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Abstract
In the sliding window streaming model the goal is to compute an output value that
only depends on the last n symbols from the data stream. Thereby, only space sublin-
ear in the window size n should be used. Quite often randomization is used in order
to achieve this goal. In the literature, one finds two different correctness criteria for
randomized sliding window algorithms: (i) one can require that for every data stream
and every time instant t , the algorithm computes a correct output value with high
probability, or (ii) one can require that for every data stream the probability that the
algorithm computes at every time instant a correct output value is high. Condition (ii)
is stronger than (i) and is called “strict correctness” in this paper. The main result of
this paper states that every strictly correct randomized sliding window algorithm can
be derandomized without increasing the worst-case space consumption.
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1 Introduction

Sliding window streaming algorithms process an input sequence a1a2 · · · am from left
to right and receive at time t the symbol at as input. Such algorithms are required
to compute at each time instant t a value f (at−n+1 · · · at ) that depends on the n

last symbols (we should assume t ≥ n here). The value n is called the window
size and the sequence at−n+1 · · · at is called the window content at time t . In many
applications, data items in a stream are outdated after a certain time, and the sliding
window model is a simple way to model this. A typical application is the analysis of a
time series as it may arise in network monitoring, healthcare and patient monitoring,
and transportation grid monitoring [3].

A general goal in the area of sliding window algorithms is to avoid the explicit
storage of the window content, and, instead, to work in considerably smaller space,
e.g. space polylogarithmic in the window size. In the seminal paper of Datar, Gio-
nis, Indyk and Motwani [12], where the sliding window model was introduced, the
authors prove that the number of 1’s in a 0/1-sliding window of size n can be main-
tained in space O( 1

ε
· log2 n) if one allows a multiplicative error of 1 ± ε. Also a

matching lower bound is shown. Other algorithmic problems that were addressed
in the extensive literature on sliding window streams include the computation of
statistical data (e.g. computation of the variance and k-median [5], and quantiles
[4]), optimal sampling from sliding windows [9], membership problems for formal
languages [13–16], computation of edit distances [10], database querying (e.g. pro-
cessing of join queries over sliding windows [18]) and graph problems (e.g. checking
for connectivity and computation of matchings, spanners, and minimum spanning
trees [11]). The reader can find further references in [1, Chapter 8] and [8].

Many of the above mentioned papers deal with sliding window algorithms that
only compute a good enough approximation of the exact value of interest. In fact,
even for very simple sliding window problems it is unavoidable to store the whole
window content. Examples are the exact computation of the number of 1’s [12] or
the computation of the first symbol of the sliding window for a 0/1-data stream [14].
In this paper, we consider a general model for sliding window approximation prob-
lems, where a (possibly infinite set) of admissible output values is fixed for each
word. To be more accurate, a specific approximation problem is described by a rela-
tion Φ ⊆ �∗ × Y which associates to words over a finite alphabet � (the set of data
values in the stream) admissible output values from a possibly infinite set Y . A slid-
ing window algorithm for such a problem is then required to compute at each time
instant an admissible output value for the current window content. This model cov-
ers exact algorithms (where Φ is a function Φ : �∗ → Y ) as well as a wide range
of approximation algorithms. For example the computation of the number of 1’s in a
0/1-sliding window with an allowed multiplicative error of 1 ± ε is covered by our
model, since for a word with k occurrences of 1, the admissible output values are the
integers between (1 − ε)k and (1 + ε)k.

A second ingredient of many sliding window algorithms is randomization. Fol-
lowing our recent work [13–15] we model a randomized streaming algorithm for
a given approximation problem as a probabilistic automaton over a finite alphabet.
Probabilistic automata were introduced by Rabin [23] and can be seen as a common

Theory of Computing Systems (2021) 65:444–461 445



generalization of deterministic finite automata and Markov chains. The basic idea is
that for every state q and every input symbol a, the next state is chosen according to
some probability distribution. As an extension to the classical model of Rabin, states
in a probabilistic automaton are not accepting or rejecting but are associated with out-
put values from the set Y . This allows to associate with every input word w ∈ �∗ and
every output value y ∈ Y the probability that the automaton outputs y on input w. In
order to solve a specific approximation problem Φ ⊆ �∗ × Y in the sliding window
model one should require that for a given window size n, a probabilistic automaton
Pn should have a small error probability λ (say λ = 1/3) on every input stream.
But what does the latter exactly mean? Two different definitions can be found in the
literature:

– For every input stream w = a1 · · · am, the probability that Pn outputs on
input w a value y ∈ Y with (am−n+1 · · · am, y) /∈ Φ is at most λ. Clearly
an equivalent formulation is that, for all input streams w = a1 · · · am and all
0 ≤ t ≤ m the probability that Pn outputs on input a1 . . . at a value y ∈ Y with
(at−n+1 · · · at , y) /∈ Φ is at most λ. In this case, we say that Pn is λ-correct for
Φ and window size n.

– For every input stream w = a1 · · · am, the probability that Pn outputs at some
time instant t (n ≤ t ≤ m) a value y ∈ Y with (at−n+1 · · · at , y) /∈ Φ is at most
λ. In this case, we say that Pn is strictly λ-correct for Φ and window size n.

One can rephrase the difference between strict λ-correctness and λ-correctness as
follows: λ-correctness means that while the randomized sliding window algorithm
runs on an input stream it returns at each time instant an admissible output value
with probability at least 1 − λ. In contrast, strict λ-correctness means that while the
randomized sliding window algorithm reads an input stream, the probability that the
algorithm returns an admissible output value at every time instant is at least 1 − λ.
Obviously this makes a difference: imagine that Ω = {1, 2, 3, 4, 5, 6} and that for
every input word w ∈ �∗ the admissible output values are 2,3,4,5,6, then the algo-
rithm that returns at every time instant the output of a fair dice throw is 1/6-correct.
But the probability that this algorithm returns an admissible output value at every
time instant is only (5/6)m for an input stream of length m and hence converges to
0 for m → ∞. Of course, in general, the situation is more complex since successive
output values of a randomized sliding window algorithm are not independent.

In the following discussion, let us fix the error probability λ = 1/3 (using prob-
ability amplification, one can reduce λ to any constant > 0). In our recent paper
[15] we studied the space complexity of the membership problem for regular lan-
guages with respect to λ-correct randomized sliding window algorithms. It turned
out that in this setting, one can gain from randomization. Consider for instance the
regular language ab∗ over the alphabet {a, b}. Thus, the sliding window algorithm
for window size n should output “yes”, if the current window content is abn−1 and
“no” otherwise. From our results in [13, 14], it follows that the optimal space com-
plexity of a deterministic sliding window algorithm for the membership problem for
ab∗ is Θ(log n). On the other hand, it is shown in [15] that there is an λ-correct
randomized sliding window algorithm for ab∗ with (worst-case) space complexity
O(log log n) (this is also optimal). In fact, we proved in [15] that for every regular
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language L, the space optimal λ-correct randomized sliding window algorithm for L

has either constant, doubly logarithmic, logarithmic, or linear space complexity, and
the corresponding four space classes can be characterized in terms of simple syntactic
properties.

Strict λ-correctness is used (without explicit mentioning) for instance in [7, 12].1

In these papers, the lower bounds shown for deterministic sliding-window algorithms
are extended with the help of Yao’s minimax principle [24] to strictly λ-correct ran-
domized sliding-window algorithms. The main result from the first part of the paper
states that this is a general phenomenon: we show that every strictly λ-correct sliding
window algorithm for an approximation problem Φ can be derandomized without
increasing the worst-case space complexity (Theorem 1). To the best of our knowl-
edge, this is the first investigation on the general power of randomization on the space
consumption of sliding window algorithms. We emphasize that our proof does not
utilize Yao’s minimax principle, which would require the choice of a “hard” distri-
bution of input streams specific to the problem. It remains open, whether such a hard
distribution exists for every approximation problem.

We remark that the proof of Theorem 1 needs the fact that the sliding window
algorithm is strictly correct on doubly exponentially long streams with high probabil-
ity in order to derandomize it. In fact, we show that for a certain problem a restriction
to polynomially long input streams yields an advantage of strictly correct random-
ized algorithms over deterministic ones, see Propositions 1 and 2. Whether such an
advantage can be also obtained for input streams of length singly exponential in the
window size remains open.

In the second part of the paper we come back to the problem of counting the num-
ber of 1’s in a sliding window [7, 12]. Datar et al. [12] proved a space lower bound
of Ω( 1

ε
· log2 n) for approximating the number of 1’s in a sliding window of size n

with a multiplicative error of 1 ± ε. This lower bound is first shown for deterministic
algorithms and then, using Yao’s minimax principle [24], extended to strictly λ-
correct randomized sliding-window algorithms. We show that the same lower bound
also holds for the wider class of λ-correct randomized sliding-window algorithms
(Theorem 2). For the proof of this result we first show a lower bound for the one-
way randomized communication complexity of the following problem: Alice holds
m many � bit numbers a1, . . . , am, and Bob holds an index 1 ≤ i ≤ m and an �-bit
number b. The goal of Bob is to find out whether ai > b holds. We show that Alice
has to transfer at least m�/3 bits to Bob if the protocol has an error probability of at
most 1/200 (Theorem 4). From this result we can derive Theorem 2 using ideas from
the lower bound proof in [12].

Let us add further remarks on our sliding window model. First of all, it is crucial
for our proofs that the input alphabet (i.e., the set of data values in the input stream) is
finite. This is for instance the case when counting the number of 1’s in a 0/1-sliding
window. On the other hand, the problem of computing the sum of all data values in a
sliding window of arbitrary numbers (a problem that is considered in [12] as well) is

1For instance, Ben-Basat et al. write “We say that algorithm A is λ-correct on a input instance S if it is
able to approximate the number of 1’s in the last W bits, at every time instant while reading S, to within
an additive error of Wε”.
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not covered by our setting, unless one puts a bound on the size of the numbers in the
input stream.

As a second remark, note that our sliding window model is non-uniform in the
sense that for every window size we may have a different streaming algorithm. In
other words: it is not required that there exists a single streaming algorithm that gets
the window size as a parameter. Clearly, lower bounds get stronger when shown for
the non-uniform model. Moreover, all proofs of lower bounds in the sliding window
setting, we are aware of, hold for the non-uniform model.

2 Preliminaries

With [0, 1] we denote the real interval {p ∈ R : 0 ≤ p ≤ 1} of all probabilities. With
log we always mean the logarithm to the base two.

The set of all words over a finite alphabet � is denoted by �∗. The empty word is
denoted by ε. The length of a word w ∈ �∗ is denoted with |w|. The sets of words
over � of length exactly, at most and at least n are denoted by �n, �≤n and �≥n,
respectively. In the context of streaming algorithms, we also use the term “stream”
for words.

2.1 Approximation Problems

An approximation problem is a relation Φ ⊆ �∗ × Y where � is a finite alphabet
and Y is a (possibly infinite) set of output values. The relation Φ associates with each
word w ∈ �∗ a set of admissible or correct output values in Y . Typical examples
include:

– exact computation problems ϕ : �∗ → Y where we identify ϕ with its graph
Φ = {(w, ϕ(w)) : w ∈ �∗}. A typical example is the mapping c1 : {0, 1}∗ → N

where c1(w) is the number of 1’s in w. Another exact problem is given by the
characteristic function χL : �∗ → {0, 1} of a language L ⊆ �∗ (χL(w) = 1 if
and only if w ∈ L).

– approximation of some numerical value for the data stream, which can be mod-
eled by a relation Φ ⊆ �∗ × N. A typical example would be the problem
{(w, k) : (1 − ε) · c1(w) ≤ k ≤ (1 + ε) · c1(w)} for some 0 < ε < 1.

For a window length n ≥ 0 and a stream w ∈ �∗ we define lastn(w) to be the suffix
of �nw of length n where � ∈ � is a fixed alphabet symbol. The word lastn(ε) = �n

is also called the initial window. To every approximation problem Φ ⊆ �∗ × Y we
associate the sliding window problem

SWn(Φ) = {(x, y) ∈ �∗ × Y : (lastn(x), y) ∈ Φ}

for window length n.

Theory of Computing Systems (2021) 65:444–461448



2.2 Probabilistic Automata with Output

In the following we will introduce probabilistic automata [22, 23] as a model of
randomized streaming algorithms which produce an output after each input symbol.
A randomized streaming algorithm or a probabilistic automaton P = (Q, �, ι, ρ, o)

consists of a (possibly infinite) set of states Q, a finite alphabet �, an initial state
distribution ι : Q → [0, 1], a transition probability function ρ : Q×� ×Q → [0, 1]
and an output function o : Q → Y such that

–
∑

q∈Q ι(q) = 1,
–

∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ �.

The space of the randomized streaming algorithm P (or the number of bits used by
P) is given by s(P) = log |Q| ∈ R≥0 ∪ {∞}.

If ι and ρ map into {0, 1}, then P is a deterministic automaton; in this case we
write P as P = (Q, �, q0, δ, o), where q0 ∈ Q is the initial state and δ : Q × � →
Q is the transition function. A run on a word a1 · · · am ∈ �∗ in P is a sequence
π = (q0, a1, q1, a2, . . . , am, qm) where q0, . . . , qm ∈ Q and ρ(qi−1, ai, qi) > 0 for
all 1 ≤ i ≤ m. If m = 0 we obtain the empty run (q0) starting and ending in q0. We
write runs in the usual way

π : q0
a1−→ q1

a2−→ · · · am−→ qm

or also omit the intermediate states: π : q0
a1···am−−−−→ qm. We extend ρ to runs in

the natural way: if π : q0
a1−→ q1

a2−→ · · · am−→ qm is a run in P then ρ(π) =∏m
i=1 ρ(qi−1, ai, qi). Furthermore we define ρι(π) = ι(q0) · ρ(π). We denote by

Runs(P, w) the set of all runs on w in P and denote by Runs(P, q, w) those runs on
w that start in q ∈ Q. If P is clear from the context, we simply write Runs(w) and
Runs(q, w). Notice that for each w ∈ �∗ the function ρι is a probability distribution
on Runs(P, w) and for each q ∈ Q the restriction of ρ to Runs(P, q, w) is a proba-
bility distribution on Runs(P, q, w). If � is a set of runs (which will often be defined
by a certain property of runs), then Prπ∈Runs(w)[π ∈ �] denotes the probability∑

π∈Runs(w)∩� ρι(π) and Prπ∈Runs(q,w)[π ∈ �] denotes
∑

π∈Runs(q,w)∩� ρ(π).

2.3 Correctness definitions

Let P = (Q, �, ι, ρ, o) be a randomized streaming algorithm with output function
o : Q → Y , let Φ ⊆ �∗×Y be an approximation problem and let w = a1a2 · · · am ∈
�∗ be an input stream. Furthermore let 0 ≤ λ ≤ 1 be an error probability.

– A run π : q0
w−→ qm in P is correct for Φ if (w, o(qm)) ∈ Φ. We say that P is

λ-correct for Φ if for all w ∈ �∗ we have

Pr
π∈Runs(w)

[π is correct for Φ] ≥ 1 − λ.

– A run π : q0
a1−→ q1

a2−→ · · · qm−1
am−→ qm in P on w is strictly correct for Φ if

(a1 · · · at , o(qt )) ∈ Φ for all 0 ≤ t ≤ m. We say that P is strictly λ-correct for
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Φ if for all w ∈ �∗ we have

Pr
π∈Runs(w)

[π is strictly correct for Φ] ≥ 1 − λ.

A (strictly) λ-correct randomized streaming algorithm Pn for SWn(Φ) is also called
a (strictly) λ-correct randomized sliding window algorithm for Φ and window size
n. If Pn is deterministic and (strictly) 0-correct, we speak of a deterministic sliding
window algorithm for Φ and window size n. The reader might think of having for
every window size n a sliding window algorithm Pn. We do not assume any unifor-
mity here in the sense that the sliding window algorithms for different window sizes
do not have to follow a common pattern. This is the same situation as in non-uniform
circuit complexity, where one has for every input length n a circuit Cn and it is not
required that the circuit Cn can be computed from n.

Remark 1 The trivial sliding window algorithm stores for window size n the window
content with �log |�|� ·n bits. Hence every approximation problem has a determinis-
tic sliding window algorithm Dn with s(Dn) ≤ �log |�|� · n. In particular, for every
(strictly) λ-correct randomized sliding window algorithm Pn for Φ and window size
n, there exists a (strictly) λ-correct randomized sliding window algorithm P ′

n for Φ

and window size n such that

s(P ′
n) ≤ min{s(Pn), �log |�|� · n}.

3 Derandomization of Strictly Correct Algorithms

In this section we prove the main result of this paper, which states that strictly correct
randomized sliding window algorithms can be completely derandomized:

Theorem 1 Let Φ ⊆ �∗ × Y be an approximation problem, n ∈ N be a window
size and 0 ≤ λ < 1 be an error probability. For every randomized sliding win-
dow algorithm Pn which is strictly λ-correct for Φ and window size n there exists
a deterministic sliding window algorithm Dn for Φ and window size n such that
s(Dn) ≤ s(Pn).

The proof idea is to successively construct a (doubly exponentially long) strictly
correct run which reads all possible windows of length n from a certain subset of
memory states. This strictly correct run then defines a deterministic algorithm which
is always correct.

Let Φ ⊆ �∗ × Y , n ∈ N be a window size and 0 ≤ λ < 1 as in Theorem 1.
Let Pn be a strictly λ-correct sliding window algorithm for Φ and window size n. By
Remark 1, we can assume that Pn has a finite state set. Consider a run

π : q0
a1−→ q1

a2−→ · · · am−→ qm
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in Pn. The run π is simple if qi �= qj for 0 ≤ i < j ≤ m. A subrun of π is a run

qi

ai+1−−→ qi+1
ai+2−−→ · · · qj−1

aj−→ qj

for some 0 ≤ i ≤ j ≤ m. Consider a nonempty subset S ⊆ Q and a function
δ : Q × � → Q such that S is closed under δ, i.e., δ(S × �) ⊆ S. We say that the
run π is δ-conform if δ(qi−1, ai) = qi for all 1 ≤ i ≤ m. We say that π is (S, δ)-
universal if for all q ∈ S and x ∈ �n there exists a δ-conform subrun π ′ : q

x−→ q ′ of
π . Finally, π is δ-universal if it is (S, δ)-universal for some nonempty subset S ⊆ Q

which is closed under δ.

Lemma 1 Let π be a strictly correct run in Pn for Φ, let S ⊆ Q be a nonempty
subset and let δ : Q × � → Q be a function such that S is closed under δ. If π

is (S, δ)-universal, then there exists q0 ∈ S such that Dn = (Q, �, q0, δ, o) is a
deterministic sliding window algorithm for Φ and window size n.

Proof Let q0 = δ(p,�n) ∈ S for some arbitrary state p ∈ S and define Dn =
(Q, �, q0, δ, o). Let w ∈ �∗ and consider the run σ : p

�n−→ q0
w−→ q in Dn of length

≥ n. We have to show that (lastn(w), o(q)) ∈ Φ. We can write �nw = x lastn(w)

for some x ∈ �∗. Hence, we can rewrite the run σ as σ : p
x−→ q ′ lastn(w)−−−−→ q. We

know that q ′ ∈ S because S is closed under δ. Since π is (S, δ)-universal, it contains

a subrun q ′ lastn(w)−−−−→ q. Strict correctness of π implies (lastn(w), o(q)) ∈ Φ.

For the rest of this section we fix an arbitrary function δ : Q × � → Q such that
for all q ∈ Q, a ∈ �,

ρ(q, a, δ(q, a)) = max{ρ(q, a, p) : p ∈ Q}.
Thus, we choose δ(q, a) as a most likely a-successor of q. Note that

ρ(q, a, δ(q, a)) ≥ 1

|Q| (1)

for all q ∈ Q, a ∈ �. Furthermore, let Dn = (Q, �, q0, δ, o) where the initial state
q0 will be defined later. We inductively define for each i ≥ 1 a state pi , a run π∗

i in
Dn on some word wi ∈ �∗, and a non-empty set Si ⊆ Q, which is closed under δ.
For m ≥ 0, we abbreviate Runs(Pn, w1 · · · wm) by Rm. Note that R0 = Runs(Pn, ε).
For 1 ≤ i ≤ m let Hi denote the event that for a random run π = π1 · · · πm ∈ Rm,
where each πj is a run on wj , the subrun πi is (Si, δ)-universal. Notice that Hi is
independent of m ≥ i.

First, we choose for pi (i ≥ 1) a state that maximizes the probability

Pr
π∈Ri−1

[π ends in pi | ∀1 ≤ j ≤ i − 1 : Hj ],
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which is at least 1/|Q|. Note that p1 is a state such that ι(p1) is maximal, since R0
only consists of empty runs (q). For Si we take any maximal strongly connected
component of Dn (viewed as a directed graph) which is reachable from pi . As usual,
strongly connected component means that for all p, q ∈ Si the state p is reachable
from q and vice versa. Maximality means that for every q ∈ Si and every a ∈ �, also
δ(q, a) belongs to Si , i.e., Si is closed under δ. Note that such a δ-closed strongly
connected component must exist since Q is finite. Finally, we define the run π∗

i and
the word wi . The run π∗

i starts in pi . Then, for each pair (q, x) ∈ Si × �n the run
π∗

i leads from the current state to state q via a simple run and then reads the word x

from q. The order in which we go over all pairs (q, x) ∈ Si × �n is not important.
Since Si is a maximal strongly connected component of Dn such a run π∗

i exists.
Hence, π∗

i is a run on a word

wi =
∏

q∈Si

∏

x∈�n

yq,x x,

where yq,x is the word that leads from the current state via a simple run to state q.
Since we choose the runs on the words yq,x to be simple, we have |yq,x | ≤ |Q| and
thus |wi | ≤ |Q| · |�|n · (|Q| + n). Let us define

μ = 1

|Q||Q|·|�|n·(|Q|+n)+1
. (2)

Note that by construction, the run π∗
i is (Si, δ)-universal. Inequality (1) yields

Pr
π∈Runs(pi ,wi)

[π = π∗
i ] ≥ 1

|Q||wi | ≥ μ · |Q|. (3)

Lemma 2 For all m ≥ 0 we have Prπ∈Rm[Hm | ∀i ≤ m − 1 : Hi] ≥ μ.

Proof In the following, let π be a random run from Rm and let πi be the subrun on wi .
Under the assumption that the event [πm−1 ends in pm] holds, the events [πm = π∗

m]
and [∀i ≤ m − 1 : Hi] are conditionally independent.2 Thus, we have

Pr
π∈Rm

[πm = π∗
m | πm−1 ends in pm ∧ ∀i ≤ m − 1 : Hi]

= Pr
π∈Rm

[πm = π∗
m | πm−1 ends in pm].

2Two events A and B are conditionally independent assuming event C if Pr[A∧B | C] = Pr[A | C]·Pr[B |
C], which is equivalent to Pr[A | B ∧ C] = Pr[A | C].
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Since the event [πm = π∗
m] implies the event [πm−1 ends in pm] (recall that π∗

m starts
in pm) and π∗

m is (Sm, δ)-universal, we obtain:

Pr
π∈Rm

[Hm | ∀i ≤ m − 1 : Hi]
≥ Pr

π∈Rm

[πm = π∗
m | ∀i ≤ m − 1 : Hi]

= Pr
π∈Rm

[πm = π∗
m ∧ πm−1 ends in pm | ∀i ≤ m − 1 : Hi]

= Pr
π∈Rm

[πm = π∗
m | πm−1 ends in pm ∧ ∀i ≤ m − 1 : Hi] ·

Pr
π∈Rm

[πm−1 ends in pm | ∀i ≤ m − 1 : Hi]
= Pr

π∈Rm

[πm = π∗
m | πm−1 ends in pm] ·

Pr
π∈Rm

[πm−1 ends in pm | ∀i ≤ m − 1 : Hi]

≥ Pr
πm∈Runs(pm,wm)

[πm = π∗
m] · 1

|Q|
≥ μ,

where the last inequality follows from (3). This proves the lemma.

Lemma 3 Prπ∈Rm [πisδ − universal] ≥ Prπ∈Rm[∃i ≤ m : Hi] ≥ 1 − (1 − μ)m.

Proof The first inequality follows from the definition of the event Hi . Moreover,
with Lemma 2 we get

Pr
π∈Rm

[∃i ≤ m : Hi] = Pr
π∈Rm

[∃i ≤ m − 1 : Hi] +
Pr

π∈Rm

[Hm | ∀i ≤ m − 1 : Hi] · Pr
π∈Rm

[∀i ≤ m − 1 : Hi]
= Pr

π∈Rm−1
[∃i ≤ m − 1 : Hi] +

Pr
π∈Rm

[Hm | ∀i ≤ m − 1 : Hi] · Pr
π∈Rm−1

[∀i ≤ m − 1 : Hi]
≥ Pr

π∈Rm−1
[∃i ≤ m − 1 : Hi] + μ · Pr

π∈Rm−1
[∀i ≤ m − 1 : Hi].

Thus, rm := Prπ∈Rm [∃i ≤ m : Hi] satisfies rm ≥ rm−1 + μ · (1 − rm−1) = (1 − μ) ·
rm−1 + μ. Since r0 = 0, we get rm ≥ 1 − (1 − μ)m by induction.

We can now show our main theorem:

Proof (Theorem 1) We use the probabilistic method in order to show that there exists
q0 ∈ Q such that Dn = (Q, �, q0, δ, o) is a deterministic sliding window algorithm
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for Φ. With Lemma 3 we get

Pr
π∈Rm

[π is strictly correct for SWn(Φ) and δ-universal]
= 1 − Pr

π∈Rm

[π is not strictly correct for SWn(Φ) or is not δ-universal]
≥ 1 − Pr

π∈Rm

[π is not strictly correct for SWn(Φ)] − Pr
π∈Rm

[π is not δ-universal]
≥ Pr

π∈Rm

[π is δ-universal] − λ

≥ 1 − (1 − μ)m − λ.

We have 1 − (1 − μ)m − λ > 0 for m > log(1 − λ)/ log(1 − μ) (note that λ < 1 and
0 < μ < 1 since we can assume that |Q| ≥ 2). Hence there are m ≥ 0 and a strictly
correct δ-universal run π ∈ Rm. We can conclude with Lemma 1.

4 Polynomially Long Streams

The word w1w2 · · · wm (with m > log(1−λ)/ log(1−μ)) from the previous section,
for which there exists a strictly correct and δ-universal run has a length that is doubly
exponential in the window size n. To see this note that 0 > ln(1 − x) ≥ x/(x − 1)

for 0 ≤ x < 1, which implies

m >
log(1 − λ)

log(1 − μ)
= ln(1 − λ)

ln(1 − μ)
≥ ln(1 − λ)(μ − 1) · 1

μ
.

Here, ln(1 − λ) is a negative constant and μ − 1 is very close to −1. Moreover, 1/μ

grows doubly exponential in n by (2).
In other words: We need the fact that the sliding window algorithm is strictly

correct on doubly exponentially long streams with high probability in order to deran-
domize the algorithm. In this section we show that at least we cannot reduce the
length to poly(n): if we restrict to inputs of length poly(n) then strictly λ-correct
sliding window algorithms can yield a proper space improvement over deterministic
sliding window algorithms.

For a word w = a1 · · · an let wR = an · · · a1 denote the reversed word. Take the
language Kpal = {wwR : w ∈ {a, b}∗} of all palindromes of even length, which
belongs to the class DLIN of deterministic linear context-free languages [6], and let
L = $Kpal. As explained in Section 2.1 we identify L with the (exact) approximation
problem χL : {a, b, $}∗ → {0, 1} where χL(w) = 1 if and only if w ∈ L. We write
Ln for SWn(χL). Note that the following proposition holds for arbitrarily long input
streams.

Proposition 1 Any deterministic sliding window algorithm for L and window size
2n + 1 uses Ω(n) space.

Proof Let D2n+1 be a deterministic sliding window algorithm for L and window size
2n + 1, and take two distinct words $x and $y where x, y ∈ {a, b}n. Since D2n+1
accepts $xxR and rejects $yxR, the algorithm D2n+1 reaches two different states on
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the inputs $x and $y. Therefore, D2n+1 must have at least |{a, b}n| = 2n states and
hence Ω(n) space.

Proposition 2 Fix a polynomial p(n) and let n ∈ N be a window size. If n is large
enough, there is a randomized streaming algorithm Pn with s(Pn) ≤ O(log n) such
that

Pr
π∈Runs(Pn,w)

[π is strictly correct for Ln] ≥ 1 − 1/n

for all input words w ∈ �∗ with |w| ≤ p(n).

Proof Babu et al. [6] have shown that for every language K ∈ DLIN there exists
a randomized streaming algorithm using space O(log n) which, given an input v of
length n,

– accepts with probability 1 if v ∈ K ,
– and rejects with probability at least 1 − 1/n if v /∈ K .

We use this statement for the language Kpal ∈ DLIN. We remark that the algorithm
needs to know the length of v in advance. To stay consistent with our definition, we
view the above algorithm as a family (Sn)n≥0 of randomized streaming algorithms
Sn. Furthermore, the error probability 1/n can be further reduced to 1/(n+1)d where
d is chosen such that p(n) ≤ nd for sufficiently large n (by picking random primes
of size Θ(nd+1) in the proof from [6]).

Now we prove our claim for L = $Kpal. The streaming algorithm Pn for window
size n works as follows: After reading a $-symbol, the algorithm Sn−1 from above is
simulated on the longest factor from {a, b}∗ that follows (i.e. Sn−1 is simulated until
the next $ arrives). Simultaneously we maintain the length � of the maximal suffix
over {a, b}, up to n, using O(log n) bits. If � reaches n−1, then Pn accepts if and only
if Sn−1 accepts. Notice that Pn only errs if the stored length is n − 1, which happens
at most once in every n steps. Therefore the number of time instants where Pn errs
on an input stream w of length |w| ≤ p(n) ≤ nd is at most |w|/n ≤ nd/n = nd−1

(if n is large enough). Moreover, at each of these time instants the error probability
is at most 1/nd . By the union bound we have for every stream w ∈ {$, a, b}≤p(n):

Pr
π∈Runs(Pn,w)

[π is not strictly correct for Ln] ≤ nd−1 · 1

nd
= 1/n.

This concludes the proof.

5 Lower Bound for Basic Counting

For an approximation error ε > 0 let us define the basic counting problem

C1,ε = {(w, m) ∈ {0, 1}∗ × N : (1 − ε) · c1(w) ≤ m ≤ (1 + ε) · c1(w)}
where c1(w) denotes the number of 1’s in w. In [12] Datar, Gionis, Indyk and Mot-
wani prove that any strictly λ-correct randomized sliding window algorithm for C1,ε

and window size n must use k
64 log2 n

k
− log(1 − λ) bits where k = �1/ε�. We adapt
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their proof to show that the lower bound also holds for the weaker notion of λ-correct
randomized sliding window algorithms.

Theorem 2 Let ε > 0 and k = �1/ε�. Every 1/200-correct randomized sliding
window algorithm for C1,ε and window size n ≥ 4k must use k

48 log2( n
k
) many bits.

In the statement above we can assume any algorithm with error probability λ <

1/2 using the median trick, see e.g. [2]: We run m copies of the algorithm in parallel
and output the median of their outputs. Using the Chernoff bound we can choose m

such that the median is a correct ε-approximation with error probability 1/200. This
reduces the space lower bound only by a constant.

For the rest of the section let us fix n ∈ N and 0 < ε < 1. Furthermore set k =
�1/ε�. For the proof we use a reduction from a suitable communication problem. Let
f : A×B → {0, 1} be a function. A (one-round communication public-coin) protocol
P = (mA, mB) with cost c consists of two functions mA : A × R → {0, 1}c and
mB : {0, 1}c×B×R → {0, 1}. Here R is a finite set of random choices equipped with
a probability distribution. Given inputs a ∈ A and b ∈ B the protocol computes the
random output P(a, b) = mB(mA(a, r), b, r) where r ∈ R at random. It computes
f with error probability λ < 1/2 if

Pr
r∈R

[P(a, b) �= f (a, b)] ≤ λ

for all a ∈ A, b ∈ B. If |R| = 1 then P is deterministic.
We define the communication problem GT�,m where Alice is given m many �-bit

numbers a(1), . . . , a(m), Bob is given a single �-bit number b and an index 1 ≤ p ≤
m, and the goal is to decide whether a(p) > b. Formally, we view GT�,m as a function

GT�,m : ({0, 1}�)m × ({0, 1}� × {1, . . . , m}) → {0, 1}.
If m = 1 we write GT� = GT�,1.

Proposition 3 Let B = √
nk such that n ≥ 4k, and j = �log n

B
�. If Pn is a λ-correct

sliding window algorithm for C1,ε and window size n then there exists a one-round
protocol for GTlog 4B

k
,
jk
4
with cost s(Pn) and error probability λ.

Proof In the following we ignore rounding issues. The idea is that Alice encodes her
jk/4 many numbers by a bit stream consisting of jk/4 groups and feeding it into the
sliding window algorithm. Then Bob can compare his number b with any of Alice’s
numbers a(i) with high probability, by sliding the window to the appropriate position.

As in [12] we partition the window of length n into j blocks of size

B, 2B, 4B, . . . , 2j−1B

from right to left where j = �log n
B

�. Notice that j ≥ 1 by our assumption that
n ≥ 4k. The blocks are numbered 0 to j−1 from right to left. The i-th block of length
2iB is divided into B many subblocks of length 2i . Each block is divided into k/4
groups consisting of 4B/k contiguous subblocks. In the following we choose from
every group exactly one subblock which is filled with 1’s; the remaining subblocks
in the group are filled with 0’s. An example is shown in Figure 1.
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Fig. 1 A single block consisting of B = 12 subblocks divided into k/4 = 3 groups. The groups encode
the numbers 2, 1, and 3 (from left to right)

Let M = {1, . . . , 4B/k}. We will encode a tuple a = (a(1), . . . , a(jk/4)) ∈ Mjk/4

as a bit string of length n in unary encoding fashion as follows: For a ∈ M and
0 ≤ i ≤ j − 1 define the bit string

ui(a) = (02i

)4B/k−a12i

(02i

)a−1

of length 2i · 4B/k. For a tuple a = (a(1), . . . , a(jk/4)) over M of length jk/4 we
define the arrangement w(a) ∈ {0, 1}n by

w(a) =
j−1∏

i=0

k/4∏

r=1

ui(a
(ik/4+r))

where both concatenations are interpreted from right to left.
Datar et al. [12] argue that for any two distinct tuples a and b, the arrangements

w(a) and w(b) must be distinguished by a deterministic sliding window algorithm
for C1,ε and window length n.

We will present a communication protocol for GTlog 4B
k

,
jk
4

based on a λ-correct

sliding window algorithm Pn for C1,ε . Notice that log 4B
k

≥ 1 by the assumption
that n ≥ 4k. Suppose that Alice holds the tuple a = (a(1), . . . , a(jk/4)) of numbers
from M , Bob holds b ∈ M and an index 1 ≤ p ≤ jk/4. Their goal is to determine
whether ap > b. The protocol is defined as follows: Alice simulates Pn on w(a)
and sends the reached state to Bob, using s(Pn) bits. Suppose that p = ik/4 + r for
some 0 ≤ i ≤ j − 1 and 1 ≤ r ≤ k/4. Bob then insert a suitable number of 0’s
in the stream such that the length-n window starts with the b-th subblock from the
r-th group in the i-th block of w(a). Notice that this is possible without knowing the
tuple a because of the regular structure of arrangements which is known to Bob. The
number of 1-bits in the obtained window is precisely

– r · 2i + k
4 (2i−1 + · · · + 21 + 20) if ap ≤ b, and

– (r − 1) · 2i + k
4 (2i−1 + · · · + 21 + 20) if ap > b.

Since the absolute approximation error is bounded by

ε
k

4
(2i + · · · + 21 + 20) <

2i+1

4
= 2i−1,

the two cases above can be distinguished by Pn with probability 1 − λ.

It remains to prove a lower bound for the one-round communication complexity of
GT�,m. We start by showing that the one-round communication complexity of GTn is
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Ω(n). This was already proven by Yao [25, Theorem 5]. More generally, Miltersen
et al. showed that any r-round protocol for GTn requires Ω(n1/r ) bits using the round
elimination technique [21]. We will first reprove the Ω(n) lower bound for GTn, by
directly plugging in r = 1 and GTn into the proof of [21, Lemma 11]. Afterwards we
adapt the proof to show the Ω(�m) lower bound for GT�,m.

Theorem 3 Every one-round randomized protocol for GTn with error probability
1/200 has cost at least n/3 bits.

Proof We follow the proof of [21, Lemma 11]. Consider a randomized one-round
protocol for GTn with error probability 1/200. The goal is to prove that the protocol
must use n/3 bits.

By Yao’s minimax principle [24] it suffices to exhibit a “hard” input distribution D

on the set of inputs {0, 1}n × {0, 1}n and to prove that every deterministic protocol P

with PrD[P(x, y) �= GTn(x, y)] ≤ 1/200 must have cost Ω(n). See [20] for similar
applications of Yao’s minimax principle in the area of communication complexity.

For a bit string x = x1 · · · xn and an index 1 ≤ i ≤ n we define the bit string
τi(x) = x1 · · · xi−101n−i of length n. Interpreted as binary numbers, we have the
property

x > τi(x) ⇐⇒ xi = 1. (4)

The “hard” input distribution D is the uniform distribution on

{(x, τi(x)) | x ∈ {0, 1}n, 1 ≤ i ≤ n}.
In other words, Alice holds a uniformly random string x ∈ {0, 1}n and Bob holds
τi(x) where the index 1 ≤ i ≤ n is also chosen uniformly at random and indepen-
dently from x. By property (4) Bob needs to determine the value of xi . Intuitively,
the prefix x1 · · · xi−1 of τi(x) does not help Bob, so this is basically the “index”-
function, for which every one-round randomized protocol with error probability 1/3
has cost Ω(n) [19, Theorem 3.7].

Consider any deterministic protocol P with communication cost c such that

Pr
D

[P errs on (x, τi(x))] ≤ 0.005.

Call an index i in x bad if P errs on (x, τi(x)), and otherwise good. A uniformly
random string x ∈ {0, 1}n has at most 0.005n bad indices in expectation. By the
Markov inequality we know

Pr
x∈{0,1}n[number of bad indices of x ≥ 0.01n] ≤ 0.005n

0.01n
= 1

2
.

Hence the set

R = {x ∈ {0, 1}n | x has at most 0.01n bad indices}
must contain at least 2n−1 bit strings. Since Alice sends at most c bits, she partitions
R into at most 2c subsets according to the bit string send to Bob. Let T be one of
these subsets that has maximum cardinality. We have |T | ≥ |R|/2c = 2n−1−c, i.e.,

c ≥ n − 1 − log |T |. (5)
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To prove c ≥ n/3 we derive an upper bound on |T |.
In the following we successively construct a sequence of bits a1, . . . , an and a

sequence of nonempty sets T = T1 ⊇ T2 ⊇ · · · ⊇ Tn+1 of n-bit strings such that all
strings in Ti have the prefix a1 · · · ai−1 (in particular, |Tn+1| = 1).

1. Set T1 := T and repeat the following for i = 1, . . . , n:
2. Set T −

i := {x ∈ Ti | i is bad in x} and T +
i := {x ∈ Ti | i is good in x}.

3. If |T −
i | ≥ 0.05 · |Ti | choose ai ∈ {0, 1} such that |{x ∈ T −

i | xi = ai}| is
maximal. Then set Ti+1 := {x ∈ T −

i | xi = ai}.
4. Otherwise we have |T +

i | ≥ 0.95 · |Ti |. All strings x ∈ T +
i must have the same i-

th bit, say xi = ai , since for a string x ∈ T +
i Bob outputs correctly the bit xi on

input (x, τi(x)). But since all strings in T +
i have the same prefix of length i − 1

(and hence yield the same value under τi) and Alice communicates by definition
of T the same message to Bob, Bob outputs the same bit for all x ∈ T +

i . Set
Ti+1 := T +

i .

Observe that all subsets T1, . . . , Tn+1 are nonempty. If point 3 is satisfied then
|Ti+1| ≥ 0.5 · 0.05|Ti | = 0.025|Ti |, and the index i is bad in all strings of Ti+1.
Hence, point 3 can only be satisfied at most 0.01n times by definition of R. If point
4 is satisfied then |Ti+1| ≥ 0.95|Ti |. We can therefore bound

1 = |Tn+1| ≥ 0.0250.01n · 0.950.99n · |T | > 0.916n · |T |,
and thus |T | ≤ 1.0917n. By (5) we have established

c ≥ (1 − log 1.0917)n − 1 ≥ 0.8735n − 1 ≥ n/3.

for all n ≥ 2. Clearly in the case n = 1 there is no zero-message randomized protocol
for GT1.

Theorem 4 Every one-round protocol for GT�,m with error probability 1/200 has
cost at least �m/3 bits.

Proof We adapt the proof above to GT�,m. To keep the notation consistent we
view Alice’s input as a single bit string x = x(1) · · · x(m) ∈ {0, 1}�m where
x(1), . . . , x(m) ∈ {0, 1}�. We can write an index 1 ≤ i ≤ �m uniquely as i =
(p(i)−1)�+ r(i) where 1 ≤ p(i) ≤ m and 1 ≤ r(i) ≤ �. For 1 ≤ i ≤ �m we define
the bit string

τi(x) = x
(p(i))

1 . . . x
(p(i))

r(i)−101�−r(i)

of length �. We have the property that

GT�,m(x, τi(x), p(i)) = 1 ⇐⇒ x
(p(i))

r(i) = 1.

The hard input distribution is the uniform distribution D over

{(x, τi(x), p(i)) : x ∈ {0, 1}�m, 1 ≤ i ≤ �m}.
Let P be a deterministic protocol with communication cost c such that

Pr
D

[P errs on (x, τi(x), p(i))] ≤ 0.005.
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We call an index 1 ≤ i ≤ �m bad if P errs on (x, τi(x), p(i)). Again we can find a
set T ⊆ {0, 1}�m such that

– |T | ≥ 2�m−1−c,
– all x ∈ T have at most 0.01�m bad indices,
– and Alice sends the same message on all x ∈ T .

Using precisely the same arguments as in the previous proof we obtain |T | ≤
1.0917�m and thus c ≥ �m/3 whenever �m ≥ 2. If �m = 1 then Alice must also
send at least one bit in any communication protocol for GT�,m with error probability
1/200.

Theorem 2 now follows from Proposition 3 and Theorem 4: Let B = √
nk and

j = �log n
B

� ≥ 1. Then, any randomized 1/200-correct sliding window algorithm
for C1,ε and window size n must use at least

1

3
log

(
4B

k

)

· jk

4
= 1

3
log

(

4

√
n

k

)

·
⌊

log

(√
n

k

)⌋

· k

4
≥ k

48
· log2

(
n

k

)

many bits.

6 Open Problems

In the proof of Theorem 1 we need the fact that the sliding window algorithm is
strictly correct on doubly exponentially long streams with high probability. We pose
the question whether this can be reduced to exponentially long streams.

Another open problem is whether one can extend Theorem 4 to arbitrary com-
munication problems. For any function f : A × B → {0, 1} one can define an
“indexed” version f (m) : Am × B × {1, . . . , m} → {0, 1} where Alice holds a tuple
(a1, . . . , am) ∈ Am, Bob holds b ∈ B and 1 ≤ i ≤ m and their goal is to compute
f (ai, b). The question is whether the one-round communication complexity of f (m)

must be m times as large as the complexity of f , as it is the case for GTn.
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