping on I(S, t) is given, these variables can be treated
as constants.

Example 6 To demonstrate the situation after introducing condition (a), let pk be
the wdPT p from Example 5 parameterized by k, let P = {pk | k ≥ 2}, and let
T ′ = T [{r, t1, t2}]. Assume, for some k ≥ 2, in order to test if some mapping is a
solution to pk , we would like to verify whether some mapping μ′ with dom(μ′) =
var(T ′) is a maximal pp-solution. Deciding whether it is a pp-solution is easy, and
because P satisfies tractability condition (a), testing if there exists in both, t4 and t5,
a node component to which μ′ cannot be extended is feasible in polynomial time as
well. In fact, NC(t4) = {{c1(x3, u1)}, {c2(u2, x4)}, {c3(x1, u3, u1)}} and NC(t5) =
{{d1(y2, x5), d2(x5, u2)}, {d3(u2, z2)}} (this holds for every pk ∈ P). However, there
may exist an exponential number of pp-solutions on T ′ (T ′ contains 2k+4 existential
variables). Thus, testing one mapping on var(T ′) after the other is not feasible.

One way to overcome the problem sketched in the example is to not have two
separate tests for being a pp-solution and being maximal. To combine these tests, we
first compute for each node component the set of mappings on its interface variables
that do not extend to the component, and then require pp-solutions to be consistent
with these mappings.

It turns out that this idea can be encoded as an evaluation problem for CQs. One
important step in this encoding is to introduce new relations, one for each node com-
ponent, that store those mappings on the interface variables that cannot be extended to
the component. In order for the resulting CQ evaluation problem to be in polynomial
time, we require two properties. First, the resulting CQs must be from some tractable
fragment of CQ evaluation, and, second, the size of the newly added relations must
be at most polynomial. One way to achieve the second goal is to restrict the arity of
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these relations. Towards the first goal, since the bodies of the resulting CQs are sim-
ple sets of atoms, tractability for the evaluation problem holds if these queries have
bounded treewidth. As it turns out, a bound on the treewidth also implies a bound on
the arity of the new relations, and thus represents our second tractability condition.

To formalize the construction, we introduce the notion of a component interface
atom. For a wdPT (T , λ,X ), a subtree T ′ of T , a node t ∈ ch(T ′), and node compo-
nent S ∈ NC(t), let the interface atom be an atom R(v) where v contains the variables
in I∃(S, t) and R is a fresh relation symbol. For a node component S, we use cia(S) to
refer to the corresponding interface atom R(v). Observe that these definitions imply
cia(S) = R() in case I∃(S, t) = ∅.

The intuition for cia(S) is that for each node component, we get one atom that
covers exactly the variables in I∃(S, t). The free variables in the interface can be
excluded from the considerations since a fixed value is provided for them as part of
the input.

Example 7 Recall again the wdPT depicted in Fig. 3 and consider the node t1. It
contains two node components: S1 = {a1(y1, z1), a2(y2, z1)} and S2 = {a3(x2)}.
Observe that whether S2 can be mapped into some database D is completely indepen-
dent of the interface variables. Thus, cia(S2) = RS2(). However, for S1 the values of
y1 and y2 influence whether S1 may be mapped. Thus, we get cia(S1) = RS1(y1, y2).
In case of the node component {c3(x1, u3, u1)} of t4, observe that we can assume
some fixed value μ(x1) for x1, and thus can reduce the atom c3(μ(x1), u3, u1)

according to this value. We therefore get as interface atom Rc3(u3, u1), with the

corresponding database being computed based on c
x1=μ(x1)
3 (u3, u1).

Since we are looking for one pp-solution that cannot be extended to any child
node, combining the two tests as sketched means that we must test all children
simultaneously instead of individually. However, since each CQ tests only one node
component for each child, we need one CQ for each possible combination, leading
to our second tractability condition.

The following example breaks down condition (b) to demonstrate its intuition.

Example 8 Recall the setting in Example 6, as well as the database instance D from
Example 3. Let μ be a mapping with dom(μ) = {x1, x2}, and μ(x1) = μ(x2) = 1.
Assume that, in order to show that μ ∈ pk(D) for any k ≥ 2 we are look-
ing for a pp-solution for T ′ that does not extend neither to the node component
S1 = {c1(x3, u1)} of t4 (and thus not to λ(t4)), nor to the node component S2 =
{d1(y2, x5), d2(x5, u2)} of t5 (and thus not to λ(t5)). The idea is to construct a CQ
Ans(x1, x2) ← λ(T ′) ∪ {R1(u1), R2(y2, u2)}, where R1(u1) and R2(y2, u2) are the
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component interface atoms for S1 and S2, respectively. Observe that this query has
exactly the structure described in condition (b), illustrating the motivation for the def-
inition of this condition. Also, note that because of the ycliqueij -atoms, P does not
satisfy tractability condition (b).

The query is evaluated over the instance D extended by relations for R1 and R2.
As mentioned, these relations contain all values that cannot be extended to map S1
and S2 into D, respectively. For S1, we get {R1(2)} (since c1(1, 1) ∈ D, thus a map-
ping assigning 1 to u1 could be extended to map S1 into D), and for S2 we get
{R2(1, 2), R2(2, 1), R2(2, 2)}.

Consider the mapping μ′ with dom(μ′) = var(λ({r, t1, t2, t3})) and μ′(x) = 1
for all x ∈ dom(μ′) except for u1 and u2, for which μ′(ui) = 2. Now the mapping
μ′ witnesses the fact that (1, 1) is an answer to the query over D, and thus μ′

2 is a
maximal pp-solution also witnessing μ ∈ pk(D).

The main result of this paper is that the conditions (a) and (b) characterize exactly
the classes of simple wdPTs which can be evaluated efficiently.

Theorem 2 Assume that FPT 
= W[1], and let P be a decidable class of simple
wdPTs of bounded arity. Then the following statements are equivalent.

1. The tractability conditions (a) and (b) hold for P .
2. p-EVAL(P) is in FPT.

We will show the upper bound of Theorem 2 in Section 4, where we describe how
the different ideas described so far can be combined to an FPT algorithm, while the
lower bounds will be shown in Section 5.

But before we turn to the proof of Theorem 2, let us interpret the result in the
setting without projections to better understand the influence of projection. First note
that in that case, by Definition 8, we have I∃(S, t) = ∅ for every t ∈ T and every
S ∈ NC(t). Thus, all atoms cia(S) (for any node component S) are of arity 0 as are
all atoms in (λ(T ′)∪⋃n

i=1{cia(Si )})\ fvar(T ′). Tractability condition (b) is therefore
void in this setting, leaving only (a) as a useful condition in the projection free case.
This immediately implies the following corollary.

Corollary 1 Assume that FPT 
= W[1], and let P be a decidable class of simple
wdPTs of bounded arity without projections. Then p-EVAL(P) is in FPT if and only
if tractability condition (a) holds for P .

We remark that Corollary 1 could also be inferred as a special case of the main
result of Romero [24]. Stating the corollary explicitly here lets us better understand
the role of projection for our problem: in fact, the role of condition (a) is essentially
to deal with the complexity that we already have without projection, while condition
(b) is necessary to deal with the additional source of hardness that is introduced by
projections and does not appear without them.

Since it will simplify the discussion in the upcoming sections, we conclude the
section by explicitly working out a third tractability condition already mentioned
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above in the discussion towards tractability condition (b). As described there, at some
point we extend a given database by relations for the atoms cia(S) that contain for the
corresponding node component all mappings on its existential interface that cannot
be extended to a mapping on the whole node component. To guarantee that all these
relations are of polynomial size, we restrict the number of variables in the existential
interfaces of the node components by some constant c. We formalize this notion in
terms of a suitable width measure.

Definition 9 (Component Width) Let p = (T , λ,X ) be a wdPT, t ∈ T , and
S ∈ NC(t). The width of the node component S is |I∃(S, t)|. For a node t ∈
T , the component width of t is the maximum width over all node components
S of t . The component width of p is the maximum component width over all
t ∈ relv(T ).

By the definition of the treewidth of a set of atoms – specifically by the fact that
in the Gaifman graph all variables occurring together in an atom form a clique – and
the fact that for the existential interface of each node component its variables occur
together in some cia(S)-atom, the number of variables in any existential interface
is bound by the treewidth of the CQs defined in condition (b). Thus, we get the
following corollary.

Corollary 2 Let P be a class of wdPTs that satisfies tractability condition (b) for
some constant c. Then, for every p ∈ P , the component width of p is at most c + 1.

4 The FPT Algorithm

Having defined the tractability conditions, we now show how they are used in the
FPT-algorithm for p-EVAL(P) outlined in Algorithm 1.

The missing ingredient of Algorithm 1 that we have not yet introduced is
stop(S, D) for a node component S and a database D which we explain now. Recall
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that we said earlier that the intention of the node components is to ensure a mapping
to be maximal not by testing for extensions to the complete node, but to do these tests
for smaller, independent units.

The idea of how to realize this is to store in D′ for each node component S those
variable assignments ν to the variables in its existential interface such that there exists
no extension homomorphism ν′ : S → D of ν ∪ μ. These are the values stored in
stop(S, D).

In more detail, for a wdPT ((T , r), λ,X ), a subtree T ′ of T containing r , a
child node t ∈ ch(T ′), node component S ∈ NC(t), a database D, and a mapping
μ : fvar(T ′) → dom(D), consider the set extend(S, D) = {η : I∃(S, t) → dom(D) |
there exists a homomorphism η′ : S → D extending η and μ|var(S)}. So extend con-
tains exactly those mappings on I∃(S, t) that can be extended in a way that is
compatible with μ and maps S into D. We thus set stop(S, D) = {ν : I∃(S, t) →
dom(D) | ν /∈ extend(S, D)}.

With this in place, we describe the idea of Algorithm 1. Recall that, given μ, we
have to find a mapping μ′ extending μ that is (1) a pp-solution, and (2) maximal.
Because of the existential variables, there may be exponentially many subtrees T ′
of T containing r with fvar(T ′) = dom(μ), each being a potential candidate for
witnessing (1) and (2). After removing all irrelevant nodes in line 1 (they might make
evaluation unnecessarily hard, cf. Example 4), we thus check each of these subtrees
(line 2).

If the required mapping μ′ exists, then, as discussed earlier, for each child node
of T ′ there exists at least one node component to which μ′ cannot be extended. Not
knowing which node components these are, the algorithm iterates over all possible
combinations (line 4). In lines 5–7, the algorithm now checks whether there exists
an extension of μ that maps all of λ(T ′) into D (ensured by adding λ(T ′) to q), but
none of the node components S1, . . . , Sn. The latter property is equivalent to asking
that μ′ must assign a value to the existential interface variables of each Si that cannot
be extended. This is guaranteed by adding the atoms cia(Si ) to q and providing in
D′ exactly the values from stop(Si , D). Observe that the CQ q in line 5 contains all
x ∈ fvar(T ′), and that replacing them by μ(x) is only part of the evaluation strategy
in line 7.

Most of the central components and ideas of the algorithm have already been
demonstrated in isolation in the examples throughout Section 3. The next example
brings together all these ideas by illustrating how the algorithm works.

Example 9 Consider again the wdPT p = (T , λ, {x1, . . . , x5}) depicted in Fig. 2,
but without the atoms ycliqueij (yi, yj ) for 1 ≤ i < j ≤ k. The resulting tree now
satisfies conditions (a) and (b). Assume we want to decide μ ∈ p(D) for the mapping
μ with μ(x1) = 1 and μ(x2) = 2 and

D = {R(1, . . . , 1) | R(v) ∈ (λ(T ) \ {a3(x2)})} ∪ {a3(2)} ∪
{b1(1, 3), b2(3, 3), b3(3, 1), } ∪ {b1(2, 2), b2(2, 2), b3(2, 2)} ∪
{c1(2, 2), c1(3, 3)} ∪ {c2(3, 3)} ∪
{d1(2, 1), d1(2, 2), d1(3, 1), d2(1, 3), d2(2, 2)}.
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In a first step, the algorithm now reduces T by removing the non-relevant node t3.
Thus, from now on T corresponds to the wdPT shown in Fig. 3 (again, without the
ycliqueij (yi, yj ) atoms in t2).

Next, there exist two subtrees T ′of T with fvar(T ′) = dom(μ) = {x1, x2}. These
are the subtrees T1 = T [{r, t1}] and T2[{r, t1, t2}], respectively. Starting with T1, we
get ch(T1) = {t2}. Without the ycliqueij -atoms, the node t2 has k + 2 node compo-
nents. Since t2 is the only child of T1, the algorithm simply iterates over these k + 2
node components (line 4). We distinguish four different kinds of node components in t2.

For components S of the form edgei (yi, ri), the component interface atoms are

cia(S) = R
edge
i (yi). Thus, the CQ q is Ans(x1, x2) ← λ(T1) ∪ {Redge

i (yi)}. Also,

extend(S, D) = {ν} with ν(yi) = 1, and thus D′ = D∪{Redge
i (2), R

edge
i (3)}. Clearly,

we get (1, 2) /∈ q(D′).
For the node component S = {b1(x1, u1), b2(u1, u2), b3(u2, y1)}, we get cia(S) =

R1(y1) and therefore q is Ans(x1, x2) ← λ(T1) ∪ {R1(y1)}, with D′ = D ∪
{R1(2), R1(3)}. The reason R1(2) is in this list is that μ(x1) = 1 is already given.
Observe that because of {b1(2, 2), b2(2, 2), b3(2, 2)} ⊆ D, in principle a mapping
ν(y1) = 2 can be extended to a mapping on S. However, because of μ(x1) = 1, such
a mapping would not be compatible with μ, since mapping b1(x1, u1) to b1(2, 2) is
not an option. As a result, again (1, 2) /∈ q(D′).

We omit the similar case for the last node component S = {d4(u3, y1)}.
Hence, T1 does not witness μ being a solution, and therefore T2 is tested next

(line 2). The children of T2 are t4 and t5. As already laid out in Example 6,
NC(t4) = {{c1(x3, u1)}, {c2(u2, x4)}, {c3(x1, u3, u1)}} and NC(t5) = {{d1(y2, x5),

d2(x5, u2)}, {d3(u2, z2)}}. This gives six different combinations of node components
from t4 and t5. For the purpose of illustration, we give the component interface atoms
and database extensions for each component.

For S1 = {c1(x3, u1)}, we get cia(S1) = R1(u1) and D1 = {}; for S2 =
{c2(u2, x4)}, we get cia(S2) = R2(u2) and D2 = {R2(2)}; and for S3 =
{c3(x1, u3, u1)} we get cia(S3) = R3(u3, u1) with D3 = {R(a, b) | (a, b) ∈
({1, 2, 3}2 \ (1, 1))}. For the node components of t5 we get for S4 = {d1(y2, x5),

d2(x5, u2)} the atom cia(S4) = R4(y2, u2) and D4 = {R4(1, 2), R4(3, 2)}. Finally,
for S5 = {d3(u2, z2)}, we get cia(S5) = R5(u2) and D5 = {R5(2), R5(3)}.

Thus, for the first combination (S1, S4) we get q as Ans(x1, x2) ← λ(T2) ∪
{R1(u1), R4(y2, u2)} and D′ = D ∪ D1 ∪ D4. Because of D1 = ∅, clearly q(D′) = ∅,
and thus (1, 2) /∈ q(D′). By the same argument, this is also true for the combination
(S1, S5).

For the combination (S2, S4), we get q as Ans(x1, x2) ← λ(T2) ∪ {R2(u2),

R4(y2, u2)} and D′ = D ∪ D2 ∪ D4. Observe that D2 and D4 do not contain a com-
patible value for u2. Thus, q(D′) is again empty, showcasing that there must be a
combined check for the node components of different nodes, and that this cannot be
done in isolation.

For (S2, S5), now D2 and D5 contain a compatible value for u2, namely 2. How-
ever, by mapping u2 to 2, there is no way to map t2 into D such that x1 is mapped to
1. Thus, also in this case (1, 2) /∈ q(D′).

For (S3, S4), again (1, 2) /∈ q(D′): mapping all existential variables to 1 clearly
does not allow to map neither R3(u3, u1) nor R4(y2, u2) into D′. The only other way
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to map λ(t2) into D′ is by mapping y1 to 1 and u2 to 3. However, such a mapping
cannot map R4(y2, u2) into D′.

Finally, for (S3, S5), it can now be checked that (1, 2) ∈ q(D′), witnessed by the
mapping μ with μ(x1) = 1, μ(x2) = 2, μ(u1) = μ(u2) = 3, and μ(v) = 1 for all
remaining variables v ∈ var(T2). Thus, in line 7 the algorithm returns YES.

In order to see that this indeed gives an FPT algorithm in case tractability condi-
tions (a) and (b) are satisfied, note that condition (b) ensures that the arity of each of
the new relations for the atoms cia(S) is at most c+1 (cf. Corollary 2). Thus, the size
of these relations (and thus the number of possible mappings in stop(S, D)) is at most
|dom(D)|(c+1). Next, condition (a) ensures that for each mapping ν : I∃(S, t) →
dom(D) deciding membership in stop(S, D) is in PTIME. Observe that the variables
in I(S, t) are not considered in the computation of the treewidth since a fixed value
is provided for them, thus they can be treated as constants. Finally, condition (b) also
ensures that the test in line 7 is feasible in polynomial time. Again, since a fixed value
is provided for the domain of μ, these variables can be treated as constants.

We note that the algorithm is an extension and refinement of the FPT algorithm
of Kröll et al. [16]. An inspection of that paper reveals that the conditions provided
there imply our tractability conditions (a) and (b), but there is no implication in the
other direction. In fact, our conditions explicitly describe the crucial properties of
their restrictions that ensure the problem is in FPT. From Algorithm 1 we thus derive
the following result.

Lemma 1 Let P be a decidable class of wdPTs. If the tractability conditions (a) and
(b) hold for P , then p-EVAL(P) can be solved in FPT.

The correctness of the algorithm follows immediately from the previous discus-
sion. For the runtime, in addition to what was already discussed, the number of
loop-iterations in lines 2 and 4 is bounded by a function in the size of p, which is the
parameter for the problem.

5 Optimality of the Tractability Conditions

We now show that both tractability criteria are necessary, and thus finish the proof
of Theorem 2. We provide individual results for both conditions. In addition, we
show that the bound on the component width is necessary (and not just a side effect),
which will turn out to be a useful result for proving that tractability condition (b) is
necessary.

Lemma 2 Let P be a decidable class of simple wdPTs of bounded arity such that
tractability condition (a) is not satisfied. Then p-EVAL(P) is coW[1]-hard.

Proof For a wdPT p ∈ P , let the relevant components set rcs(p) contain all the
sets S \ I(S, t) as defined in tractability condition (a). Moreover, let rcs(P) =
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⋃
p∈P rcs(p). We will—by an FPT-reduction—reduce p-HOM(rcs(P)) to the com-

plement of p-EVAL(P) . The result then follows from Theorem 1, as rcs(P) does not
have bounded treewidth by assumption.

Consider an instance E, F of p-HOM(rcs(P)). As a first step, find p =
((T , r), λ,X ) ∈ P , a node t ∈ relv(T ) such that t 
= r , and a node component
S ∈ NC(t) such that E = S \ I(S, t). They exist by assumption and, since P is
decidable, can be computed as follows: enumerate all possible candidate triples p, t

and S, check if p ∈ P and if so verify the conditions on p, t and S. Since p exists by
assumption and all other steps are computable, this procedure eventually yields the
desired triple.

Since t is relevant, either for t ′ = t or some descendant t ′ of t we have fvar(t ′) \
fvar(branch(t ′)) 
= ∅. Among all possible candidates, pick some t ′ at a minimal
distance to t .

We next define a database D over the set of relation symbols in p. For the descrip-
tion of D, for all relation symbols R occurring in any atom R(v) ∈ λ(T ), we will
assume that v contains only variables, i.e., elements from Var . We implicitly assume
that for all positions where v contains a constant, all atoms in RD contain the same
constant as in v. Recall that we deal with simple wdPTs, thus each relation symbol
occurs at most once within λ(T ). Also recall that, for any node t̄ ∈ T , branch(t̄)

contains the nodes on the path from r to the parent node of t̄ , while cbranch(t̄) in
addition includes t̄ itself. In the following, let d ∈ Const be some fresh value not
occurring in dom(F).

For each relation symbol R mentioned outside of λ(cbranch(t ′)), let RD = ∅.
For each relation symbol R mentioned in λ(branch(t)), let RD = {R(d, . . . , d)}. For
each relation symbol R mentioned in λ(cbranch(t ′) \ branch(t)) \ S, let k be the arity
of R and RD = {R(v) | v ∈ (dom(F) ∪ {d})k}.

For each relation symbol R mentioned in S, observe that there exists a relation
symbol R′ in E that was derived from R when computing S \ I(S, t). The idea is
now to use RD to simulate the atoms with relation symbol R′ in F by padding the
additional fields with d . Thus, let k be the arity of R, let m be the arity of R′, let
{i1, . . . , i	} ⊆ {1, . . . , k} be those positions of R containing values from I(S, t),
and {o1, . . . , om} = {1, . . . , k} \ {i1, . . . , i	} those positions of R that contain values
from var(S) \ I(S, t). Then, for every R′(ao1 , . . . , aom) ∈ F, let RD contain the
atom R(b1, . . . , bk) where, for 1 ≤ α ≤ k, we have bα = aoj

if α = oj for some
1 ≤ j ≤ m and bα = d if α = ij for some 1 ≤ j ≤ 	. This completes the definition
of D.

Finally, we define the mapping μ as μ(x) = d for all x ∈ fvar(branch(t)).
With the description of the reduction complete, we claim that μ ∈ p(D) if and

only if there is no homomorphism from E to F. We prove this property in two steps.
First, we show that μ ∈ p(D) only depends on whether μ can be extended to t or
not. After this we show that such an extension of μ exists if and only if there is a
homomorphism h : E → F.

First, observe that the only possible extension μ′ of μ such that μ′(τ ) ∈ D for
every τ ∈ λ(branch(t)) is μ′ mapping every variable in var(branch(t)) to d . More-
over, for all nodes t ′′ 
= t in ch(branch(t)) the mapping μ′ cannot be extended to
λ(t ′′), since for all relation symbols R mentioned in λ(t ′′) we have RD = ∅. Thus, μ′
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is a pp-solution, and is a maximal pp-solution if and only if there exists no extension
μ′′ of μ′ with μ′′(τ ) ∈ D for all τ ∈ λ(t).

Clearly, if μ′ is a maximal pp-solution, then μ ∈ p(D). To see that μ /∈ p(D) if μ′
is not a maximal pp-solution, assume the above mentioned extension μ′′ of μ′ exists.
Then μ′′ can be obviously extended to μ′′′ with μ′′′(τ ) ∈ D for all τ ∈ cbranch(t ′)
since for all atoms on (cbranch(t ′) \ cbranch(t)) ∪ {t ′}, every possible atom over
dom(D) is contained in D. Since dom(μ′′′) contains at least one free variable not in
dom(μ′), this shows μ /∈ p(D).

It thus remains to show that the extension μ′′ of μ′ exists if and only if there is a
homomorphism h : E → F. To see that this is the case, observe that by construction
every such homomorphism h in combination with μ′ gives a homomorphism from S
into D, and vice versa, every homomorphism μ : S → D restricted to dom(E) gives
the desired homomorphism. For the remaining atoms in λ(t) \ S, observe that every
possible mapping sends them into D, since D again contains every possible atom for
these relations.

To simplify the proof that tractability condition (b) is necessary, we first show that
having bounded component width is a necessary condition on its own.

Lemma 3 Let P be a decidable class of simple wdPTs of bounded arity. If there does
not exist some constant c such that for every p ∈ P the component width is bounded
by c, then p-EVAL(P) is coW[1]-hard.

Proof The proof is an FPT-reduction from the problem of model checking FO sen-
tences φk of the form φk = ∀x1 . . .∀xk∃y

∧k
i=1 Ei(xi, y). Model checking for this

class of sentences, parameterized by their size, is W[1]-hard [5]. Thus, consider a
formula φk and a database E.

First, compute an arbitrary wdPT p = (T , λ,X ) ∈ P with a component width
of at least k. Such a wdPT consists by assumption (otherwise the component width
was bounded by k). W.l.o.g. we assume that p contains only binary atoms: Since we
assume a bounded arity, binary atoms can be easily encoded into atoms of higher
arity. Consider some relevant node t ∈ T and a node component S ∈ NC(t) such that
the component width of S is at least k (they exist by construction). Since we assume
relations to be of some bounded arity, S cannot be of type (1) (Definition 7). W.l.o.g.
we thus assume that S is of type (2).

Since t is relevant, either for t ′ = t or some descendant t ′ of t we have fvar(t ′) \
fvar(branch(t ′)) 
= ∅. Choose one such t ′ at a minimal distance to t .

As in the proof of Lemma 2, for the description of D we assume for all R(v) ∈
λ(T ) that v contains only variables. Recall that we are dealing with simple wdPTs,
thus each relation symbol R occurs at most once within λ(T ).

For each relation symbol R mentioned outside of λ(cbranch(t ′)), let RD = ∅.
For each relation symbol R mentioned in λ(cbranch(t ′)) \ S, let 	 be the arity of

R and RD = {R(v) | v ∈ dom(E)	}.
For the relation symbols R mentioned in S, proceed as follows. Choose k inter-

face variables v1, . . . , vk ∈ I(S, t). Let L = var(S) \ var(branch(t)) be the “local
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variables” of S. Observe that S being a node component of type (2) implies L 
= ∅.
For the same reason, for each of the variables vi , there must exist at least one atom
Ri(vi, zi) or Ri(zi, vi) for some zi ∈ L. We will assume Ri(vi, zi) in the following,
the other case is analogous. Now for each vi , fix one such atom. Based on this, we
define the following atoms to be contained in D:

For each of the selected atoms Ri(vi, zi), let RD
i = EE

i , i.e., we let Ri simulate
exactly Ei . For every atom R(z, z′) ∈ S such that z, z′ ∈ L, define RD = {R(d, d) |
d ∈ dom(E)}. For the remaining atoms R(z, z′) ∈ S, define RD = {R(a, b) | a, b ∈
dom(E)}.

Finally, μ is an arbitrary mapping fvar(branch(t)) → dom(E).
It now follows by the same arguments as in the proof of Lemma 2 that we have

μ /∈ p(D) if and only if for every extension μ′ of μ to var(branch(t)), there exists an
extension ν of μ′ such that ν(τ) ∈ D for all τ ∈ S.

To complete this proof, we thus only need to show that such an extension exists
if and only if φk is satisfied. First, assume that φk is satisfied. Then, for all z ∈ L,
define ν(z) to be the value of y in φk . This clearly maps S into D. Next, assume
that φk is not satisfied. Then there exists some assignment to x1, . . . , xk such that no
suitable value for y exists. Then for the mapping μ′ assigning exactly those values to
the selected interface variables v1, . . . , vk , there exists no extension of μ′ to S. This
is because L defines a connected component in the Gaifman graph and because the
definition of D forces all variables in L that occur together in some atom in S to be
mapped to the same value by μ′. Thus, μ′ has to map all “local variables” in S to the
same value, which would provide a suitable value for y, leading to a contradiction.
This concludes the proof.

Lemma 4 Let P be a decidable class of simple wdPTs of bounded arity that
does not satisfy tractability condition (b). Then p-EVAL(P) is either coW[1]- or
W[1]-hard.

Proof First, assume that there exists some constant that is, for all p ∈ P , an
upper bound on the component width. Otherwise, p-EVAL(P) is coW[1]-hard by
Lemma 3. In particular, we may thus assume that all relations in all instances of
(λ(T ′) ∪ ⋃n

i=1{cia(Si )}) \ fvar(T ′) for all p ∈ P are of bounded arity.
Let solcheck(P) be the class of all sets of atoms (λ(T ′) ∪ ⋃n

i=1{cia(Si )}) \
fvar(T ′) for P as defined in tractability condition (b). We reduce the problem
p-HOM(solcheck(P)) to p-EVAL(P) via an FPT reduction. The result then follows
directly by Theorem 1, since if (b) is false then solcheck(P) has unbounded treewidth.
The rest of this proof gives the desired reduction.

Let E, F be an instance of p-HOM(solcheck(P)). We construct a wdPT p, a
database D, and a mapping μ such that μ ∈ p(D) if and only if there is a
homomorphism from E to F.

First of all, find a p = ((T , r), λ,X ) ∈ P and a subtree T ′ of T containing r such
that E = (λ(T ′) ∪ ⋃n

i=1{cia(Si )}) \ fvar(T ′) for some combination (S1, . . . , Sn) ∈
NC(t1) × · · · × NC(tn) where {t1, . . . , tn} = ch(T ′) ∩ relv(T ). Such p exists by
assumption and, since P is decidable, can be computed.
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Next, the goal is to define a database D and a mapping μ such that μ ∈ p(D)

if and only if a homomorphism from E to F exists. Before providing the formal
construction, we sketch the idea first. Observe that E contains two types of atoms:
λ(T ′) and the interface atoms cia(Si ). The idea is to define D in such a way that there
is a homomorphism μ′ : λ(T ′) → D if and only if there exists h : λ(T ′) → F, and
that μ′ cannot be extended to any child node of T ′ if and only if h can be extended
to all atoms cia(Si ). Consider the depiction of a possible wdPT p in Fig. 4.

To implement the overall idea, we proceed as follows. We use atoms with the
relation symbols in λ(T ′) to simulate F. For each child node ti of T ′, we distinguish
between the relation symbols in Si and those not in Si . For those not in Si , we provide
all possible atoms over the domain in D. I.e., every homomorphism on λ(T ′) can
always be extended to the atoms not in Si . Whether it can be extended to all of λ(ti)

thus only depends on Si . For those atoms we provide values that are only compatible
with a homomorphism on λ(T ′) if this homomorphism cannot be extended to cia(Si ).
However, given a mapping μ on fvar(T ′), for μ /∈ p(D) it is not sufficient that every
homomorphism μ′ : λ(T ′) → D can be extended to at least one child node of T ′: this
child node must also contain a free variable not occurring in T ′. If this is not the case
for some child ti , we pick one descendant si of ti that contains a new free variable
(since ti is relevant, si exists), and for all relation symbols on the path from ti to si ,
we let D contain all possible atoms over the domain, thus making sure that if μ′ can
be extended to ti , it can also be extended all the way to si .

We continue the formal definition of the reduction. To define a database D and a
mapping μ such that μ ∈ p(D) if and only if a homomorphism from E to F exists,
we need to define the following sets of nodes first. Let K = ch(T ′) ∩ relv(T ) =
{t1, . . . , tn}. For each ti ∈ K , we define the set Ni of nodes as follows. If fvar(ti) \
fvar(branch(ti)) 
= ∅ (i.e., ti contains some “new” free variable), then Ni = ∅. Oth-
erwise, let si ∈ T be a descendant of ti such that fvar(si) \ fvar(branch(ti)) 
= ∅
and such that this property holds for no other node on the path from ti to si . Then
Ni = cbranch(si) \ cbranch(ti). (E.g., in Fig. 4, N1 contains the two nodes with bold
borders.) Finally, let N = ⋃n

i=1 Ni . We can now describe the database D. While

Fig. 4 Illustration of the different parts of a wdPT distinguished in the proof of Lemma 4. The “slots”
in the nodes t1, t2, and t3 represent the node components of these nodes. While we assume t2 and t3 to
contain a free variable not occurring in T ′, t1 does not contain such a variable. The node s1 is one possible
descendant of t1 with a free variable not in T ′
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doing so, we implicitly assume that for all positions where an atom R(v) of p con-
tains a constant, all the atoms in RD contain the same constant as v. I.e., we describe
only the values for “variable positions” of v. Recall that we are dealing with simple
wdPTs, thus each relation symbol R occurs at most once within λ(T ).

For all atoms R(y) ∈ λ(T ) \ (λ(T ′) ∪ λ(K) ∪ λ(N)), let RD = ∅, i.e., for all
atoms neither in T ′ nor in any of the relevant child nodes of T ′ (or their exten-
sions to some node with a “new” free variable), no matching values exist in the
database.

For all atoms R(y) ∈ λ(T ′), we want to use them to simulate in D the relations in
F. Observe that for each such atom, there exists an atom R′(z) ∈ E that was derived
from R(y) by removing the free variables fvar(T ′). Thus, for each atom of the form
R′(a) (i.e., atoms with relation symbol R′) in F, we add one atom R(b) to RD where
b contains a fixed domain value d ∈ dom(F) at all positions where y contains a free
variable, and the value from a at those positions where the variable still occurs in
R′(z′). I.e., RD is designed in such a way that all variables x ∈ fvar(T ′) can only be
mapped to d .

The definition for the atoms in K is more involved. Consider some ti ∈ K . Let
v contain the existential interface variables of the node component Si ∈ NC(ti)

selected for the construction of E, and assume cia(Si ) = Rcia(v).
For all atoms R(y) ∈ λ(ti) \ Si , set RD = {R(a) | a ∈ dom(F)k} where k is the

arity of R. For the atoms in Si , we distinguish between Si being of type (1) or of
type (2).

If Si is of type (1), i.e., Si is of the form Si = {R(y)} for some R(y) ∈ λ(ti),
define RD = {R(a) | a ∈ dom(F)k and Rcia(av) /∈ F}, where av is the restriction of a
to those positions in y with variables from v (and thus not containing variables from
fvar(T ′)).

If Si is of type (2), we distinguish two types of variables: those that occur in
I(Si , t), and those that do not appear in any node t ′ ∈ branch(ti). We call these latter
variables new variables and use as their domain the set dom(F)|v|, i.e., the set of all
possible assignments of values from F to the variables in v from Rcia(v). We assume
that the encoding of the assignments a ∈ dom(F)|v| is such that we can look up the
value that is given to a variable vi ∈ v by a. For the remaining variables in var(Si ),
we will use values from dom(F). For each atom R(y) ∈ Si , the values in RD are
defined as follows:

Let z = y ∩ (var(Si ) \ v) (because Si is of type (2), z \ fvar(T ′) 
= ∅). Then RD

contains an atom for each tuple satisfying all of the following four properties.

1. All variables in fvar(T ′) get the value d .
2. All the variables in z \ fvar(T ′) get assigned the same value. Denote this value

by a, and recall that a represents an assignment a ∈ dom(F)|v|.
3. For all vi ∈ v∩y, the value of vi is consistent with the vector a represented by a.
4. We have Rcia(a) /∈ F.

Because their arity is assumed to be bounded, all these relations can be constructed
in polynomial time. To conclude the definition of D, for all atoms R(y) ∈ λ(N), set
RD = {R(a) | a ∈ dom(D)k}, where k is the arity of R and dom(D) is implicitly
defined to consist of all values mentioned in the definition of D.
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Finally, let μ be the mapping defined on all variables x ∈ fvar(T ′) as μ(x) = d .
To prove μ ∈ p(D) if and only if homomorphism E → F exists, we first show the
following claim.

Claim Let Rcia(v) be an interface atom and Si the corresponding node component.
Then, for a mapping μ′ : v → dom(F), we have that Rcia(μ

′(v)) ∈ F if and only if
there is no extension μ′′ of μ′ ∪μ to var(λ(ti)) that maps all atoms in Si into D (since
Si ⊆ λ(ti), this implies that there exists no extension μ′′ of μ′ ∪ μ that maps λ(ti)

into D).

Proof (of the Claim) For node components of type (1), the claim is immediate. So let
us assume for the rest of the proof that Si is of type (2).

First let Rcia(μ
′(v)) ∈ F. Let us assume an arbitrary extension μ′′ of μ′ ∪ μ to

var(Si ). If μ′′ does not satisfy conditions 1., 2., and 3. for all R(y) ∈ Si , then clearly
for this particular atom there exists no atom in D to which it can be mapped by μ′′. We
may thus assume that μ′′ satisfies the first three conditions for all atoms R(y) ∈ Si .
Then all variables in var(Si ) \ (v ∪ fvar(T ′)) take the same value under μ′′, and this
value corresponds exactly to the tuple μ′(v). But then μ′′ does not satisfy condition
4. for any R(y) ∈ Si since Rcia(μ

′(v)) ∈ RF
cia by assumption. Thus, RD does not

contain any atom onto which μ′′ could map R(y) and thus μ′′ cannot exist which
completes the first direction.

For the other direction, assume that no extension μ′′ of μ′ ∪ μ maps all atoms in
Si into D. Then this is in particular true for those assignments satisfying conditions
1., 2., and 3. Note that every such assignment maps all variables in z \ fvar(T ′) to the
same value, representing a mapping on v. Also, μ′′|v = μ′. Since μ′′ fails to map Si

into D because of 4., we get that Rcia(μ
′(v)) ∈ RF

cia, which completes the proof of
the claim.

We continue the proof that μ ∈ p(D) if and only if a homomorphism E → F
exists. First observe that μ ∈ p(D) if and only if on the one hand there is an extension
μ′ of μ to var(T ′) that maps all atoms in λ(T ′) into D (of course, in general every
subtree T ′′ containing the root node of T with fvar(T ′′) = dom(μ) is a potential can-
didate, but given the construction of D, the subtree T ′ is the only possible candidate)
and, on the other hand, for all ti ∈ K , we have that there does not exist an extension
of μ′ onto λ(ti) ∪ λ(Ni). (In fact, extending the mapping to any descendant of ti that
contains some additional free variable would work. However, the only nodes with
non-empty relations in D are those mentioned in N .)

By the construction of D for atoms in λ(N), for every ti ∈ K it follows immedi-
ately that there exists an extension of μ′ onto λ(ti) ∪ λ(Ni) if and only if there exists
an extension to λ(ti). This is because for the atoms in λ(N) the database D contains
all possible atoms, thus every extension μ′′ of μ′ onto λ(ti) can be further extended
to all atoms in λ(Ni).

Note that the existence of an extension of μ′ onto λ(ti) is, by the Claim shown
above, equivalent to μ′ sending Rcia(v) into F. So μ ∈ p(D) if and only if there is a
homomorphism from E into F. This completes the proof.
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6 Tractability Conditions for Non-simple wdPTs

As already mentioned at the beginning of Section 3, the tractability conditions pre-
sented there are not restricted to simple wdPTs, but also apply to arbitrary wdPTs.
I.e., deciding p-EVAL(P) is in FPT also for classes P of non-simple wdPTs. However,
in case that the same relation symbol may occur in more than one atom throughout
the query, the tractability criteria stated in the previous section miss important classes
of tractable wdPTs. In the following, we discuss more general tractability notions.

The key difference for non-simple wdPTs is that in this setting, a set of atoms is
not necessarily its own core. Since for the homomorphism problem, not the treewidth
of the set of atoms, but the treewidth of its core determines the complexity of the
problem as shown by Grohe [12] and recalled in Theorem 1, the concept of cores
must also be taken into account for the tractability conditions. To do so, we revisit
both, the notion of cores and the homomorphism problem, studying variations more
suitable to our setting, and then apply these results to extend the definition of tractable
classes.

6.1 Extension Cores

In this section, we will introduce a variant of cores we call extension core that will
turn out to be the right notion for wdPTs. The reason for this is that while the core is
the suitable concept for the homomorphism problem (cf. Theorem 1), when evaluat-
ing wdPTs we actually deal with a variant of the homomorphism problem. To further
motivate the idea of these extensions, recall that when deciding p-EVAL(P) for some
wdPT p = (T , λ,X ), one important step is to check, given some subtree T ′ of T ,
a mapping μ and some child node of T ′, whether μ′ can be extended to this child.
While this problem can be correctly stated as an instance of HOM, such a formu-
lation could not adequately express all available information. In fact, compared to
HOM, the problem at hand contains both, additional constraints (for some variables
in the child node, the value is already determined by μ′) and additional information
(we know that μ′ maps λ(T ′) into the database). The formulation as an instance of
HOM could not utilize all of the information at hand, and as a result the problem
might look harder than it actually is.

Example 10 Consider the (non-simple) wdPT pk = (T , λk, {x1, x2}) (parameterized
by k) depicted in Fig. 5 consisting of two nodes. Clearly, the class P = {pk | k ≥ 2}
of wdPTs does neither satisfy tractability condition (a) nor (b). In both cases, the
reason for the violation is the clique of boss of (yi, yj ) atoms in t1, which resides in
a single node component.

Nevertheless, deciding p-EVAL(P) is in FPT. As mentioned, the reason for this is
that tractability for the homomorphism problem depends on the treewidth of the core
of the structure, and not on the treewidth of the structure.

That is, consider tractability condition (b) first. It ensures that in line 7 of
Algorithm 1 the CQ can be evaluated efficiently. Now condition (b) is not sat-
isfied because of the “subtree” of T which contains all of T . In this case, the
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Fig. 5 The wdPT pk from
Example 10. The free variables
are underlined

resulting CQ qk is Ans(x1, x2) ← λk(T ). However, given concrete values a and
b for x1 and x2, the evaluation problem for the class of Boolean CQs {qk(a, b) |
pk ∈ P} (where qk(a, b) is the query qk with x1 and x2 in λk(T ) being replaced
by a and b, respectively) is tractable. This is because core(λk(T )) = {emp(x1),

boss of (x1, x1), works in(x1, d1), leads(x2, d1), part of (d1, d2)} due to the homo-
morphism h with h(yi) = x1 for 1 ≤ i ≤ k. The treewidth of these cores is
obviously bounded by some constant, and thus deciding the problem is tractable
(c.f. Theorem 1).

While adapting tractability condition (b) is rather straightforward, the situation is
more interesting for condition (a). Recall that the idea of condition (a) is to ensure
that deciding whether a mapping on the interface variables of a node component can
be extended to this node component is tractable. Consider the node component S in t1
that contains the set of boss of (yi, yj ) atoms. Clearly, for increasing k the treewidth
of this component is not bounded, and neither is the treewidth of its core (since
it already is its own core). Deciding whether a mapping on d1 (the only interface
variable) can be extended to this component is nevertheless tractable.

The reason for this is that it is only necessary to consider mappings μ on d1 that
have an extension which maps λk(r) into a given database. Thus, for deciding the
extension to t1, we can assume the existence of such a mapping on λk(r). In our case,
we thus know that the database contains a target for emp(x1), boss of (x1, x1), and
works in(x1, d1). Thus, instead of considering just the core of S, we can consider the
core of S ∪ λk(r). Again by the same homomorphism as before, that is h(yi) = x1
for all 1 ≤ i ≤ k, we can now fold parts of S into λk(r). In the next step, we can
remove again all atoms from λk(r), since for them the existence of a mapping into
the database is already known, and finally only need to decide the existence of an
extension of μ on the remaining set of atoms, which again, is tractable for P .

To formalize this idea of “folding” parts of node components into the set of atoms
on the branch to this component, we introduce the notion of an extension core. We
then introduce the problem EXT(C) which captures the idea of finding extensions to
a given mapping, and characterize its tractable classes. Using this problem, we then
introduce refined versions of tractability conditions (a) and (b) based on the notion
of the extension core, and show that these improved conditions indeed guarantee
tractability for p-EVAL(P).

Towards the definition of the extension core, for a set A ⊆ Const ∪ Var of ele-
ments, let FixA be the set of atoms FixA = {Ra(a) | a ∈ A} where each Ra is a
unique relation symbol.
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Definition 10 (Extension Core) Let (A, B) be a pair of sets of atoms. The extension
core extcore(A, B) is the set extcore(A, B) = (core(A∪B∪Fixdom(A))\Fixdom(A))\
dom(A).

Said differently, the extension core is constructed by introducing a new relation for
every domain element in A and then computing the core. That is, the extension
core accounts on the one hand for the possibility that parts of B might be folded
into A (and thus the extension of the homomorphism to these parts is guaranteed),
and on the other hand for the fact that the mapping on dom(A) is fixed. Remov-
ing dom(A) is then possible because the mapping is already provided for these
values.

Example 11 To illustrate Definition 10, consider the wdPT from Fig. 5, and
let A = λ(r) and B = λ(t1). Then Fixdom(A) = {Rx1(x1), Rd1(d1)}.
Then core(A ∪ B ∪ Fixdom(A)) = {emp(x1), boss of (x1, x1), works in(x1, d1),
leads(x2, d1), part of (d1, d2), Rx1(x1), Rd1(d1)} (mapping all yi to x1). The exten-
sion core then is {emp1=x1(), boss of 1=x1,2=x1(), works in1=x1,2=d1(), leads2=d1(x2),
part of 1=d1(d2)}.

6.2 The Extension Problem

A task within the evaluation problem of wdPTs is to test whether a mapping on some
subtree is maximal or can be extended to some child node. We formalize this by the
following problem, where C is a class of pairs of sets of atoms.

The parameterized problem p-EXT(C) is the problem EXT(C) parameterized by the
size of (A, B).

The main difference between HOM and EXT is that in addition to a set of atoms,
the input of EXT gets another set of atoms and a homomorphism that is already
guaranteed to map this additional set of atoms into the target. When looking for
tractable classes, this additional input has to be taken into account. This is exactly the
role of extension cores as defined in the last section.

While here we use the extension problem to define tractable fragments of the
evaluation problem of wdPTs with projection, we note that it also allows for an
alternative formulation of the tractable classes of projection free wdPTs defined by
Romero [24].

With these definitions settled, we next use extension cores to provide an exact
characterization of the tractable classes C of the extension problem EXT(C).
To this end, we define the treewidth of extcore(C) to be the maximum of the
treewidth of extcore(A, B) for (A, B) ∈ C if this maximum exists and ∞
otherwise.

Theory of Computing Systems (2021) 65:3–4130



Theorem 3 Assume that FPT 
= W[1] and let C be a decidable class of pairs of sets
of atoms. Then the following statements are equivalent:

1. The treewidth of extcore(C) is bounded by a constant.
2. The problem EXT(C) is in PTIME.
3. The problem p-EXT(C) is in FPT.

Theorem 3 is shown using a sequence of lemmas given below. First, we state an
easy but important observation that we use tacitly throughout this section.

Observation 4 – Extension cores are unique up to isomorphism.
– For all sets A, B of atoms, we have core(extcore(A, B)) = extcore(A, B).

The first lemma in the sequence describes a crucial property of extension cores
that will be used several times throughout the remainder of this section.

Lemma 5 An instance (A, B), D, h of EXT is a positive instance of EXT if and only
if there exists a homomorphism h′ : (A ∪ E) → D that extends h, where E is the set
core(A ∪ B ∪ Fixdom(A)) \ Fixdom(A) of atoms from the definition of extension cores.

Proof Solving the instance (A, B), D, h of EXT is equivalent to solving the instance
((A ∪ B ∪ Fixdom(A)), (D ∪ h(Fixdom(A))) of HOM (where h(Fixdom(A)) denotes the
set Fixdom(A) of atoms where all elements a ∈ dom(h) are replaced by h(a)). This in
turn is equivalent to deciding the existence of a homomorphism h′ : (A ∪ E) → D
extending h.

Next, we show the positive result, i.e., that the problem EXT(C) can be solved
efficiently if the treewidth of the extension cores in C is bounded.

Lemma 6 Let C be a class of pairs of sets of atoms such that the treewidth of
extcore(A, B) for all (A, B) ∈ C is bounded by some constant c. Then EXT(C) is in
PTIME.

The proof of this result heavily relies on the notion of restricting a set A of atoms to
a subset of its domain dom(A) \A for A ⊆ dom(A) already introduced in Section 2.
Another important concept is the projection of a pair (A, B) of sets of atoms under a
mapping h, where dom(h) ⊆ dom(A), and the range of h is (some subset of) dom(B).
This describes the process of first replacing in A all values a ∈ dom(h) by h(a),
and then, for the resulting structure A′, computing A′ \ dom(B) (w.l.o.g. assuming
dom(A) ∩ dom(B) = ∅). In the second step, for every new relation symbol Rs in
A′ \ dom(B) created from some relation symbol R, and every atom R(a) ∈ B such
that a is consistent with the values encoded in s (recall that s records the positions
and their values that were removed from R when creating Rs), we add an atom Rs(b)

to B, where b is the projection of a to the remaining positions in Rs .
Both, restricting a set of atoms and the projection of pairs of atoms are well-known

techniques. However, they occur in slightly different interpretations throughout the
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literature. Thus, to avoid any ambiguities, we provide full formal definitions for both
of them. Being very technical definitions for common notions, they are given in the
Appendix.

The following observation not only is an immediate consequence of the above
definitions, but also describes the intuition behind projecting a pair of sets of atoms
and will be used in the proof of Lemma 6.

Observation 5 Let two sets Q, D of atoms over a relational schema σ and a mapping
h : Q → dom(D) be given where Q ⊆ dom(Q), and let Q′, D′ be the projection
of (Q, D) under h. Then there exists some extension h′ : Q → D of h if and only
if there exists a homomorphism ĥ : Q′ → D′ (i.e., if (Q′, D′) is a positive instance
of HOM).

We now have everything in place to prove Lemma 6.

Proof (of Lemma 6) Let (A, B) ∈ C, D, and h be an instance of EXT(C). By
Lemma 5, this problem is equivalent to asking for the existence of a homomorphism
h′ : (A ∪ E) → D that extends h, where E = core(A ∪ B ∪ FixA) \ FixA and
A = dom(A). By Observation 5, this is equivalent to the instance ((A ∪ E)′, D′) of
HOM, where ((A ∪ E)′, D′) is the projection of ((A ∪ E), D) under h.

For EXT = extcore(A, B) and F = D, we next show that ((A ∪ E)′, D′) =
(EXT′, F′) where (EXT′, F′) is the projection of (EXT, F) under h. First of all,
observe that D′ = F′ does not necessarily hold, since the content of D′ and F′ depends
on the result of the projection with (A∪E)′ and EXT′, respectively. However, if these
left hand sides coincide, the equality D′ = F′ obviously holds.

We thus show that (A ∪ E)′ = EXT′. First of all, we have that A ∪ E = A ∪(
core

(
A∪B∪FixA

)\FixA
)

⊆ (A∪B). Moreover, since h : A → D, when computing

the projection under h we drop all atoms from A, and therefore (A ∪ E)′ does not
contain any atoms derived from A. It is thus safe to conclude that (A ∪ E)′ = E′,
where (E′, D′) is the projection of (E, D) under h.

Next, recall that extcore(A, B) = E \ A. Thus, the only difference between
EXT′ = (E \ A)′ and (A ∪ E)′ = E′ is that in the first case, the restriction of
E under A is computed, before the projection under h. However, since dom(h) =
dom(A) = A, it can be easily checked that this results in the same structures, and
thus EXT′ = (A ∪ E)′.

Now the treewidth of EXT is bounded by c, and therefore also the treewidth of
EXT′ (taking subgraphs does not increase the treewidth). As a result, the existence of
a homomorphism EXT′ → F′ can be decided in polynomial time [7], which proves
the lemma.

With this showing the upper bounds in Theorem 3, we turn towards the lower
bound, for which the following property will turn out to be important.

Lemma 7 Let A and B be sets of atoms and let C be the set of atoms core(A ∪ B ∪
Fixdom(A)) from the definition of the extension core. If h is a homomorphism from C
to itself, then h is bijective.
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Proof Since C is, by definition, a core, any homomorphism from C to itself is an
isomorphism.

The next result shows that the lower bounds in Theorem 3 are optimal by using
the characterization of tractable classes (for both, PTIME and FPT) of p-HOM(C)

provided by Grohe [12].

Lemma 8 Let C be a decidable class of pairs of sets of atoms and let extcore(C)

be the class of extension cores of the pairs in C. Then p-HOM(extcore(C)) ≤FPT

p-EXT(C).

Proof Let C be a decidable class of pairs of sets of atoms, and let (L, T) be an
instance of p-HOM(extcore(C)). We reduce this problem to an instance of p-EXT(C).

Borrowing from the notation of databases introduced in Section 2, for an arbitrary
set A of atoms and a relation symbol R, throughout this proof we write RA to denote
the set of all atoms in A with relation symbol R.

In the first step, we compute some pair (A, B) ∈ C such that extcore(A, B) = L.
By assumption, such a pair exists and, because C is decidable, can be computed. Next,
we need to show that there exists a set D of atoms and a homomorphism h : A → D
such that there exists a homomorphism h′ : (A ∪ B) → D that is an extension of
h if and only if there exists a homomorphism from L to T. However, by utilizing
Lemma 5, we will work in a slightly different setting.

Let E be the set of atoms core(A ∪ B ∪ Fixdom(A)) \ Fixdom(A) from the definition
of extension cores. By Lemma 5, the desired extension h′ of h exists if and only if
there exists a homomorphism ĥ : (A∪E) → D that extends h. Observe that the set D
and homomorphism h are still the same as above. We will work in the latter setting
with E instead of B as this turns out to be easier.

We define the set D of atoms over the same schema as E as follows:

– The domain dom(D) = dom(T) × dom(E), i.e., the elements represent pairs of
elements from T and E, respectively.

– For each relation symbol R of arity k, and every R(a1, . . . , ak) ∈ E, the set D
contains the following atoms:

Let {i1, . . . , i	} ⊆ {1, . . . , k} be all those positions of (a1, . . . , ak) such that
aij ∈ dom(A), and let {o1, . . . , om} = {1, . . . , k} \ {i1, . . . , i	} be all those posi-
tions such that aoj

/∈ dom(A), i.e., aoj
∈ dom(B) \ dom(A). Let furthermore

R′ be the relation symbol derived for R(a1, . . . , ak) ∈ E when computing the
projection E \ dom(A) = extcore(A, B).

Now, for every pair (d1, d2) of tuples d1 = (do1 , . . . , dom) with R′(d1) ∈ T
and d2 = (di1 , . . . , di	) ∈ dom(T)	, add the atom R((d1, a1), . . . , (dk, ak)) to D.
(Observe that by slight abuse of notation, in order to simplify the description we
denote the positions in d1 and d2 according to the position in R they originate
from.) Thus, intuitively, we replace all domain elements from dom(A) with all
possible combinations of elements from dom(T).

These are all the tuples in D.
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It is worth pointing out that in case R′ is not part of the schema of T or (R′)T is
empty, then by this definition also RD is empty. The resulting instance will therefore
be a simple “no” instance, because RE is non-empty. However, in this case we also
have that (R′)L is nonempty, and therefore also (L, T) is a trivial “no” instance.

Finally, we define the mapping h : dom(A) → dom(D) as h(a) = (d, a)

for some arbitrary but fixed element d ∈ dom(T). Since D contains one atom
R((d1, a1), . . . , (dk, ak)) for every atom R(a1, . . . , ak) ∈ A and every combination
of d1, . . . , dk ∈ dom(T), clearly h is a homomorphism h : A → D.

It remains to prove that there indeed exists a homomorphism g : L → T if and
only if h can be extended to a homomorphism ĥ : E → D.

First assume that g exists. Then define an extension ĥ of h to dom(E) as ĥ(a) =
(g(a), a) for all a ∈ dom(E) \ dom(A). The mapping g is indeed defined on all
these elements, since dom(E) \ dom(A) = dom(extcore(A, B)) = dom(L) because
extcore(A, B) = L. For a ∈ dom(A) we need not define ĥ since h is already defined
on these elements, and ĥ extends h. It now follows immediately from the construction
of D that ĥ is indeed the required homomorphism.

For the other direction, assume that ĥ exists. First, observe that D projected onto
the second component of its domain elements gives E. Thus, ĥ is a bijection in
this second coordinate by Lemma 7. Let π2 be the projection to the second coor-
dinate. Then π2 ◦ h is an automorphism of E, and thus there is a n ∈ N such that
(π2 ◦ h)n = id (where id denotes the identity mapping). Consequently, w.l.o.g. we
assume that π2 ◦ h = id . For every a ∈ dom(L) = dom(extcore(A, B)) define
g(a) to be the value d such that ĥ(a) = (d, a). Then again by definition of D it
follows immediately that for all relation symbols R and tuples a ∈ RL we have
g(a) ∈ RT.

Observing that all constructions can be done efficiently completes the proof.

Theorem 3 now follows immediately. (1) ⇒ (2) follows from Lemma 6. The impli-
cation (2) ⇒ (3) follows immediately. Finally, if the treewidth of extcore(C) is not
bounded, then p-HOM(extcore(C)) is not in FPT by Grohe [12]. Thus, by Lemma 8,
the problem p-EXT(C) is not in FPT, which shows (3) ⇒ (1).

6.3 Tractability Conditions for Arbitrary wdPTs

With the notion of extension cores, we now have a tool to adapt tractability con-
ditions (a) and (b) to also account for the core of sets of atoms, and to make use
of the knowledge that when looking for extensions, the existence of certain map-
pings can be assumed. Recall the intuition described at the beginning of Section 6.1
and Example 10. In this situation, the maximality test towards a single node com-
ponent can be easily expressed as an instance of EXT(C). More precisely, given a
wdPT (T , λ,X ), a database D, a subtree T ′ of T , and a node component S ∈ NC(t)

for some node t ∈ ch(T ), testing if some mapping μ′ can be extended to S is the
instance (λ(T ′), S), D, μ of EXT(C). One way to adapt tractability condition (a) –
recall that intuitively this is the condition ensuring that the test for maximality is
tractable – would thus be to associate with each class P of wdPTs a class C of all rel-
evant pairs (λ(T ′), S), and to require EXT(C) to be in FPT. However, using the easy
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characterization of Theorem 3, we state the refined variant of tractability condition
(a) directly in terms of extension cores.

Three comments are in order. First, observe that for the case of simple wdPTs,
tractability condition (a’) is equivalent to tractability condition (a). Second, note that
unlike in the above discussion, condition (a’) mentions branch(t) instead of T ′. This
is because the condition has to be satisfied for all subtrees T ′ with t ∈ ch(T ′). Among
these, branch(t) is the minimal one. Thus, for all subtrees containing branch(t), the
treewidth of extcore(λ(T ′), S) is at most the treewidth of extcore(λ(branch(t)), S).
Third, recall that the intuition used above for motivating tractability condition (a’)
does not match the actual idea implemented in Algorithm 1. In fact, not testing max-
imality for one possible mapping on subtrees T ′ after the other, but merging this test
with finding mappings on the existential variables in T ′ was actually a crucial step in
the development of the algorithm. We will later describe the necessary changes to the
algorithm in order for it to utilize the additional information given by the existence
of a mapping that maps λ(T ′) into the database, but first we reconsider tractability
condition (b).

Recall that tractability condition (b) ensures that the CQs for finding suitable,
maximal mappings on the existential variables are tractable. By Grohe [12], this is the
case if and only if the core of the CQs has bounded treewidth. However, to account
for the fact that for some free variables a mapping was provided as part of the input,
when computing the core, these variables must be mapped onto themselves. This
requirement is again naturally expressed in terms of extension cores.

Analogously to tractability condition (a’), for simple wdPTs tractability condition
(b’) is equivalent to condition (b). However, there exist classes of non-simple wdPTs
that satisfy conditions (a’) and (b’), but not (a) and (b). An example for such a class
of wdPTs was described in Example 10. Also, the two tractability conditions are
independent of each other, as illustrated by the following example.

Example 12 For a class of wdPTs that satisfies condition (a’) but not (b’), consider
the class of wdPTs containing the wdPTs from Fig. 3 for all k ≥ 1. For any sub-
tree containing the node t2, condition (b’) is not satisfied because of the k-clique of
ycliqueij (yi, yj ) atoms. However, condition (a’) is satisfied, since all variables in this
clique are interface variables.

For the opposite case, recall the wdPT in Fig. 5, but assume that the atom emp(y1)

was part of λ(r) instead of λ(t1). Clearly, the core of λ(T ) remains unchanged, and
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thus of bounded treewidth. Also the set of atoms boss of remains part of a single
node component S. Now when computing the extension core of (λ(r), S), y1 is part
of λ(r), and thus must be mapped onto itself. As a result, all yi must be mapped onto
themselves. After removing the variables from λ(r), a (k − 1)-clique remains, and
thus condition (a’) is not satisfied.

Conditions (a’) and (b’) therefore describe a proper extended set of classes of
wdPTs. Next, we discuss why query evaluation is indeed tractable for these classes.

In fact, Algorithm 1 already describes a correct FPT algorithm even for classes
of arbitrary wdPTs satisfying conditions (a’) and (b’). The only change necessary
does not happen directly within Algorithm 1, but in the computation of stop(S, D)

(for some node component S and database D in line 6). So far, given an instance
p, D, μ of p-EVAL(P), the content of stop(S, D) was computed as follows: for
every possible mapping ν on I(S, t) compatible with μ, check if it can be extended
to a homomorphism ν′ : S → D. If this is not the case, include ν|I∃(S,t) in
stop(S, D). The only change is that instead of testing for a homomorphism from
S into D, we now decide whether to add the tuple into stop(S, D) based on the
non-existence of a homomorphism h′ : extcore(λ(branch(t)), S) → D extending h.
I.e., formulated in terms of the problem EXT(C), we have h|I∃(S,t) ∈ stop(S, D) if
(∅, extcore(λ(branch(t)), S)), h, D is a negative instance of EXT(C).

Note that this new definition does not necessarily give the same sets stop(S, D)

as we would get under the original definition, as demonstrated by the following very
simple example.

Example 13 Consider the wdPTs p as depicted in Fig. 6. For the node component
S = {a(y3, y2)} in t1, we get cia(S) = R(y2), and extcore(λ(r), S) = ∅. Then, fol-
lowing the definition in Section 4, we get stop(S, D) = {R(0), R(1)} since mapping
y2 to either of these values does not map a(y3, y2) into D. In contrast, when working
with extcore(λ(r), S), we get stop(S, D) = ∅.

The reason for this is that replacing S by extcore(λ(branch(t)), S) implies that the
mapping h that shall be extended to S is (or can be extended to) a homomorphism
branch(t) → D. Obviously, in the example this is not the case for any mapping that
maps y2 to either 0 or 1.

As we will show below, this difference has no effect on the output of Algorithm 1,
since the additional values in stop(S, D) according to the original definition are never
involved in any solution anyway.

By combining all of this, we get the following result as a proper extension of
Lemma 1.

Fig. 6 The wdPT p and database instance D from Example 13. The free variables are underlined
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Theorem 6 Let P be a decidable class of wdPTs. If tractability conditions (a’) and
(b’) hold for P , then p-EVAL(P) can be solved in FPT.

Proof First of all, observe that under these conditions Algorithm 1 is still in FPT:
with the exception of evaluating the query q (line 7) and computing the set stop(S, D)

(line 6), all the arguments from Section 4 still apply.
For deciding μ(x) ∈ q(D′) in line 7, observe that this is equivalent to deciding

the instance (∅, λ(T ′) ∪ {cia(S1), . . . , cia(Sn)}), μ, D′ of EXT(C), which is in FPT
because of Theorem 3 and the fact that tractability condition (b’) is satisfied.

For computing stop(S, D), first of all observe that since the component inter-
face atoms contain unique relation symbols and no variables from fvar(T ′), they
occur unchanged in the core. Thus, the component width of P is bounded by
some constant, and therefore there exist at most polynomial many candidate
mappings to be included in stop(S, D). Furthermore, testing each of these map-
pings is in FPT. To see this, recall that testing requires to decide an instance
(∅, extcore(λ(branch(t)), S)), h, D of EXT(C). By Theorem 3, this decision is in
FPT if extcore(∅, extcore(λ(branch(t)), S)) = extcore(λ(branch(t)), S) has bounded
treewidth, which is guaranteed by tractability condition (a’).

It thus remains to show the correctness of the algorithm, which follows by the same
arguments as in Section 4. Therefore, the only point that needs to be shown is that
the presented computation of stop(S, D) is correct. First of all, stop(S, D) according
to the definition via the extension core being a subset of stop(S, D) according to
the original definition in Section 4 follows immediately. For the opposite direction,
where we have already shown that this is not necessarily the case, we show that the
additional mappings in stop(S, D) according to the original definition have no effect
on the result of Algorithm 1.

Towards this, first assume that for a mapping ν ∈ stop(S, D) according to the def-
inition in Section 4, there exists an extension ν′ : λ(branch(t)) → D. Then, since
all variables shared between S and λ(branch(t)) occur in I(S, t), we have that ν

can be extended to a homomorphism S → D if and only if (λ(branch(t)), S), ν′, D
is a positive instance of EXT(C). I.e., for such ν we still have ν ∈ stop(S, D)

by the new definition, and thus the test is correct. Next, assume that there exists
no such extension ν′. In this case, in line 7 of the algorithm, q(D′) = q(D′ \
{Ri(ν(vi ))}, since λ(branch(t)) is contained in the body of the query, and thus ν

cannot be part of any solution mapping. Hence, ν /∈ stop(S, D) still gives a correct
solution.

7 Relationship with SPARQL and Conclusion

Our results give a fine understanding of the tractable classes of wdPTs in the pres-
ence of projection. In particular they show the different sources of hardness. As
laid out in the introduction, there is a strong relationship between well-designed
SPARQL queries and wdPTs: For every well-designed SPARQL query, an equivalent
well-designed pattern tree can be computed in polynomial time, and vice versa, in a
completely syntactic way.
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Note that our characterization of tractable classes of Theorem 2 unfortunately can-
not be immediately translated to well-designed SPARQL queries. This is because our
characterization only applies to classes of simple well-designed pattern trees. How-
ever, RDF triples and SPARQL triple patterns, in the relational model, are usually
represented with a single (ternary) relation. Thus, there is no direct translation to
and from simple (well-designed) pattern trees. As a consequence, our result does not
imply an immediate characterization of the tractable classes of well-designed {AND,
OPTIONAL}-SPARQL queries.

Nevertheless, our results also give interesting insights to SPARQL with pro-
jections. First, Algorithm 1 directly applies to queries in which relation sym-
bols appear several times and thus in particular for well-designed pattern trees
resulting from the translation of well-designed SPARQL queries. Moreover, our
result determines completely the tractable classes that can be characterized by
analyzing only the underlying graph structure of the queries, i.e., the Gaifman
graph. Indeed, since simple queries can simulate all other queries sharing the
same Gaifman graph by duplicating relations, Gaifman graph based techniques
have exactly the same limits as simple queries. Thus, our work gives signifi-
cant information on limits of tractability for SPARQL queries in the same way
as, e.g., Grohe et al. [13], Chen [4], and Chen and Dalmau [5] did in similar
contexts.

As we have seen, by incorporating cores, we can also characterize larger tractable
classes in the non-simple case, and thus again for well-designed pattern trees result-
ing from the translation of well-designed SPARQL queries. However, in this case we
do not get a dichotomy result.

Let us mention one major stumbling block towards a characterization of non-
simple well-designed pattern trees with projections: In the proof of Lemma 3,
we have used a reduction from quantified conjunctive queries. Unfortunately, the
tractable classes for the non-simple fragment for that problem are not well understood
which limits our result to simple queries since we are using the respective results
by Chen and Dalmau [5]. Note that we might have been able to give a more fine-
grained result in sorted logics by using the work of Chen and Marx [6], but since this
would, in our opinion, not have been very natural in our setting, we did not pursue
this direction. Thus, a better understanding of non-simple pattern trees would either
need progress on quantified conjunctive queries or a reduction from another problem
that is better understood.

One prominent operator of SPARQL that we did not consider is UNION, whose
correspondence in pattern trees are sets of pattern trees, so-called pattern forests.
While the extension to simple pattern forests is immediate (since no two trees share
any relation symbols), it is not clear how to approach the possible repetition of rela-
tion symbol within different trees in forests of simple pattern trees in combination
with projection.

Finally, another interesting class of queries are weakly well-designed pattern trees.
While the tractability conditions can be easily adapted to provide FPT algorithms for
these queries, providing a characterization of the tractable classes is much harder due
to the fact that relevant nodes need not have a descendant introducing a “new” free
variable.
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Appendix: Additional Definitions

In Sections 2 and 6, we introduced the notions of restricting a set A of atoms to some
subset A ⊆ dom(A) and projecting a pair of sets of atoms under some mapping. As
mentioned in Section 6, below we provide a full formal definition of these notion to
avoid any ambiguities a reader may have.

Restricting a Set of Atoms (S \ V) A complete definition was already given in
Section 2. In the following, we clarify the names of the newly introduced relation
symbols Rs . For a set S of atoms over some relational schema σ and V ⊆ dom(S),
S \ V contains the following set of atoms over the relational schema σ ′, which is
defined implicitly by the newly introduced atoms described below. For every atom
R(a1, . . . , ak) ∈ S, let o1, . . . , o	 be those positions of (a1, . . . , ak) that do not
contain values from V , i.e., aoj

/∈ V for 1 ≤ j ≤ 	, and let {i1, . . . , im} =
{1, . . . , k} \ {o1, . . . , o	} be those positions such that aij ∈ V for 1 ≤ j ≤ m. Then

the set S\V contains the atom Ri1=ai1 ,...,im=aim (ao1 , . . . , ao	
). These are all the atoms

in S \ V .

Projecting a Pair of Sets of Atoms Under a Mapping Let (Q, D) be a pair of sets of
atoms over the same relational schema σ and let h be a mapping on (a subset of)
dom(Q). We define the restriction of (Q, D) under h as the pair (Q′, D′) of sets of
atoms over the schema σ ′ as follows (the relational schema σ ′ is defined implicitly).

We start by defining Q′. For every relation symbol R ∈ σ and every atom
R(a1, . . . , ak) ∈ Q, we distinguish two cases.

– If {a1, . . . , ak} ⊆ dom(h) and R(h(a1), . . . , h(ak)) ∈ D, then just ignore
R(a1, . . . , ak) (i.e., no atom derived from R(a1, . . . , ak) occurs in Q′).

– Otherwise, let {i1, . . . , i	} ⊆ {a1, . . . , ak} be those positions of (a1, . . . , ak)

such that aij ∈ dom(h) for 1 ≤ j ≤ 	, and {o1, . . . , om} = {1, . . . , k} \
{i1, . . . , i	} those positions such that aoj

/∈ dom(h). Then Q′ contains the atom

Ri1=h(ai1 ),...,i	=h(ai	
)(ao1 , . . . , aom).

These are all atoms in Q′.
Observe that the second case includes the possibility that 	 = k, i.e., that ai ∈

dom(h) for all 1 ≤ i ≤ k, but that R(h(a1), . . . , h(ak)) /∈ D. In this case, the result
is a 0-ary relation symbol R1=h(a1),...,k=h(ak), and R1=h(a1),...,k=h(ak)() ∈ Q′.

Theory of Computing Systems (2021) 65:3–41 39

http://creativecommonshorg/licenses/by/4.0/


Next we define D′. For every relation symbol Ri1=b1,...,i	=b	 ∈ σ ′ introduced
by the definition of Q′ and every atom Ri1=b1,...,i	=b	(a1, . . . , am) ∈ Q′, let k be
the arity of the original relation symbol R from σ . Then the positions 1, . . . , m

in Ri1=b1,...,i	=b	 correspond to positions j1, . . . , jm in R. In fact, {j1, . . . , jm} =
{1, . . . , k} \ {i1, . . . , i	}. For each atom R(a) ∈ D with air = br for all 1 ≤ r ≤ 	,
the set D′ contains an atom Ri1=b1,...,i	=b	(aj1 , . . . , ajm).

We need to take care of one special case: Assume that, for a pair (Q, D) and a
homomorphism h such that Q is already a projection of some set L of atoms under a
set V ⊆ dom(L), we want to get the projection of (Q, D) under h. I.e. the schema of
Q already contains relation symbols of the form Ri1=b1,...,i	=b	 . If for any of the ij
(1 ≤ j ≤ 	) it is the case that bj ∈ dom(h), then in the resulting schema we replace
bj in the name of the resulting atom by h(bj ). In certain situations, this renaming
of the relation symbols will ensure the resulting sets of atoms to be over the same
relational schema, which is a prerequisite for finding homomorphisms.
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