
Theory of Computing Systems
https://doi.org/10.1007/s00224-020-09981-w

Parameterized Complexity of Min-Power Asymmetric
Connectivity

Matthias Bentert1 ·Roman Haag1 ·Christian Hofer1 ·Tomohiro Koana1 ·
André Nichterlein1

© The Author(s) 2020, corrected publication 2021

Abstract
We investigate parameterized algorithms for the NP-hard problem MIN-POWER

ASYMMETRIC CONNECTIVITY (MINPAC) that has applications in wireless sensor
networks. Given a directed arc-weighted graph, MinPAC asks for a strongly con-
nected spanning subgraph minimizing the summed vertex costs. Here, the cost of
each vertex is the weight of its heaviest outgoing arc in the chosen subgraph. We
present linear-time algorithms for the cases where the number of strongly connected
components in a so-called obligatory subgraph or the feedback edge number in the
underlying undirected graph is constant. Complementing these results, we prove that
the problem is W[2]-hard with respect to the solution cost, even on restricted graphs
with one feedback arc and binary arc weights.

Keywords Monitoring areas · Reconnecting sensor networks ·
Parameterized algorithmics

This article belongs to the Topical Collection: Special Issue on International Workshop on
Combinatorial Algorithms (IWOCA 2019)
Guest Editors: Charles Colbourn, Roberto Grossi, Nadia Pisanti

� Matthias Bentert
matthias.bentert@tu-berlin.de

Roman Haag
roman.haag@campus.tu-berlin.de

Christian Hofer
hofer@campus.tu-berlin.de

Tomohiro Koana
tomohiro.koana@tu-berlin.de

André Nichterlein
andre.nichterlein@tu-berlin.de

1 Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Berlin, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09981-w&domain=pdf
mailto: matthias.bentert@tu-berlin.de
mailto: roman.haag@campus.tu-berlin.de
mailto: hofer@campus.tu-berlin.de
mailto: tomohiro.koana@tu-berlin.de
mailto: andre.nichterlein@tu-berlin.de

Theory of Computing Systems

1 Introduction

In wireless ad-hoc networks, nodes equipped with limited power supply transmit data
using a multi-hop path. We study the problem of minimizing the overall power con-
sumption while maintaining full network connectivity, that is, each node can send
messages to each other node using some (multi-hop) route through the network.
Formally, we study the following optimization problem.

MIN-POWER ASYMMETRIC CONNECTIVITY (MINPAC)

Input: A strongly connected directed graph G and a weight function (cost function)
.

Task: Find a strongly connected spanning subgraph H of G minimizing
∑

v∈V

max
vu∈A(H)

w(vu).

Related work This problem was initially formalized and shown to be NP-complete
by Chen and Huang [9]. Since then, there have been numerous publications on
polynomial-time approximation algorithms (an asymptotically optimal O(log n)

approximation [6], a constant approximation factor with symmetric arc weights [4,
9], approximation algorithms for special cases [5, 7, 8]), and hardness results for spe-
cial cases [7, 10]. To the best of our knowledge, the parameterized complexity of
MINPAC has not been investigated yet.

In previous work, we investigated the parameterized complexity of the symmetric
version of our problem [2]; the difference to MinPAC is that an undirected graph is
given and for every undirected edge in the solution subgraph H both endpoints pay at
least the weight of the edge. The asymmetric case turns out to be more involved on a
technical level. However, comparable results (to the symmetric case) are achievable.

Our contribution We show algorithmic results for grid-like and tree-like input graphs
as well as parameterized hardness for very restricted cases. Table 1 summarizes our
results. We discuss the different parameters subsequently.

It is known that the alignment of nodes in some regular grid-like patterns is optimal
to fully cover a plane. In such cases, we can assume that the obligatory arcs, arcs that
are in any optimal solution, induce a small number c of strongly connected compo-
nents as there are many arcs of minimum weight. In Section 2, we define obligatory
arcs, discuss the connection to grid-like graphs, and present an algorithm that solves
MINPAC in linear time when c is a constant.

In Section 3, we study MINPAC parameterized by the number of different arc
weights and the vertex cover number. For this combined parameter, we present an
exponential-size kernel.

In Section 4, we describe a linear-time algorithm which reduces any input instance
to an equivalent instance with at most 20g−20 vertices and 42g−42 arcs, where g is
the feedback edge number of the underlying undirected graph. The parameter is also
motivated by real world applications in which the feedback edge number is small; for

Theory of Computing Systems

Table 1 Overview of our results, using the following notation: n—number of vertices, m—number of
arcs, c—number of strongly connected components in the obligatory subgraph (see Section 2), q—number
of different arc weights, x—size of a minimum vertex cover in the underlying undirected graph (see
Section 3), g—size of a minimum feedback edge set of the underlying undirected graph (see Section 4),
h—size of a minimum feedback arc set (see Section 5), PAC—the decision version of MINPAC asking for
a solution of cost at most k

Result Reference

Section 2 Dynamic programming solving MINPAC in Theorem 1

O(c2 · 2c · n + m + 4c · c2c−3/2) time.

Section 3 An O(min({x, logq n}) · n + m)-time data
reduction resulting in an equivalent MINPAC
instance with at most (q + 1)2x + x vertices.

Theorem 2

An exponential-size kernel with respect to x + q. Corollary 1

Section 4 Linear-time data reduction resulting in
an equivalent MINPAC instance with at
most 20g − 20 vertices and 42g − 42 arcs.

Theorem 4

A polynomial-size kernel with respect to g. Corollary 3

Section 5 PAC is NP-hard for any h ≥ 1. Theorem 5

PAC is W[2]-hard parameterized by k, even if the
arcs have only cost zero or one and h = 1.

PAC is not solvable in 2o(n) time
(assuming ETH).

instance, sensor networks along waterways (including canals) are expected to have a
small number of feedback edges. It follows from our result hat the problem can be
solved in polynomial time for g ∈ O(log n), that is, for very tree-like input graphs. In
terms of parameterized complexity, this gives us a partial (weights left unbounded)
kernelization of MINPAC with respect to the feedback edge number. Using an exist-
ing weight-shrinking technique [3], we also provide a “full” polynomial-size kernel
with respect to the feedback edge number.

Finally, in Section 5 we derive hardness results for PAC, the decision version of
MINPAC. We show that even if the input graph has only binary weights and is almost
a DAG (a directed acyclic graph with one additional arc), PAC parameterized by the
solution cost is W[2]-hard. This is in sharp contrast to the FPT result for the parameter
feedback edge number.

Preliminaries For , we abbreviate {1, . . . , a} by [a]. Throughout this work,
we assume that a graph is directed unless stated otherwise. For a graph G = (V , A),
we write V (G) to denote V and A(G) to denote A. We abbreviate arcs (u, v) ∈ A

by uv. We denote by G[V ′] the subgraph induced by V ′ ⊆ V (G). We use G + vu to
denote (V (G) ∪ {v, u}, A(G) ∪ {vu}) and G − vu to denote (V (G), A(G) \ {vu}).
For a vertex v ∈ V (G), we write N+

G(v) = {u | vu ∈ A} and N−
G(v) = {u | uv ∈ A}

to denote the out- and in-neighborhood of v. We define the degree of v as degG(v) =
|N+

G(v) ∪ N−
G(v)|. We say that S ⊆ V (G) is a strongly connected component if

there exists a path from each vertex u ∈ S to every other vertex v ∈ S in G[S]. We

Theory of Computing Systems

write SG to denote the set of strongly connected components. We use UG to denote
the underlying undirected graph of G. We denote the optimal cost of an instance of
MINPAC I by OPT(I). The cost of a vertex subset V ′ ⊆ V (G) in a solution with
arcs A′ ⊆ A(G) is denoted by Cost(V ′, A′, w) = ∑

v∈V ′ maxvu∈A′ w(vu). For ease
of notation, we write w(vu) = ∞ if vu �∈ A.

A parameterized problem � is a set of pairs (I, k), where I denotes the problem
instance and k is the parameter. The problem � is fixed-parameter tractable (FPT)
if there exists an algorithm solving any instance of � in f (k) · |I |c time, where f

is some computable function and c is some constant. A reduction to a problem ker-
nel is a polynomial-time algorithm that, given an instance (I, k) of �, returns an
equivalent instance (I ′, k′), such that |I ′| + k′ ≤ g(k) for some computable func-
tion g. Problem kernels are usually achieved by applying data reduction rules. Given
an instance (I, k) for MINPAC, our data reduction rules compute in polynomial time
a new instance (I ′, k′) of MINPAC and a number d . We call a data reduction rule
correct, if OPT(I) = OPT(I ′) + d .

2 Parameterization by the Number of Strongly Connected
Components Induced by the Obligatory Arcs

In this section we present a fixed-parameter algorithm with respect to the number c

of strongly connected components (SCCs) induced by obligatory arcs—arcs that can
be included into any optimal solution with no additional cost. We find the obligatory
arcs by means of lower bounds on costs paid by each vertex.

Definition 1 A vertex lower bound is a function such that for any
optimal solution H and any vertex v ∈ V (G), it holds that

�(v) ≤ max
vu∈A(H)

w(vu).

Observe that each vertex v ∈ V (G) has at least one outgoing arc in
any optimal solution. Hence, the cost paid by v in any optimal solution is at
least minvu∈A(G) w(vu). Thus, �(v) ≥ minvu∈A(G) w(vu). Moreover, if a vertex v

has only one incoming arc uv, then the cost for the vertex u is at least w(uv), and
thus �(u) ≥ w(uv). Clearly, finding more effective but still efficiently computable
vertex lower bounds is challenging on its own.

Definition 2 The obligatory subgraph G� induced by a vertex lower bound � for G

is a subgraph (V (G), A�), where A� = {vu | w(vu) ≤ �(v)}.

It has been shown that sensors are optimally placed for fully covering an area when
sensors are deployed in a triangular lattice pattern [18] or a strip based-pattern [1,
15]. In such cases, there are many arcs of minimum weight. Taking these arcs usually
suffices to (almost) achieve strong connectivity. So even the obligatory subgraph
induced by the trivial vertex lower bound described above yields a small number of
SCCs.

Theory of Computing Systems

Let � be a vertex lower bound for a graph G. We denote the number of SCCs of
the obligatory subgraph G� by c = |SG�

|. The number c of (strongly) connected
components in the obligatory subgraph has recently been used as parameter to obtain
FPT results [2, 17]. In this section, we also provide an FPT result with respect to
this parameter. More specifically, we will present an algorithm for MINPAC that runs
in O(2c · c2 · n + m + 4c · c2c−3/2) time. Our algorithm runs in three phases. In the
first phase, it shrinks the graph to a relevant subgraph in which each vertex v has at
most one arc towards each SCC that does not contain v (Algorithm 1). In the second
phase, it uses a dynamic programming algorithm to compute the minimum cost to
connect each SCC to each subset of other SCCs (Algorithm 2). In the last phase, it
exhaustively tries all combinations of connecting SCCs to find an optimal solution
(Algorithm 3).

Phase 1 The following lemma specifies the conditions under which we can remove
arcs. It plays a central role in this phase. The basic idea herein is to remove,
for each vertex v ∈ V (G) and each SCC S, all but the cheapest arc from v

to vertices in S.

Lemma 1 Let (G, w) be an instance of MINPAC and let � be a vertex lower bound.
Let Sv, Su ∈ SG�

be two distinct SCCs and let v ∈ Sv and u, u′ ∈ Su be vertices of G
with w(vu) ≤ w(vu′). Then, it holds that OPT((G, w)) = OPT((G − vu′, w)).

Proof Observe that the removal of an arc does not decrease the cost of an optimal
solution. Thus, OPT((G, w)) ≤ OPT((G − vu′, w)). Let H be an optimal solu-
tion of (G, w). Suppose that H contained vu′. The cost paid by v in H is then at
least w(vu′). Since u and u′ both belong to Su, the subgraph H ′ = H + vu− vu′ is a
strongly connected spanning subgraph. Since w(vu) ≤ w(vu′), it follows that H ′ is
optimal. Moreover, H ′ is also a solution of (G − vu′, w), and thus OPT((G, w)) ≥
OPT((G − vu′, w)).

Algorithm 1 exhaustively removes all arcs vu′ which satisfy the preconditions
of Lemma 1: The algorithm iterates over each arc in G twice. It finds a minimum-
weight arc from each vertex to each SCC in the first iteration. In the second iteration,
it removes all but one minimum-weight arc that share the initial vertex and the SCC
the terminal vertex belongs to.

We show subsequently that the resulting instance of MINPAC satisfies the
properties listed in the next definition.

Definition 3 Let (G, w) be an instance of MINPAC and let � be a lower bound. We
say that a graph Grel

� and a weight function wrel
� with V (G) = V (Grel

�), A(Grel
�) ⊆

A(G), and are a relevant subgraph and relevant weight function
induced by �, respectively, if they satisfy the following properties:

(i) OPT((G, w)) = OPT((Grel
� , wrel

�)).
(ii) For any SCC S ∈ SG�

, it holds that G[S] = Grel
� [S].

(iii) For any SCC S ∈ SG�
and any vertex v /∈ S, it holds that |{vu ∈ A(Grel

�) | u ∈
S}| ≤ 1.

Theory of Computing Systems

Since it follows from property (ii) that SG�
= SGrel

�
, we will use them interchange-

ably.

Lemma 2 Let (G, w) be an instance of MINPAC and let � be a vertex lower bound.
Algorithm 1 computes in O(m) time a relevant subgraph Grel

� and a relevant weight
function wrel

� induced by �.

Proof For any v ∈ V (G) and any S ∈ SG�
, Algorithm 1 sets M(v, S) to a minimum-

weight arc from v to a vertex in S in the first iteration. In the second iteration, every
arc vu is removed unless v and u belong to the same SCC or M(v, Su) is set to vu.
Recall that the optimal cost remains the same after arc removals as shown in Lemma
1. Thus, Algorithm 1 returns an instance of MINPAC (Grel

� , wrel
�) that satisfies the

aforementioned properties. The algorithm spends O(m) time on initializing M (Line
2) and O(m) time on the iteration over the arcs (Line 3 and Line 7).

Phase 2. In this phase, we aim to compute an optimal set of arcs to connect each
SCC to all other SCCs. We start with some notation.

Definition 4 Let Grel
� be a relevant subgraph. For any S ∈ SG�

, we define the set of
SCCs reachable from S via an arc as

Sreach
G,� (S) = {S′ ∈ SG�

\ {S} | ∃vu ∈ A(Grel
�). v ∈ S ∧ u ∈ S′}.

We say that an arc set B is a connector if B connects some SCC S to some
set T ⊆ Sreach

G,� (S) of SCCs reachable from S. Then, our goal is to find a connector

of minimum cost for each S ∈ SG�
and each subset T ⊆ Sreach

G,� (S). This allows us to
compute an optimal solution with exhaustive search on connections between SCCs
in the last phase

Definition 5 Let (G, w) be an instance of MINPAC and let � be a vertex lower bound.
A minimum-cost connector is a function MCC : SG�

× 2SG� → 2A(Grel
�) such that for

any S ∈ SG�
and any T ⊆ Sreach

G,� (S) the following properties are satisfied:

Theory of Computing Systems

1. For any S′ ∈ T , there exist vertices v ∈ S and u ∈ S′ with vu ∈ MCC(S, T).
2. There is no subset B ⊆ A(Grel

�) that satisfies the above property and that
satisfies Cost(S, B, wrel

�) < Cost(S, MCC(S, T), wrel
�).

Algorithm 2 computes a minimum-cost connector. For each SCC S ∈ SG�
, we

employ dynamic programming over vertices in S and subsets of SG�
. This gives us

a significant speed-up compared to the naı̈ve approach of branching into at worst c

different neighbors on each vertex: from nθ(c) time to O(2c · c2 · n) time.

Lemma 3 Given a relevant subgraph Grel
� and a relevant weight function wrel

� ,
Algorithm 2 computes a minimum-cost connector MCC in O(2c · c2 · n) time.

Proof We fix some S = {v1, . . . , vnS
}. We use Sv to denote the SCC to which the

vertex v ∈ V (Grel
�) belongs and TB = {Su | ∃w. wu ∈ B} to denote the SCCs

containing a terminal vertex of at least one arc in B ⊆ A(Grel
�). Note that in the

subsequent proof the arcs in B will all have their initial vertex in S. Moreover, the
arc set Bi contains only arcs having a initial vertex in {v1, . . . , vi} ⊆ S and we
have TBi

= {Su | ∃j ≤ i. vju ∈ A(Grel
�)}. (See Line 5 of Algorithm 2 for the

computation of the arc set Bi .)

Theory of Computing Systems

In order to show that the output of Algorithm 2 satisfies the property of Definition
5, 1, we prove the following stronger claim.

Claim For any i ∈ {0, . . . , nS} and any set T ⊆ TBi
of SCC, the arc set Di(T)

contains exactly one arc that starts in {v1, . . . , vi} and ends inside S′ for each S′ ∈ T
and contains no other arc.

Proof of claim We first show by induction that the claim holds after the initializa-
tion phase (Line 3 to 6 holds for the base case i = 0 because we have D0(∅) = ∅.
When i ≥ 1, since Grel

� is a relevant subgraph (see Definition 3), it follows that
the set {viu ∈ A(Grel

�) | u �∈ S, Su �∈ TBi−1} on Line 5 contains exactly one arc
whose terminal vertex lies in S′ for any S′ ∈ TBi

\ TBi−1 . Since the claim holds
for i − 1 by induction hypothesis, Bi contains exactly one arc that ends inside S′
for each S′ ∈ TBi

and no other arc. In Line 6, the algorithm computes from this
set Bi of arcs all arcs that end in T and assigns this to Di(T). Hence Di(T)

contains exactly one arc for each S′ ∈ T and thus the the claim holds for i

as well.
We now show—again by induction—that the claim holds after the update phase.

Again the claim clearly holds for the base case i = 0. When i ≥ 1, note that
each iteration step (Line 9 to 14) corresponds to the case in which the cost for vi

is exactly w(viu). The algorithm finds the set Bi,u of arcs that vi can cover with
cost w(viu). We verify that the claimed property is maintained after the assignment
on Line 12 and Line 14. The assignment on Line 12 is clearly correct by induction
hypothesis. Observe that Bi,u contains exactly one arc whose terminal vertex lies
in S′ for any S′ ∈ TBi,u

since Grel
� is a relevant subgraph. We can assume from the

induction hypothesis that Di−1(T \TBi,u
) contains exactly one arc that ends inside S′′

for each S′′ ∈ T \ TBi,u
and no further arc. Thus, the assignment on Line 14 ensures

that the claim is correct.

For the second property, we prove by induction over i ∈ {0, . . . , nS} that for
any T ∈ Sreach

G,� (S), the cost of S associated with Di(T) is minimized when S is
restricted to the vertices {v1, . . . , vi}. It holds in the base case i = 0 because we
have D0(∅) = ∅. When i ≥ 1, we assume from the induction hypothesis that val-
ues Cost(S, Di−1(T), wrel

�) are minimum for any T ⊆ Sreach
G,� (S). Assume towards

a contradiction that there exists an arc set B ′ that satisfies Cost(S, Di(TB ′), wrel
�) >

Cost(S, B ′, wrel
�). Let B ′

i ⊆ B ′ denote the set of arcs that have vi as their initial
vertex. We distinguish two cases depending on whether B ′

i is empty.

Case 1. If B ′
i = ∅, then B ′ consists of arcs whose initial vertices are

in {v1 . . . , vi−1}. Then, we have

Cost(S, B ′, wrel
�) ≥ Cost(S, Di−1(TB ′), wrel

�) ≥ Cost(S, Di(TB ′), wrel
�).

Here the first inequality follows from the induction hypothesis, and the
second inequality follows from the assignment on Line 12 because TB ′ ⊆
TBi−1 .

Theory of Computing Systems

Case 2. If B ′
i �= ∅, then the cost of S associated with B ′ is

Cost(S, B ′, wrel
�) ≥ Cost(S,Di−1(TB ′ \ TB ′

i
), wrel

�) + maxviu∈B ′
i
wrel

� (viu)

≥ Cost(S, Di(TB ′), wrel
�).

Here the first inequality follows from the induction hypothesis, and the sec-
ond inequality follows from the assignment on Line 14. In both cases, we
have Cost(S, B ′, wrel

�) ≥ Cost(S, Di(TB ′), wrel
�), and thus a contradiction is reached.

It remains to analyze the running time. In the initialization phase, we iterate over
all vertices (Line 4) and all subsets of TBi

(Line 6). Note that |TBi
| ≤ |SG�

| = c

as shown in the above claim and hence there are at most 2c subsets. Each iteration
takes O(c) time because Bi contains at most c arcs for any i ∈ [nS]. In the update
phase, we iterate over all vertices (Line 7), at most c neighbors (Line 9), and all sub-
sets of Sreach

G,� (S) (Line 10). Each iteration takes O(c) time because Di(T) contains

at most c arcs for any i ∈ [nS] and any T ⊆ Sreach
G,� (S). Thus, the overall running

time is O(2c · c2 · n).

Phase 3. We finally present the search tree algorithm for MINPAC in Algorithm 3.
The algorithm “guesses” the connections between SCCs of G� to obtain an
optimal solution. To this end, we first try all possible numbers of outgoing
arcs from each SCC. The array C contains after Line 10 for each SCC Si

in the ith entry all SCCs that Si has an arc to in the solution.

Theory of Computing Systems

Lemma 4 Given a relevant subgraph Grel
� , a relevant weight function wrel

� , and a

minimum-cost connector MCC : SG�
× 2SG� → 2A(Grel

�), Algorithm 3 computes an
optimal solution of (Grel

� , wrel
�) in O(n + m + 4c · c2c−3/2) time.

Proof We first show the correctness of Algorithm 3. In each iteration step (Line 6
and 10), the algorithm constructs an auxiliary graph H aux, which is basically a graph
obtained from (V (G),

⋃c
i=1 MCC(Si, TSi

)) by contracting each SCC of G� into a
single vertex. Since our algorithm performs an exhaustive search, it finds a graph of
cost OPT((Grel

� , wrel
�)).

We now analyze the running time of the algorithm. For each c ≤ k ≤ 2c −
2, the number of sets of integers {k1, . . . , kc} that satisfy ki ≥ 1 for all i ∈ [c]
and

∑c
i=1ki = k is

(
k − 1

c − 1

)
≤

(
2c − 3

c − 1

)
= (2c − 3)!

(c − 1)! (c − 2)!

∈ O

(√
2c − 3√

c − 1
√

c − 2
· (2c − 3)2c−3

(c − 1)c−1(c − 2)c−2

)
= O

(
4c

√
c

)
,

where the membership is due to Stirling’s approximation. For each fixed set of
integers {k1, . . . , kc}, the number of sets {TS1 , . . . , TSc } the algorithm generates is

c∏

i=1

(
c

ki

)
≤

c∏

i=1

cki = c
∑c

i=1 ki = ck .

So the total number of iterations (Line 6 to 10) is

O

(
4c

√
c

·
2c−2∑

k=c

ck

)
= O(4c · c2c−5/2).

We claim that each iteration step runs in O(c) time. Computing the SCCs of H aux

takes O(c) time because H aux contains c vertices and at most 2c − 2 arcs and the
algorithm spends O(c) time to compute the cost of H and update OptCost and
connection C. Constructing the output graph takes O(n + m) time. Thus, the overall
running time is O(n + m + 4c · c2c−3/2).

Combining Algorithm 1 to 3 we arrive at our main theorem of this section.

Theorem 1 MINPAC can be solved in O(c2 · 2c · n + m + 4c · c2c−3/2) time.

Proof Let (G, w) be an instance of MINPAC. We run Algorithm 1 to 3 sequentially
to obtain an optimal solution H of (Grel

� , wrel
�). Since Grel

� is a relevant subgraph of G

it follows from Lemma 1 that the graph H is also an optimal solution of (G, w).
The overall running time is then

O(cn + m) + O(2c · c2 · n) + O(n + m + 4c · c2c−3/2)

= O(c2 · 2c · n + m + 4c · c2c−3/2).

This concludes the proof of the theorem.

Theory of Computing Systems

3 Parameterization by the Number of Power Levels

It is fair to assume that the nodes cannot transmit signals with arbitrary power levels
due to practical limitations [7]. In fact, many researchers have studied approxima-
tion algorithms for the MINPAC problem when only two power levels are available
[4, 5, 7, 16]. In this section, we consider the case w : A(G) → Q, where the set of
integers Q = {p1, . . . , pq} represents available power levels. The parameter q—“the
number of numbers”—has been advocated by [12]. The problem remains NP-hard
even when q = 2 [9], as also can be seen in our hardness result (Theorem 5). Thus,
fixed-parameter tractability is unlikely with this parameter alone. However, using
an additional parameter may alleviate this problem. We consider the vertex cover
number, as many problems are known to become tractable when this parameter is
bounded. Here we define the vertex cover number for a directed graph as the ver-
tex cover number of the underlying undirected graph. Recall that the vertex cover
number for an undirected graph is the minimum number of vertices that have to be
removed to make it edgeless. Computing a minimum-cardinality vertex cover is NP-
hard but any maximal matching (which can be found in linear time) gives a factor-2
approximation. We present a partial kernelization (unbounded weights) with respect
to q + x, where x is the size of a given vertex cover. Afterwards, we strengthen this
result to a proper polynomial kernel (with a worse but still polynomial running time).

Theorem 2 Let I = (G, w) be a MINPAC-instance where w : A(G) → Q

and . Given I and a vertex cover X for G of size x, one can compute an
instance I ′ of MINPAC with at most (q + 1)2x + x vertices and a value such
that OPT(I) = OPT(I ′) + d in O(min({x, logq n}) · n + m) time.

In order to prove Theorem 2, we first observe that there are some conditions under
which a vertex can be included or removed without losing the strong connectivity.
Notably, we use Observation 1 to remove “twin” vertices.

Observation 1 Let G be a strongly connected graph with u ∈ V (G). If there exists a
vertex u′ ∈ V (G) with N+

G(u) ⊆ N+
G(u′) and N−

G(u) ⊆ N−
G(u′), the graph G[V (G)\

{u}] is strongly connected.

Observation 2 Let G be a strongly connected graph. For any vertices v, v′ ∈ V (G),
u /∈ V (G), the graph G + uv + v′u is strongly connected.

We define “types” for vertices outside the vertex cover according to the weights
of their incident arcs. This helps us to reduce the number of vertices using the
observations above. Recall that we write w(vu) = ∞ if vu �∈ A.

Definition 6 Let (G, w) be an instance of MINPAC with w : A(G) → Q

and . Let X = {v1, . . . , vx} be a vertex cover of G. The
vertex cover partition is the partition P of vertices in V (G) \ X into sets

Pr1,...,r2x
= {u ∈ V (G) \ X | ∀i ∈ [x]. w(uvi) = pri ∧ w(viu) = pri+x

},

Theory of Computing Systems

for each r1, . . . , r2x ∈ [q + 1]. Here we set pq+1 = ∞.

We initialize d with 0. In our reduction rule, we remove vertices such that, after
the reduction is completed, there is at most one vertex in each set of the vertex cover
partition.

Reduction Rule 1 Let Pr1,...,r2x
be a set of the vertex cover partition with

|Pr1,...,r2x
| > 1. Delete an arbitrary vertex u ∈ Pr1,...,r2x

and increase d

by mini∈[x] pri .

Note that since the input graph is strongly connected, the increase in d in
Reduction Rule 1 is at most maxi∈[q] pi < ∞.

Lemma 5 Reduction Rule 1 is correct.

Proof Let I = (G, w) be an instance of MINPAC and let I ′ = (G′, w′) be the
instance obtained by deleting vertex u in a set Pr1,...,r2x

of the vertex cover parti-
tion for G, as specified in Reduction Rule 1. We show that OPT(I) = OPT(I ′) +
mini∈[x] pri .

Let H be an optimal solution of I . Since |Pr1,...,r2x
| > 1, there exists a vertex u′ ∈

Pr1,...,r2x
\ {u}. We can assume without loss of generality that maxuv∈A(H) w(uv) ≤

max(u′v)∈A(H) w(u′v) holds: if it does not hold, we can exchange the role of u and u′
in H without changing the cost of the solution, that is, we can update H to H ′ with

A(H ′) := {vv′ | vv′ ∈ A(H) ∧ {v, v′} ∩ {u, u′} = ∅} ∪ {uv | u′v ∈ A(H)}
∪{vu | vu′ ∈ A(H)} ∪ {u′v | uv ∈ A(H)} ∪ {vu′ | vu ∈ A(H)}.

Then, we can assume that N+
H (u) ⊆ N+

H (u′) and N−
H (u) ⊆ N−

H (u′) hold (other-
wise we can add the missing arcs to H without additional cost). Then, it follows
from Observation 1 that G[V (G′)] is a solution of I ′. Its cost is at most OPT(I) −
mini∈[x] pri because u pays at least mini∈[x] pri in H . This shows that OPT(I) ≥
OPT(I ′) + mini∈[x] pri . For the other direction, suppose that H ′ is an optimal solu-
tion of I ′. Let u′ ∈ Pr1,...,r2x

\ {u} be a vertex and let v be a vertex with w(u′v) =
mini∈[x] pri . Since H ′ is strongly connected, there exists a vertex v′ ∈ X with v′u′ ∈
A(H ′). Due to Observation 2, H ′ + uv + v′u is strongly connected. Observe that the
cost for u is mini∈[x] pri and the cost for v′ remains unchanged because v′ pays at
least w(v′u′) = w(v′u) in H ′. Hence, OPT(I) = OPT(I ′) + mini∈[x] pri .

We have shown that Reduction Rule 1 is correct. It remains to show that it can be
applied in O(xn + m) or O(n logq n + m) time to complete the proof of Theorem 2.

Proof of Theorem 2 We present a procedure that transforms an instance of MIN-
PAC I = (G, w) into another instance I ′ = (G′, w′) with at most (q + 1)2x + x

vertices in O(min({x, logq n}) · n + m) time. In our transformation, we distinguish
two cases depending on the input size.

Case 1. If n ≤ (q + 1)2x + x, then we return I as the output of the transformation
with d = 0.

Theory of Computing Systems

Case 2. If n > (q + 1)2x + x, then we apply Reduction Rule 1 exhaustively. Let P
be the vertex cover partition. There are at most (q + 1)2x sets of P and
each set yields at most one vertex in G′. Thus, the reduced instance has
at most (q + 1)2x + x vertices. We show that the transformation can be
performed in O(xn + m) time. We first build a 2x-dimensional table D,
where for each dimension there are q + 1 values. All the (q + 1)2x entries
of D are initialized as false. (This can be done in O(n) time, since n >

(q + 1)2x + x.) The entry D[r1, . . . , r2x] represents whether a vertex in the
set Pr1,...,r2x

has been found. We iterate through all vertices in V (G) \ X.
For each vertex u ∈ V (G) \ X, we set the corresponding entry in D to
true if it is false, and we remove u and its incident arcs if it is true. Since
accessing an entry in D takes O(x) time and removing u takes O(degG(u))

time, the transformation overall takes O(xn + m) time. Note that n >

(q + 1)2x + x yields that 2x < logq n and hence the reduction can also be
done in O(n logq n + m) time.

Notice that Theorem 2 does not show a kernel for the parameter combination ver-
tex cover x plus number of numbers q. In order to obtain a kernel, we will next show
how to shrink the weights.

Theorem 3 Let I = (G, w) be an instance of MINPAC where G contains n ver-
tices and m edges. There is a polynomial-time algorithm that computes a new weight
function ŵ such that ||ŵ||∞ < 24m3

(4nm + 1)m(m+2) and such that any optimal
solution T = (V , F) of (G, w) is also an optimal solution for (G, ŵ).

Proof We use the notion of α- -linearizability, which uses

and is defined as follows:

Definition 7 ([3]) A function with L ⊆ �∗ is α- -linearizable,
, if for all and for all x ∈ L it holds that

1. there exists such that f (x, ω) = b�
x ω and

2. for all it holds that
f (x, ω) = b�

x ω if and only if f (x, ω′) = b�
x ω′.

To this end, observe that we can rewrite the goal function to fit their notion as
follows. Let Fv := {vu ∈ F | u ∈ N+

G(v)} and F := {Fv | v ∈ V }. Then

Cost(V , F, w) =
∑

Fv∈F
g(Fv, w), with g(F, w) = max

e∈F
w(e).

Clearly, with A = {e1, . . . , em} the function , f (ei, ω) �→ ωi :=
w(ei) is 1- -linearizable,: On the one hand, we have that f (ei, ω) = e�

i ω (where ei

denotes the unit vector with the ith entry being one). On the other hand, for
all it holds true that f (ei, ω) = e�

i ω if and only if f (ei, ω
′) = e�

i ω′.

Theory of Computing Systems

By Lemma 4.8 in [3], it follows that Cost(V , F, w) is 2n- -linearizable,. Finally,
Theorem 4.7 in [3] yields the desired weight function ŵ.

Combining Theorems 2 and 3 gives us the desired kernel.

Corollary 1 MINPAC admits an exponential-size kernel with respect to the com-
bined parameter vertex cover plus number of numbers.

4 Parameterization by Feedback Edge Number

In this section we describe a kernelization for MINPAC parameterized by the feed-
back edge number. The feedback edge number for an undirected graph is the
minimum number of edges that have to be removed in order to make it a forest. We
define the feedback edge number for a directed graph G as the feedback edge number
of its underlying undirected graph UG. Note that a minimum feedback edge set can
be computed in linear time. In Section 5, we will show that the parameter feedback
arc number, which is the directed counterpart of the feedback edge number, does not
allow the design of an FPT algorithm for MINPAC unless P = NP.

The feedback edge number measures how tree-like the input is. From a theoretical
perspective this is interesting to analyze because any instance (G, w) of MINPAC is
easy to solve if UG is a tree. In this case all edges of UG must correspond to arcs
in both directions in G and the optimal solution is G itself. The parameter is also
motivated by real world applications in which the feedback edge number is small;
for instance, sensor networks along waterways (including canals) are expected to
have a small number of feedback edges. In this section we first prove the following
theorem which states that MINPAC admits a partial kernel with respect to feedback
edge number. Afterwards, we strengthen this result to a proper polynomial kernel
(with a worse but still polynomial running time).

Theorem 4 In linear time, one can transform any instance I = (G, w) of MIN-
PAC with feedback edge number g into an instance I ′ = (G′, w′) and compute
a value such that G′ has at most 20g − 20 vertices, 42g − 42 arcs,
and OPT(I) = OPT(I ′) + d .

Corollary 2 MINPAC can be solved in O(2O(g) + n + m) time.

We will present a set of data reduction rules which shrink any instance of MINPAC
to an essentially equivalent instance whose size is bounded as specified in Theorem
4. We simultaneously compute the value d , which we initialize with 0.

Our first reduction rule reduces the weights of arcs outgoing from a vertex by the
weight of its cheapest outgoing arc. This ensures that each vertex has at least one
outgoing arc of weight zero.

Reduction Rule 2 Let v be a vertex with δv := minvu∈A(G) w(vu) > 0. Update the
weights and d as follows:

Theory of Computing Systems

(i) w(vu) = w(vu) − δv for each vu ∈ A(G).
(ii) d := d + δv .

Lemma 6 Reduction Rule 2 is correct.

Proof Let I = (G, w) be an instance of MINPAC and let v ∈ V (G) be a vertex
with δv = minvu∈A(G) w(vu) > 0. Let I ′ be a instance with reduced weights using
Reduction Rule 2. We show that OPT(I) = OPT(I ′) + δv .

Let H be an optimal solution of I . Then, H is also a solution of I ′, where the
cost for v is decreased by δv and the cost for every other vertex remains identical.
Thus, OPT(I ′) is at most OPT(I) − δv and we obtain OPT(I) ≥ OPT(I ′) + δv . For
the other direction, let H be an optimal solution for I ′. Then H is also a solution
for I , where the cost for v is increased by δv and the cost for every other vertex
remains identical. Thus, OPT(I) is at most OPT(I ′) + δv and we obtain OPT(I) =
OPT(I ′) + δv .

Our next reduction rule discards all degree-one vertices.

Reduction Rule 3 Let v be a vertex with degG(v) = 1 and let u be its neighbor.
Update (G, w) and d as follows:

(i) G := G[V (G) \ {v}].
(ii) w(uv′) := max{0, w(uv′) − w(uv)} for each uv′ ∈ A(G) \ {uv}.

(iii) d := d + w(vu) + w(uv).

Lemma 7 Reduction Rule 3 is correct.

Proof Let I = (G, w) be an instance of MINPAC with an optimal solu-
tion H . Let v ∈ V (G) be a vertex with degG(v) = 1 and u be its neigh-
bor. (Since G is strongly connected, we have uv ∈ A(G) and vu ∈ A(G).)
Let I ′ = (G′, w′) be the instance in which v is removed according to Reduc-
tion Rule 3. Then, H [V (G′)] is a solution of I ′. Since the cost for u decreases
by maxuv′∈A(H) w(uv′) − maxuv′∈A(H)\{uv} w′(uv′) = w(uv) and the costs for other
vertices remain unchanged, we have OPT(I) ≥ OPT(I ′) + w(vu) + w(uv). For the
other direction, let H ′ be an optimal solution of I ′. Then, H ′ + vu + uv is a solu-
tion of I . The cost for v is w(vu) and the cost for u is maxuv′∈A(H ′)∪{uv} w(uv′) =
w(uv) + maxuv′∈A(H ′) w′(uv′), while the costs for other vertices remain the same.
Thus, we obtain OPT(I) ≤ OPT(I ′) + w(vu) + w(uv).

Lemma 8 Reduction Rules 2 and 3 can be exhaustively applied in linear time.

Proof For each vertex v ∈ V (G), set �(v) := minvu∈A(G) w(vu). Let L be a list of
degree-1 vertices. We apply the following procedure as long as L is nonempty. Let v

be the vertex taken from L and let u be its neighbor. Remove v and its incident arcs
from G, set �(u) := max{�(u), w(uv)}, and update d := d + max{w(vu), �(v)}.
If the degree of u becomes 1 after deleting v, then add u to L. Once L is empty,
update the weight of each remaining arc w(vu) := max{0, w(vu) − �(v)}. Finally,

Theory of Computing Systems

Fig. 1 Visualization of the four cases for connectivity inside maximal induced paths (see Observation 3).
For cases (R) and (L), at least one of the dotted arcs is not present

update d := d + �(v) for each remaining vertex v. It is easy to see that the algorithm
runs in linear time.

Henceforth, we can assume that Reduction Rules 2 and 3 are exhaustively applied.
Thus, the underlying undirected graph UG will have no degree-one vertices. It
remains to bound the number of vertices that have degree two in UG. Once this is
achieved, we can use standard arguments to upper-bound the size of the instance [2].

The rough idea to bound the number of degree-two vertices is as follows: In
order to upper-bound the number of degree-two vertices in UG, we consider long
paths in UG. A path P = (v0, . . . , vh+1) in UG is a maximal induced path of G

if degG(v0) > 2, degG(vh+1) > 2, and degG(vi) = 2 for all i ∈ [h]. We call the ver-
tices {vi | i ∈ [h]} the inner vertices of P . We will replace the inner vertices of each
maximal induced path on at least seven vertices with a fixed gadget. The arc-weights
in the gadget are chosen such that the four possible ways in which the outermost
inner vertices are connected inside the path (see Fig. 1 for a visualization of the four
cases) are preserved.

Observation 3 Let I = (G, w) be an instance of MINPAC with an optimal solu-
tion H . Let P = (v0, . . . , vh+1) be a maximal induced path of G. Then, there are
four cases in which v1 and vh are connected inside P in H (Fig. 1):

Case (R) It holds for any i ∈ [h−1] that vivi+1 ∈ A(H) and there exists k ∈ [h−1]
such that vk+1vk �∈ A(H).

Case (L) It holds for any i ∈ [h−1] that vi+1vi ∈ A(H) and there exists k ∈ [h−1]
such that vkvk+1 �∈ A(H).

Case (B) It holds for any i ∈ [h − 1] that vivi+1 ∈ A(H) and vi+1vi ∈ A(H).
Case (N) There exists k ∈ [h − 1] such that vkvk+1 �∈ A(H) and vk+1vk �∈ A(H),

and thus it holds for any i ∈ {1, . . . , k − 1, k + 1, . . . , h − 1} that vivi+1 ∈ A(H)

and vi+1vi ∈ A(H).

Proof If vivi+1 ∈ A(H) holds for all i ∈ [h − 1] or vi+1vi ∈ A(H) holds for
all i ∈ [h − 1], then we have one of the three cases (R), (L), or (B). Otherwise there
exist k, k′ ∈ [h − 1] such that vkvk+1 �∈ A(H) and vk′+1vk′ �∈ A(H). We show that
this corresponds to the case (N). To this end, we show that k = k′. If k < k′, then
there is no outgoing arc from any vertices of S1 = {vk+1, . . . vk′ } to V (G) \ S1. This
is contradicting the assumption that H is a solution, and hence k ≥ k′. If k > k′, then

Theory of Computing Systems

there is no incoming arc to any vertices of S2 = {vk′+1, . . . , vk} from V (G) \ S2.
Again this is a contradiction, and hence we obtain k ≤ k′.

Before giving the gadget to replace the inner vertices of a maximal induced path,
we define the cost for the inner vertices in cases (R), (L), and (N).

Definition 8 Let (G, w) be an instance of MINPAC and let P = (v0, . . . , vh+1) be
a maximal induced path of G. We define the cost for the connection inside P in the
right direction, the left direction, and neither direction as follows:

CR :=
h−1∑

i=1

w(vivi+1), CL :=
h−1∑

i=1

w(vi+1vi),

CN :=
h−1∑

i=1, i �=k

w(vivi+1) + w(vi+1vi),

where
k := argmax

i∈[h−1]
(w(vivi+1) + w(vi+1vi)).

Note that CR = ∞ (or CL = ∞) if vivi+1 �∈ A(G) (or vi+1vi �∈ A(G)) for some i

(recall that w(vu) = ∞ for vu �∈ A(G)). We finally present the gadget to replace
the inner vertices of a maximal induced path. The gadget is somewhat more involved
than the gadget used in the symmetric version of MINPAC [2] because it needs to
encode the four cases seen in Observation 3.

Definition 9 Let P = (v0, . . . , vh+1) be a maximal induced path. The path-gadget
for P is a graph on 6 vertices {v1, vh, a1, a2, b1, b2} and 10 arcs {v1a1, a1v1, vha2,

a2vh, a1b1, a2b2, b1a2, b2a1, a1b2, a2b1} with weights defined as follows:

w(v1a1) := 0, w(a1v1) := 0, w(vha2) := 0, w(a2vh) := 0,

w(a1b1) := CR, w(a2b2) := CL, w(b1a2) := 0, w(b2a1) := 0,

w(a1b2) :=
⎧
⎨

⎩

CR if CR ≤ CN or CL ≤ CN,⌈
1

2
CN

⌉
otherwise,

w(a2b1) :=
⎧
⎨

⎩

CL if CR ≤ CN or CL ≤ CN,⌊
1

2
CN

⌋
otherwise.

Observation 4 In Definition 9, it always holds that w(a1b2) ≤ CR , w(a2b1) ≤ CL,
and w(a1b2) + w(a2b1) ≥ CN .

Reduction Rule 4 Let P = (v0, . . . , vh+1) be a maximal induced path of G

with h ≥ 7. Then, remove the vertices v2, . . . , vh−1 of P , add a path-gadget for P

with endpoints v1 and vh (see Fig. 2), and keep d unchanged.

Theory of Computing Systems

Fig. 2 Illustration of Reduction Rule 4. We replace the inner vertices of a maximal induced path with
a path-gadget. Bold arcs denote arcs of weight 0. For the weights of other arcs in the path-gadget, see
Definition 9. The value d remains unchanged, that is, the cost in both instances are the same

Lemma 9 Reduction Rule 4 is correct and can be exhaustively applied in linear time.

Proof Let I = (G, w) be an instance of MINPAC and P = (v0, . . . , vh+1) be a
maximal induced path of G with h ≥ 7. Let I ′ = (G′, w′) be the instance where
the inner vertices of P are replaced by the path-gadget for P . We use Vin to denote
the inner vertices {v1, . . . vh} of P and Vnew to denote {v1, vh, a1, a2, b1, b2} the new
vertices in the path-gadget. We show that OPT(I) = OPT(I ′).

(≥) Let H be an optimal solution of I . Let B = A(H) \ {vivi+1, vi+1vi | i ∈ [h −
1]} be the set of arcs in H that do have the initial or terminal vertex outside Vin.
Let B0 = {v1a1, a1v1, vha2, a2vh, b1a2, b2a1} be weight-zero arcs inside Vnew
and let B1 = {a1b1, a1b2, a2b1, a2b2} be the arcs inside Vnew that have weight
at least one. We will construct a solution H ′ of I ′ such that A(H ′) = B ∪B0 ∪
B ′

1 for some B ′
1 ⊆ B1 which we specify later (in a case distinction). Thus,

in this construction the arcs outside Vin and Vnew remain identical in H and
in H ′. Hence, it is sufficient to compare the cost for Vin in H and the costs
for Vnew in H ′. To this end, for X ⊆ A(G) we define an auxiliary function for
the weight of an arc

wX(vu) =
{

w(vu) if vu ∈ X,

0 otherwise.

We define w′
X analogously for w′ of I ′. Using this notation, the cost for Vin reads

Cost(Vin, A(H), w) =
h∑

i=1

max{wA(H)(vivi−1),wA(H)(vivi+1)}

=
h∑

i=1

wA(H)(vivi−1) + wA(H)(vivi+1).

= wB(v1v0) + wB(vhvh+1)

+
h−1∑

i=1

wA(H)(vivi+1) + wA(H)(vi+1vi).

Theory of Computing Systems

Here the second equality follows from the assumption that Reduction Rule 2 is
applied: it holds for any i ∈ [h] that at least one of w(vivi−1) or w(vivi+1) is 0. On
the other hand, the cost for Vnew reads

Cost(Vnew, A(H ′), w′) = wB(v1v0) + wB(vhvh+1) + max{w′
B ′

1
(a1b1),w′

B ′
1
(a1b2)}

+ max{w′
B ′

1
(a2b1),w′

B ′
1
(a2b2)}.

We show that δ := Cost(Vin, A(H), w) − Cost(Vnew, A(H ′), w′) ≥ 0. We rewrite δ,
by canceling out the terms wB(v1v0) and wB(vhvh+1), as

δ = Cost(Vin, A(H), w) − Cost(Vnew, A(H ′), w′) = CI − CI ′

where CI and CI ′ are given by

CI =
h−1∑

i=1

wA(H)(vivi+1) + wA(H)(vi+1vi) and

CI ′ = max{w′
B ′

1
(a1b1),w′

B ′
1
(a1b2)} + max{w′

B ′
1
(a2b1),w′

B ′
1
(a2b2)}.

We distinguish between the four cases shown in Observation 3.

Case (R). We set B ′
1 := {a1b1, a1b2}. Then, H ′ is a solution because the connec-

tivity from v1 to vh inside the gadget is preserved. Since H contains
arcs vivi+1 for all i ∈ [h−1], we have CI ≥ CR . As noted in Observation
4, we have CI ′ = max{w(a1b1), w(a1b2)} ≤ CR ≤ CI .

Case (L). We set B ′
1 := {a2b1, a2b2}. Then, H ′ is a solution because the connec-

tivity from vh to v1 inside the gadget is preserved. Since H contains
arcs vi+1vi for all i ∈ [h−1], we have CI ≥ CL. As noted in Observation
4, we have CI ′ = max{w(a2b1), w(a2b2)} ≤ CL ≤ CI .

Case (B). We set B ′
1 = {a1b1, a2b2}. Then, H ′ is a solution because the connectivi-

ties from v1 to vh and from vh to v1 are both preserved. Since H contains
arcs vivi+1 and vi+1vi for all i ∈ [h − 1], we have CI ≥ CR + CL. We
also have C′

I = CR + CL because the cost for a1 and a2 are CR and CL,
respectively.

Case (N). Here we have CI = CN . We further distinguish three subcases. If CR ≤
CN , then we set B ′

1 := {a1b1, a1b2}. Then, H ′ is a solution with CI ′ =
CR ≤ CN . If CL ≤ CN , then we set B ′

1 := {a2b1, a2b2}. Then, H ′ is a
solution with CI ′ = CL ≤ CN . Otherwise we set B ′

1 := {a1b2, a2b1}.
Then, H ′ is a solution with CI ′ = CN .

(≤) Let H ′ now be an optimal solution of I ′. We can assume that H ′ contains
all weight-zero arcs in B0 and some of the non-zero-weight arcs in B1.
Let B = A(H ′)\(B0∪B1). We construct a solution H such that A(H) ⊇

Theory of Computing Systems

B. We will give H by specifying B ′ = A(H) \ B. By the same argument
as before we compare the following two quantities:

CI =
h−1∑

i=1

wB ′(vivi+1) + wB ′(vi+1vi) and

CI ′ = max{w′
A(H ′)(a1b1),w′

A(H ′)(a1b2)}
+ max{w′

A(H ′)(a2b1),w′
A(H ′)(a2b2)}.

Case 1. If there is a path from v1 to vh but no path from vh to v1 inside the path-
gadget, then we set B ′ = {vivi+1 | i ∈ [h − 1]}. Then, H is a solution
with CI = CR . Since H ′ contains a1b1, it holds that CI ′ ≥ CR .

Case 2. If there is a path from vh to v1 but no path from v1 to vh inside the path-
gadget, then we set B ′ = {vi+1vi | i ∈ [h − 1]}. Then, H is a solution
with CI = CL. Since H ′ contains a2b2, it holds that CI ′ ≥ CL.

Case 3. If there is paths from v1 to vh and from vh to v1 inside the path-gadget, then
we set B ′ = {vivi+1, vi+1vi | i ∈ [h−1]}. Then, H is a solution with CI =
CR + CL. Since H ′ contains a1b1 and a2b2, it holds that CI ′ ≥ CR + CL.

Case 4. If there is neither a path from v1 to vh nor from vh to v1 inside the
path-gadget, then we set B ′ = {vivi+1, vi+1vi | i ∈ [h − 1], i �= k},
where k is arg maxi∈[h−1] w(vivi+1) + w(vi+1vi). Then, H is a solution
with CI = CN . Since H ′ neither contains a1b1 nor a2b2 in this case, it must
contain a1b2 and a2b2 so that b1 and b2 can be reached in H ′. As noted in
Observation 4, we have CI ′ ≥ w(a1b2) + w(a2b1) ≥ CN .

Running time To find maximal induced paths, we start with a degree-two vertex and
traverse in both directions until a vertex with degree at least 3 is discovered. If the
maximal induced path contains at least 7 inner vertices, then we replace it with a
gadget with appropriate weights. The algorithm spends a constant time for each inner
vertex in the maximal induced path. Since inner vertices of maximal induced paths
are pairwise disjoint, this procedure applies Reduction Rule 4 exhaustively in linear
time.

Remark 1 Reduction Rule 4 cannot be applied when UG is a large cycle because
there is no vertex with degree 3 or larger. However, if UG is a cycle, then we can
easily compute a solution: Let v ∈ V (G) be an arbitrary vertex. Then, compute costs
corresponding to the cases (R), (L), and (N) with v1 = vh = v (see Fig. 1). Take the
cheapest solution found.

We have so far shown a reduction rule to remove all degree-one vertices and a
gadget to replace every maximal induced path with a fixed number of vertices. As
shown in previous work [2], this is sufficient to obtain a linear-size kernel.

Proposition 1 ([2]) Any undirected graph G without degree-one vertices contains at
most 2g − 2 vertices of degree at least three, where g is the feedback edge number
of G.

Theory of Computing Systems

Proposition 2 ([2]) Any connected undirected graph G without degree-one vertices
consists of at most 3g − 3 maximal induced paths, where g ≥ 2 is the feedback edge
number of G.

We use the two propositions above to prove the main theorem of this section.

Proof of Theorem 4 Let I = (G, w) be an instance of MINPAC with feedback edge
number g. We apply Reduction Rules 2 and 3 exhaustively to obtain I ′ = (G′, w′),
in which there is no degree-one vertex. We then obtain I ′′ = (G′′, w′′), in which
the inner vertices of each maximal induced path is replaced with a path-gadget using
Reduction Rule 4. It follows from Lemmas 6, 7 and 9 that this transformation is
correct and can be done in linear time.

We show that G′′ has at most 20g − 20 vertices and 42g − 42 arcs. It follows
from Propositions 1 and 2 that there are at most 2g − 2 vertices of degree at least
three and 3g − 3 maximal induced paths in UG′ . After the exhaustive application
of ReductionRule4, each maximal induced path (v0, . . . , vh+1) contains at most 6
inner vertices and 14 arcs (including v0v1, v1v0, vhvh+1, vh+1vh). Thus, G′′ contains
at most 2g−2+6 ·(3g−3) = 20g−20 vertices and at most 14 ·(3g−3) = 42g−42
arcs. Note that we count edges between vertices of degree at least three as a maximal
induced paths with no inner vertex.

We can finally again use Theorem 3 to bound the weights and hence arrive at the
following result.

Corollary 3 MINPAC admits a polynomial-size kernel with respect to the feedback
edge number.

5 Parameterized Hardness

In this section we present several hardness results for MINPAC. To this end, we
consider the decision variant of MINPAC.

POWER ASYMMETRIC CONNECTIVITY (PAC)

Input: A strongly connected graph G, arc weights , and a
budget .

Question: Is there a strongly connected spanning subgraph H of G, such
that Cost(V (G), A(H), w) ≤ k?

We prove that PAC remains NP-hard even if the feedback arc number is 1. This
complements the result in Section 4, where we showed that MINPAC parameterized
by the feedback edge number admits an FPT algorithm via a kernelization. Recall
that the feedback arc number for a directed graph is the minimum number of arcs that
have to be removed to make it a directed acyclic graph. Furthermore, we show that
PAC is W[2]-hard with respect to the solution cost k. We also show that PAC cannot
be solved in subexponential time in the number of vertices assuming the Exponential

Theory of Computing Systems

Time Hypothesis (ETH) [13], which states that 3-SAT cannot be solved in 2o(n+m)

time, where n and m are the number of variables and clauses in the input formula.
Summarizing we show the following.

Theorem 5 Even if each arc weight is either one or zero and the feedback arc number
is 1,

(i) PAC is NP-hard,
(ii) PAC is W[2]-hard when parameterized by the solution cost k, and

(iii) PAC is not solvable in 2o(n) time, unless the ETH fails.

It follows from Theorem 5 (ii) that there (presumably) is no algorithm solving
PAC running in f (k) ·nO(1) time. Nonetheless, a simple brute-force algorithm solves
PAC in nθ(k) time, certifying that PAC is in the class XP with respect to the parameter
solution cost. In order to prove the claims of Theorem 5, we use a reduction from the
well-studied SET COVER problem.

SET COVER

Input: A universe U = {u1, . . . , un}, a set family F = {S1, . . . , Sm} containing
sets Si ⊆ U , and .

Question: Is there a size-� set cover F ′ ⊆ F (that is,
⋃

S∈F ′ S = U)?

SET COVER is NP-hard and W[2]-hard with respect to the solution size � [11] and is
not solvable in 2o(|U |+|F |) time unless the ETH fails [14].

For the reduction, we use one vertex for each element and each subset and one arc
to represent the membership of an element in a subset. The construction resembles
the one used in MIN-POWER SYMMETRIC CONNECTIVITY [2].

Reduction 1 Given an instance I = (U,F, �) of SET COVER, we construct an
instance I ′ = (G, w, k = �) of PAC as follows. We introduce a vertex vu for
every u ∈ U , a vertex vS for every S ∈ F , and two additional vertices s and t . We
construct a graph such that V (G) = {s, t} ∪ VU ∪ VF where VU = {vu | u ∈ U}
and VF = {vS | S ∈ F}. For the arcs we first add an arc ts of weight 0. We then
add arcs svS and vSt of weight 0 for every S ∈ F and an arc vut of weight 0 for
every u ∈ U . For every S ∈ F and every u ∈ S we finally add an arc vSvu of
weight 1.

Figure 3 illustrates the reduction to PAC. We can assume that arcs of weight
zero (bold arcs in the figure) are part of the solution. The idea is that in order to
obtain a strongly connected subgraph, one has to select at least one incoming arc
for each vertex in VU such that only k vertices in VF have outgoing arcs that are
selected.

To prove the W[2]-hardness, we have to verify that the given reduction is indeed
a parameterized reduction.

Theory of Computing Systems

Fig. 3 Illustration of Reduction
1 on a SET COVER instance with
universe U = {1, 2, 3} and set
family F = {{2, 3}, {1, 2}}.
Bold arcs denote arcs of weight
0 and other arcs have weight 1

Definition 10 A parameterized reduction from a parameterized problem � ⊆
�∗ × �∗ to a parameterized problem �′ ⊆ �∗ × �∗ is a function which maps any
instance (I, p) ∈ �∗ × �∗ to another instance (I ′, p′) such that

(i) (I ′, p′) can be computed from (I, p) in f (p) · |I |O(1) time for some com-
putable function f ,

(ii) p′ ≤ g(p) for some computable function g, and
(iii) (I, p) ∈ � if and only if (I ′, p′) ∈ �′.

Lemma 10 Reduction 1 is a parameterized reduction from SET COVER parameter-
ized by the solution size to PAC parameterized by the solution cost.

Proof To prove that Reduction 1 is a parameterized reduction, we verify Definition
10 (i) to (iii). Observe that Reduction 1 can be done in O(|U | + |F |) time, which
satisfies Definition 10 (i). Definition 10 (ii) is clearly satisfied. For Definition 10
(iii), we show that I has a set cover of size at most � if and only if G has a strongly
connected subgraph H of cost is at most �.

(⇒) Let F ′ ⊆ F be a set cover of size at most �. Let B0 = {svS, vSt | S ∈
F} ∪ {vut | u ∈ U} be the arcs of weight 0. We claim that H = (V (G), B0 ∪
{vS′vu′ | S′ ∈ F ′, u′ ∈ S′}) is a solution with cost �. Since F ′ is a set cover,
there exists at least one incoming arc in H for any vertex in VU . Thus, H is
strongly connected. Since the cost for vS′ is 1 for any S′ ∈ F ′ and the costs
for other vertices are 0, the cost of H is at most �.

(⇐) Let H be a strongly connected subgraph of cost at most �. Let F ′ = {S |
∃u. vSvu ∈ A(H)}. Then, F ′ is a set cover because there is at least one
incoming arc in H for any vu ∈ VU . Since the cost of H is at most �, we
have |F ′| ≤ �.

Now we can prove the statements of the theorem.

Proof of Theorem 5 Theorem 5 (ii) follows from Lemma 10 because SET COVER is
W[2]-hard when parameterized by the solution size [11]. For Theorem 5 (i), observe
that Reduction 1 is a polynomial-time reduction from SET COVER and the con-
structed graph has a feedback arc set of size 1. For Theorem 5 (iii), observe that
the constructed graph of Reduction 1 has O(|U | + |F |) vertices. Since SET COVER

cannot be solved in 2o(|U |+|F |) time assuming ETH [14], Theorem 5 (iii) follows.

Theory of Computing Systems

Remark 2 We remark that having arcs of weight zero is essential for the W[2]-
hardness in Theorem 5 (ii): If minvu∈A(G) w(vu) ≥ 1 for any v ∈ V (G), then PAC
is trivially FPT with respect to the solution cost (as the cost is at least n). However,
even if minvu∈A(G) w(vu) ≥ 1, PAC is still W[2]-hard with respect to the above
lower bound k − ∑

v∈V (G) minvu∈A(G) w(vu) (this follows from a modification to
Reduction 1 where every arc weight is increased by one).

6 Conclusion

We started the investigation of the parameterized complexity of MINPAC, leading to
first tractability and intractability results. We remark that our algorithms run in linear
time when the respective parameters are bounded. Thus we believe that our results
are worthwhile for empirical experiments. There are also several theoretical chal-
lenges for future work: Can the running time of the parameterized algorithm with
respect to the number c of SCCs in the obligatory subgraph be improved to single-
exponential? Resolving the parameterized complexity of MINPAC with respect to
the single parameter vertex cover number is another task for future work. Finally,
problem variants where the solution graph is not only required to be strongly con-
nected but needs to have at most a certain diameter might be interesting (theoretically
and from an application point of view where the number of hops for communication
should be limited).

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.-H.: Deploying wireless sensors to achieve both cov-
erage and connectivity. In: Proceedings of the 7th ACM Interational Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 06), pp. 131–142. ACM (2006)

2. Bentert, M., van Bevern, R., Nichterlein, A., Niedermeier, R.: Parameterized algorithms for power-
efficient connected symmetric wireless sensor networks. In: Proceedings of the 13th International
Symposium on Algorithms and Experiments for Wireless Sensor Networks (ALGOSENSORS ’17),
volume 10718 of LNCS, pp. 26–40. Springer (2017)

3. Bentert, M., Van Bevern, R., Fluschnik, T., Nichterlein, A., Niedermeier, R.: Polynomial-time pre-
processing for weighted problems beyond additive goal functions. CoRR, arXiv:abs/1910.00277
(2019)

4. Călinescu, G.: Approximate min-power strong connectivity. SIAM J. Discrete Math. 27(3), 1527–
1543 (2013)

5. Călinescu, G.: 1.61-approximation for min-power strong connectivity with two power levels. J. Comb.
Optim. 31(1), 239–259 (2016)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/abs/1910.00277

Theory of Computing Systems

6. Călinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in
ad hoc wireless networks. In: Proceedings of the 11th Annual European Symposium on Algorithms
(ESA ’03), volume 2832 of LNCS, pp. 114–126. Springer (2003)

7. Carmi, P., Katz, M.J.: Power assignment in radio networks with two power levels. Algorithmica 47(2),
183–201 (2007)

8. Chen, J.-J., Lu, H.-I., Kuo, T.-W., Yang, C.-Y., Pang, A.-C.: Dual power assignment for network con-
nectivity in wireless sensor networks. In: Proceedings of the Global Telecommunications Conference
(GLOBECOM T’05), pp. 5. IEEE (2005)

9. Chen, W.-T., Huang, N.-F.: The strongly connecting problem on multihop packet radio networks.
IEEE Trans. Commun. 37(3), 293–295 (1989)

10. Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in radio networks. Mobile
Netw. Appl. 9(2), 125–140 (2004)

11. Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. Springer (2013)
12. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. Theor.

Comput. Syst. 50(4), 675–693 (2012)
13. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 21 (2001)
14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J.

Comput. Syst. Sci. 63(4), 512–530 (2001)
15. Iyengar, R., Kar, K., Banerjee, S.: Low-coordination wake-up algorithms for multiple connected-

covered topologies in sensor nets. Int. J. Sens. Netw. 5(1), 33–47 (2009)
16. Rong, Y., Choi, H., Choi, H.-A.: Dual power management for network connectivity in wireless sensor

networks. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium
(IPDPS ’04), IEEE (2004)

17. Sorge, M., Van Bevern, R., Niedermeier, R., Weller, M.: A new view on rural postman based on
eulerian extension and matching. J. Discrete Algorithms 16, 12–33 (2012)

18. Zhang, H., Hou, J.C.: Maintaining sensing coverage and connectivity in large sensor networks. In:
Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-To-Peer
Networks, pp. 453–474. CRC Press / Taylor & Francis (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Parameterized Complexity of Min-Power Asymmetric Connectivity
	Abstract
	Introduction
	Min-Power Asymmetric Connectivity (MinPAC)
	Related work
	Our contribution
	Preliminaries

	Parameterization by the Number of Strongly Connected Components Induced by the Obligatory Arcs
	Parameterization by the Number of Power Levels
	Parameterization by Feedback Edge Number
	Running time

	Parameterized Hardness
	Power Asymmetric Connectivity (PAC)
	Set Cover
	Conclusion
	References

