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Abstract We present a domain model of dependent type theory and use it to prove
basic metatheoretic properties. In particular, we prove that two convertible terms
have the same Böhm tree. The method used is reminiscent of the use of “inclusive
predicates” in domain theory.
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1 Introduction

This paper has two main contributions. The first one is to present a domain model
of dependent type theory where a type is interpreted as a finitary projection on one
“universal” domain. We believe this model to be quite natural and canonical, and it
can be presented as a simple decidable typing system on finite elements.1 While this
model is based on a “universal” domain, two convertible terms have the same seman-
tics, like for the set-theoretic model [3]. This is to be contrasted with an “untyped”

1Finitary projections have already been used to model dependent type theory, e.g. in [5], but the
observation that it can be presented as a decidable typing system on finite elements seems to be new.
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semantics, like the one used in [1] and where one needs to quotient by an extra par-
tial equivalence relation. The second contribution is to show, using this model, purely
syntactical properties of dependent type theory. In particular, we can show that depen-
dent product is one-to-one for conversion in a constructive metatheory, involving only
induction and recursion on finite objects,2 a property which is crucial in establishing
subject reduction [4, 17]. Furthermore, the technique that is used is similar to the use
of “inclusive predicates”, fundamental in domain theory [12, 15]. Another technical
advantage of our approach is that we don’t need to use contexts as Kripke worlds
as in previous arguments [2, 6]. We also establish that two convertible terms in type
theory (maybe partial [10, 11, 13, 14]) have the same Böhm tree.

In this paper, we work in a constructive metatheory, and when we write that a
propoosition P is decidable, we mean that P ∨ ¬P is provable.

2 Domain and Finite Elements

We shall use the following Scott domain, least solution of a recursive domain equa-
tion (see [18, 19] for a lively description of Scott domains and solutions to domain
equations):

D = [D → D] + Π D [D → D] + N + 0 + S D + Ui

In this equation, + denotes the coalesced sum [18] and i = 0, 1, 2, . . .

We write a, b, u, v, . . . for the elements of this domain. We define u(v) for u and
v in D as follows: it is the application of u to v if u belongs to D → D and it is ⊥
otherwise.

A fundamental result of domain theory is that the finite/compact elements of this
domain can be described in a purely syntactical way, and both the order and the
compatibility relations on these finite elements are decidable [16, 18, 19]. It also
has been noticed [16] that this domain is coherent in the sense that a finite set is
compatible (i.e. has a least upper bound) if, and only if, it is pairwise compatible.

Here is an inductive description of the finite elements

– ⊥ or
– Ui , N or 0 or
– S u where u is finite
– Π a f where a is finite and f is a finite function or
– a finite function

and a finite function f is a least upper bound of basic step functions and is of the form
⊥ or u1 �→ v1, . . . , un �→ vn (with n � 1 and all ui, vi finite) such that whenever ui

2This is to be contrasted with existing proofs [2, 6] which so far require strong logical principles, like
induction-recursion, contrary to what is expected for proving a purely syntactical property. The references
[4, 17] are in a weak metatheory but do not cover η-conversion.
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and uj are compatible then so are vi and vj . Such a function sends an element u to
the element f (u) = ∨{vi | ui � u}.

The order relation on finite elements can then be described by the rules

– ⊥ � u,
– N � N and 0 � 0 and Ui � Ui ,
– S u � S v if u � v,
– Π a f � Π b g if a � b and f � g, and
– (u1 �→ v1, . . . , up �→ vp) � f if vi � f (ui) for all i.

In general there are different possible ways to write a finite function f as a least
upper bound of step functions. For instance, we have (⊥ �→ N) = (U3 �→ N, ⊥ �→
N). We say that a description f = (u1 �→ v1, . . . , un �→ vn) is minimal if we cannot
remove some ui �→ vi in this description. An important property is the following.

Lemma 1 If f = (u1 �→ v1, . . . , un �→ vn) is minimal, we have f u < f ui

whenever u < ui .

Proof If we have u < ui and f ui = f u, then ∨{vj | uj < ui} � f u = f ui and
we can remove ui �→ vi from the given description of f .

Corollary 1 If we have a minimal description of f = (u1 �→ v1, . . . , un �→ vn) and
another description f = (a1 �→ b1, . . . , am �→ bm) (not necessarily minimal), then
ui = ∨{aj | aj � ui}.

Proof Indeed, if u = ∨{aj | aj � ui} we have u � ui and f (u) = ∨{bj | aj �
u} = ∨{bj | aj � ui} = f (ui), so we cannot have u < ui by the previous lemma.

We define the rank rk(u) of the finite element u by the equations

rk(⊥) = 0 rk(N) = rk(0) = rk(Ui ) = 1 rk(S u) = 1 + rk(u)

rk(Π u f ) = max(1 + rk(u), rk(f ))

and rk(f ) = 1 + max(rk(ui), rk(f (ui))) if f = (u1 �→ v1, . . . , ul �→ vl) is
minimal and l > 0. The rank measures the first time an element u appears in the
inductive generation of finite elements. An important property of the rank is that
rk(u ∨ v) � max(rk(u), rk(v)) and rk(f (u)) < rk(f ) for all u.

Working with universes, we want to consider that Ui is more “complex” than any
given finite element which only mentions Uj for j < i. In order to capture this notion
of complexity, we define

lv(⊥) = lv(N) = lv(0) = 0 lv(Ui ) = i lv(S u) = lv(u)

lv(Π u f ) = max(lv(u), lv(f ))
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and lv(f ) = max(lv(ui), lv(f (ui))) if f = (u1 �→ v1, . . . , uk �→ vk) is minimal.
An important property of the (universe) level is that lv(u ∨ v) � max(lv(u), lv(v))

and lv(f (u)) � lv(f ) for all u.
Finally we define the complexity of a finite element a as the pair lv(a), rk(a) with

the lexicographic ordering.
A finitary projection [18, 19] of a Scott domain E is a map p : E → E such

that p ◦ p = p and p a � a and the image of p, which is also the set of fixed-
points of p, is a Scott domain. If p u = u and p v = v and u, v are compatible
then p (u ∨ v) = u ∨ v since both u and v are � p (u ∨ v). A finitary projection is
thus completely determined by a set of finite elements which is closed by compatible
sups. If F,E are two Scott domains, we write F �E and say that F is a subdomain of
E if F is the image of a finitary projection of E. Equivalently F is the set of directed
sups of a given subset of finite elements of E which is closed by compatible binary
sups, and this set is exactly the set of finite elements of F . A fundamental result [18]
is that the poset of finitary projections of a Scott domain E is itself a Scott domain,
which is a subdomain of E → E.

3 Concrete Description of the Typing Relation on Finite Elements

We now describe a type system on finite elements.

⊥ : a Ui : Uj

i < j
N : Uj 0 : N

u : N
S u : N

a : Uj u1 : a t1 : Uj . . . un : a tn : Uj

Π a (u1 �→ t1, . . . , un �→ tn) : Uj

(n � 0)

u1 : a v1 : f (u1) . . . un : a vn : f (un)

(u1 �→ v1, . . . , un �→ vn) : Π a f
(n � 0)

Lemma 2 If u : a and a � b, then u : b. If u : a, v : a, and u and v are compatible,
then u ∨ v : a.

Proof The first statement is by induction on the derivation of u : a. For the second
statement, we look at the case where a = Uk and u = Π b (u1 �→ t1, . . . , un �→ tn)

and v = Π b′ (v1 �→ l1, . . . , vm �→ lm). By induction, we have b ∨ b′ : Uk . Also
ui : b and hence ui : b ∨ b′ by the first statement and similarly vj : b ∨ b′. The other
cases are similar.

Corollary 2 If w : Π a f and u : a, then w(u) : f (u).

Proof We can write w = (u1 �→ v1, . . . , un �→ vn) with vi : f (ui). We have
vi : f (u) if ui � u by Lemma 2. We then have w(u) = ∨{vi | ui � u} : f (u) by
Lemma 2.
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Lemma 3 If Π a f : Uk and f = (u1 �→ t1, . . . , un �→ tn) is minimal, then ui : a

and f (ui) : Uk .

Proof We have f = (u1 �→ t1, . . . , un �→ tn) = (v1 �→ l1, . . . , vm �→ lm) with
vj : a and lj : Uk . Since f (ui) = ∨{lj | vj � ui} we have f (ui) : Uk by Lemma 2.
Also ui = ∨{vj | vj � ui} and so ui : a by Lemma 2.

Lemma 4 If w : Π a f and w = (u1 �→ t1, . . . , un �→ tn) is minimal, then ui : a

and w(ui) : f (ui).

Proof We have w = (u1 �→ t1, . . . , un �→ tn) = (v1 �→ l1, . . . , vm �→ lm) with
vj : a and lj : f (vj ). It follows from Corollary 1 that we have ui = ∨{vj | vj � ui}
and so ui : a by Lemma 2. Using Corollary 2, we get w(ui) : f (ui).

Note that if u : a then lv(u) � lv(a) and if u : Uk then lv(u) < k, by induction
on the derivation.

Corollary 3 The relation u : a is decidable.

Proof By induction on the complexity of u and a.

The following Lemma will be useful when connecting syntax and semantics.

Lemma 5 If w : Π b f and b � a, then for any u : a there exists v : b such that
v � u and w(u) = w(v).

Proof We write w = (u1 �→ l1, . . . , un �→ ln) with ui : b and li : f (ui). We then
have w(u) = w(v) with v = ∨{ui | ui � u} and v : b by Lemma 2.

We now introduce the predicate a type by the rules:

⊥ type Ui type N type

a type u1 : a t1 type . . . un : a tn type

Π a (u1 �→ t1, . . . , un �→ tn) type
(n � 0)

Lemma 6 If a : Uj , then a type. If a type, b type, and a, b are compatible, then
a ∨ b type. If Π a (u1 �→ t1, . . . , un �→ tn) type and u1 �→ t1, . . . , un �→ tn is a
minimal description, then ui : a and ti type.
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Proof The first statement is by induction on the derivation of a : Uj . The second
statement is proved as in Lemma 2, and the last statement as in the proof of Lemma 3.

Corollary 4 The predicate a type is decidable.

Given a finite element a, the set of finite elements u such that u : a is closed
by compatible binary sups by Lemma 2. Hence it defines a finitary projection p a.
Similarly the set of finite elements a such that a type defines a finitary projection
ptype. We write Type� D for the corresponding subdomain.

By Lemma 2, we have p a � p b if a � b and we can hence define the finitary
projection p a for an arbitrary element a of D, not necessarily finite, as the directed
sup of all p a0 for a0 � a finite, in the Scott domain of finitary projections of D. We
write El a � D for the image of p a.

We have El Ui � El Ui+1 and El Ui � Type.
Let us write a → b for Π a (⊥ �→ b). The domain El N�D is exactly the domain

of “lazy” natural numbers, that are elements of the form Sk 0 or Sk⊥. The poset of
finite elements w such that w : N → N is exactly the poset of finite element of the
domain of continuous functions El N → El N.

Lemma 7 If f = (u1 �→ v1, . . . , un �→ vn) is minimal and f = f ◦ p where p is a
finitary projection, then p ui = ui for all i.

Proof We have f ui = f (p ui) and so we cannot have p ui < ui since the
description is minimal using Corollary 1, and so p ui = ui .

Proposition 1 We have

p N 0 = 0
p N (S u) = S (p N u)

p (Π a f ) w = x �→ p (f (p a x)) (w(p a x))

p Uj N = N
p Uj (Π a f ) = Π (p Uj a) ((p Uj ) ◦ f ◦ (p a))

p Uj Ui = Ui if i < j

and p a b = ⊥ in all other cases. We also have
ptype N = N
ptype (Π a f ) = Π (ptype a) (ptype ◦ f ◦ (p a))

ptype Ui = Ui

and ptype b = ⊥ in all other cases.

Proof Let q a be the function defined by these recursive equations. We show by
induction on the complexity of a finite that we have q a u = u, for u finite, if,
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and only if, u : a. This is clear if a = N. If a = Π b f and u : a, then using
Lemma 4, we can write u = (u1 �→ v1, . . . , un �→ vn) with ui : a and vi : f (ui).
We then have u(x) = u(q b x) : f (q b x) and so u(x) = (q (Π b f ) u)(x) for
any x and so u = q a u. Conversely, if u = q a u, we have u = u ◦ (q b), and if
u = (u1 �→ v1, . . . , un �→ vn) is a minimal description of u, we have q b ui = ui by
Lemma 7. So ui : b by induction. We then have vi = q (f (ui)) vi and so vi : f (ui)

by induction.
Finally we prove q Uk a = a if, and only if, a : Uk by induction on the complexity

of a finite. We cover the case a = Π b f where u1 �→ l1, . . . , un �→ ln is a minimal
description of f .

If a : Uk , then b : Uk and so q Uk b = b by induction and ui : b and li : Uk .
Since b is strictly less complex than Uk , we have by induction q b ui = ui and
q Uk f (ui) = f (ui). It follows that we have q Uk a = a.

Conversely, if q Uk a = a then q Uk b = b and so b : Uk by induction and we
have (q Uk) ◦ f ◦ (q b) = f . It follows that we have f (ui) = q Uk (f (q b ui)) for
all i and we have q b ui = ui by Lemma 7. So ui : b since b is simpler than Uk . We
then get f (ui) = q Uk f (ui) and so f (ui) : Uk by induction.

We can now consider the continuous families of domains El a and El a → Type
indexed over a in Type. We can form their carteisan products and get a continuous
family El a × (El a → Type) indexed over a in Type. We consider then the sum of
this family, which is itself a Scott domain [7]

E = �(a ∈ Type) (El a × (El a → Type))

and we have an evaluation function E → Type, (a, v, f ) �−→ f (v). This evaluation
function is continuous. So, if we have w0 � f (v) in Type then we can find a0 � a

finite in Type, and u0 � u finite in El a0 and f0 � f finite in El a0 → Type such
that w0 � f (v). This remark will be used in a crucial way in connecting syntax and
semantics of type theory.

4 Syntax and Semantics of Type Theory

The syntax of type theory is defined as follows.

M, N, A, B ::= x | λ(x : A)M|M N |Π(x : A)B |N |Ui | 0| SM | rec(λx A, M, N)

We write F(x/M) the substitution of M for x in F . We may write simply F(M)

if x is clear from the context.
The semantics can be defined at this purely untyped syntactic level, exactly like

for the set-theoretic semantics presented in [3]. This semantics is described in Fig. 1
where we define ρ, x : a = u to be the update of ρ with the assignment x = p a u.
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Fig. 1 Denotational semantics of type theory

The semantics of rec is the usual lazy semantics of primitive recursion. We define
rec(d0, d1) in D → D by the recursive equations

rec(d0, d1) 0 = d0 rec(d0, d1) (S u) = d1(u)(rec(d0, d1) u)

and rec(d0, d1) u = ⊥ in the other cases, and then

�rec(λx.T , M0, M1)�ρ = rec(�M0�ρ, �M1�ρ).

(The extra argument λx.T is used in Section 7.)
The typing and conversion rules are in the Appendix. There are two judgments

for types, of the form A type and A conv A′, and two judgments for elements, of the
form M : A and M conv M ′ : A. Such a judgment is stated in a context, which is a
list of typing declarations x : A. As in [9], we may not write the context explicitly.

We say that ρ fits Γ if for all x : A in Γ we have �A�ρ in Type and ρ(x) in
El(�A�ρ).

Theorem 1 If ρ fits Γ , then:

1. Γ 	 A type implies �A�ρ ∈ Type,
2. Γ 	 A conv A′ implies �A�ρ = �A′�ρ,
3. Γ 	 M : A implies �M�ρ ∈ El (�A�ρ), and
4. Γ 	 M conv M ′ : A implies �M�ρ = �M ′�ρ.

Proof Direct by induction on the derivation.

Note that the use of finitary projections takes care of η-conversion in the seman-
tics. For instance, we have �λ(x : N → N)x� = �λ(x : N → N)λ(y : N)x y�. Indeed,
both are equal to the function u �→ v �→ p N (u(p N v)).

The main difference with the semantics suggested in [11] and in [13] is that
abstraction is not interpreted as a constructor. This is crucial in order to validate the
rule of η-conversion that N conv N ′ : Π(x : A)B as soon as N x conv N ′ x : B (x :
A). If we represent abstraction by a constructor, we would have w = λ(⊥) 
= ⊥ = w′
but also w(u) = ⊥ = w′(u) for any u in D, and so the rule for η-conversion cannot
be valid in this case.
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5 Connecting Syntax and Semantics, First Version

We write M → M ′ for weak-head reduction. This is defined at a purely syntactical
level. The rules are the following.

(λ(x : A)N) M → N(x/M)

N → N ′

N M → N ′ M

rec(λx T , M0, M1) 0 → M0

rec(λx T , M0, M1) (S N) → M1 N (rec(λx T , M0, M1) N)

N → N ′

rec(λx T , M0, M1) N → rec(λx T , M0, M1) N ′

We write M →A M ′ for M → M ′ and M conv M ′ : A and write M →∗
A M ′ for

the corresponding transitive reflexive closure. We write A →type A′ to mean that
A → A′ and A conv A′, and we write A →∗

type A′ the corresponding transitive
reflexive closure. These relations are similar to the relations used in [2, 6].

In this section, we will consider only closed terms. The relation A conv B defines
an equivalence relation on the set of terms A such that A type. If A type, then, simi-
larly, the relation M conv N : A defines an equivalence relation on the set of terms
M satisfying M : A.

The main goal of this section is to analyze relations refining these predicates. We
define A type |a and A conv B |a for a � �A� in Type and, if we have A type |a ,
we define M : A |u:a and M conv M ′ : A |u:a for u � �M� in El a. The relation
A convB |a will be an equivalence relation on the set of terms satisfying the predicate
|a , while, if A type |a , the relation M conv M ′ : A |u:a will be an equivalence relation
on the set of terms M such that M : A |u:a .

These relations are defined first for finite elements a, by recursion on the complex-
ity of a in Type. More precisely, we define all the relations A type |a , A conv B |a ,
M : A |u:a , and M conv M ′ |u:a by recursion on the complexity of the finite ele-
ment a. In particular, this definition is not an inductive-recursive one. To incorporate
universes we also define at the same time the relations A type |ia and A conv A′|ia
for i = 0, 1, 2, . . . in the clauses 5-8. In each of the clauses of the definition below
we will have some tacit assumptions suppressed for readability: A type | a assumes
A type and a type; A conv A′ |a assumes both A type |a and A′ type |a and further
A conv A′; M : A |u:a assumes A type |a , M : A, and u : a; M conv M ′ : A |u:a
assumes M : A |u:a , M ′ : A |u:a , and M conv M ′ : A.

We distinguish the shape of a.

1. Case ⊥. A type |⊥, A conv A′ |⊥, M : A |u:⊥, and M conv M ′ |u:⊥ all hold by
definition.

2. Case Π b f . We define:

– A type |Π b f means A →∗
type Π(x : B)F for some B and F with B type |b

and x : B 	 F type and
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(a) N : B |v:b implies F(N) type |f (v), and
(b) N conv N ′ : B |v:b implies F(N) conv F(N ′) |f (v).

– Given A′ with A′ →∗
type Π(x : B ′)F ′ and A as above, then A conv A′ |Π b f

means B conv B ′ |b and

N : B |v:b implies F(N) conv F ′(N) |f (v) .

– M : A |u:Π b f is defined as (A as above):

(a) N : B |v:b implies M N : F(N) |u(v):f (v), and
(b) N conv N ′ : B |v:b implies M N conv M N ′ : F(N) |u(v):f (v).

– M conv M ′ : A |u:Π b f is defined as

N : B |v:b implies M N conv M ′ N : F(N) |u(v):f (v) .

3. Case N. We define:

– A type |N means that A →∗
type N.

– A conv A′ |N is always satisfied.
– M : A |u:N is defined by induction on u:

(a) M : A |⊥:N holds by definition,
(b) M : A |0:N if M →∗

N 0, and
(c) M : A |S v:N if M →∗

N S N and N : A |v:N.

– M conv M ′ : A |u:N is defined by induction on u:

(a) M conv M ′ : A |⊥:N and M conv M ′ : A |0:N hold by definition, and
(b) M conv M ′ : A |S v:N if M →∗

N S N , M ′ →∗
N S N ′ and N conv N ′ :

A |v:N.

The rest of the definition involves universes, so let us interrupt the definition to
look at an example: A type |a , for a = Π N (0 �→ N, S 0 �→ N), means A →∗

type
Π(x : B)F with B type |N, that is, B →∗

type N, and

– if M →∗
N 0, then F(M)type |N, that is, F(M) →∗

type N, and
– if M →∗

N S 0, then F(M) |N, that is, F(M) →∗
type N.

We now continue the definition to incorporate universes:

4. Case Uj . We define:

– A type |Uj
means A →∗

type Uj , and
– A conv A′ |Uj

is always satisfied.

– M : A |u:Uj
means M type|ju, and

– M conv M ′ |u:Uj
means M conv M ′|ju.

Where the relations A type |ia and A convA′|ia used above are simultaneously defined
by recursion on the complexity of a : Ui according to the following cases. We have
similar tacit assumptions in the definition: A type |ia always additionally assumes
a : Ui (as finite elements) and A : Ui . And A convA′|ia assumes A type |ia , A′ type |ia ,
and A conv A′ : Ui .
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5. Case ⊥. A type |i⊥ and A conv A′ |i⊥ hold by definition.
6. Case Π b f . We define:

– A type |iΠ b f means A →∗
Ui

Π(x : B)F for some B and F with B type |ib
and x : B 	 F : Ui and

(a) N : B |v:b implies F(N) type |if (v), and

(b) N conv N ′ : B |v:b implies F(N) conv F(N ′) |if (v).

– Given A′ with A′ →∗
Ui

Π(x : B ′)F ′ and A as above, then A conv A′ |iΠ b f

means that B conv B ′|ib and

N : B |v:b implies F(N) conv F ′(N) |if (v) .

7. Case N. We define:

– A type |iN means that A →∗
Ui

N.

– A conv A′ |iN is always satisfied.

8. Case Uj with j < i. We define:

– A type |iUj
means A →∗

Ui
Uj , and

– A conv A′ |iUj
is always satisfied.

This concludes the definition of the predicates.

Lemma 8 Each relation A conv A′ |a is an equivalence relation on the set of terms
A such that A |a . Furthermore, if A convA′ |a then we have M : A |u:a iff M : A′ |u:a
and M conv M ′ : A |u:a iff M conv M ′ : A′ |u:a for any u in El a.

Proof This is clear if a = ⊥ or a = N. If a = Π b f , let us prove for instance
that the relation A conv A′ |a is symmetric. We assume A type |a and A′ type |a and
A conv A′ |a , and we prove A′ conv A |a .

We have A →∗
type Π(x : B)F and A′ →∗

type Π(x : B ′)F ′ and B conv B ′ |b.
By induction, we have B ′ conv B |b. Also, we have N : B ′ |v:b iff N : B |v:b and
this implies F(x/N) conv F ′(x/N) |f (v) and so F(x/N ′) conv F(x/N) |f (v) by
induction. So we get A′ conv A |a as required.

Lemma 9 1. If J |a and a′ � a in Type, then J |a′ where J is A type or A conv B.
2. If J |ia and a′ � a in El Ui , then J |i

a′ where J is A type or A conv B.
3. If A type |a and a′ � a in Type and J |u′:a′ , then J |u′:a where J is M : A or

M conv M ′ : A.
4. Finally, if A type |a and a′ � a in Type and J |u:a and u′ : a′ and u′ � u, then

J |u′:a′ where J is M : A or M conv M ′ : A.

Proof We prove simultaneously the assertions by induction on the complexity of a

in Type. We explain two representative cases.
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In case a = Π b f and a′ = Π b′ f ′ � a and A type |a , we assume A type |a and
we show A type |a′ . We first have A →∗

type Π(x : B)F and B type |b and N : B |v:b
implies F(N) type |f (v) and N conv N ′ : B |v:b implies F(N) conv F(N ′) |f (v). By
induction we have B type |b′ . Also if N : B |v:b′ then N : B |v:b by induction and so
F(N) type |f (v) and so F(N) type |f ′(v) by induction. Similarly, N conv N ′B |v:b′
implies F(N) conv F(N ′) |f (v) and so F(N) conv F(N ′) |f ′(v) by induction.

If a = Π b f and a′ = Π b′ f ′ � a and A type |a and M : A |u:a′ , then we claim
that M : A |u:a . We know A →∗

type Π(x : B)F with B type |b. We have to show that
N : B |v:b implies M N : F(N) |u(v):f (v). By induction, we know that if v′ � v and
v′ in El b′ then N : B |v′:b′ . Since M : A |u:a′ we have M N : F(N) |u(v′):f ′(v′).
Since u : a′ we have v′ � v in El b′ such that u(v) = u(v′) by Lemma 5. For this
v′ we have M N : F(N) |u(v):f ′(v′) and then M N : F(N) |u(v):f (v) by induction,
since F(N) type |f (v) and f ′(v′) � f (v). We prove similarly that N conv P : B |v:b
implies M N conv M P : F(N) |u(v):f (v).

We use this result to extend the relation A type |a for a arbitrary (possibly infinite)
in Type.

Definition 1 A type |a means A type |a0 for all finite a0 � a in Type. If J is M : A or
M conv M ′ : A then the relations J |u:a for u arbitrary in El a is defined as follows:
for all u0 � u finite in El a there exists a0 � a finite in Type such that J |u0:a0 .

Note that if we have J |u0:a0 then we also have J |u0:a1 for any finite a1 such that
a0 � a1 � a in Type by Lemma 9.

Proposition 2 We have A type |Π b f if, and only if, A →∗
type Π(x : B)F for B and

F with B type |b and

1. N : B |v:b implies F(N) type |f (v), and
2. N conv N ′ : B |v:b implies F(N) conv F(N ′) |f (v).

Proof We assume A type |Π b f . This means A type |Π b0 f0 for all finite Π b0 f0 �
Π b f in Type, and, in particular, we have A type |Π b0 f0 for b0 = ⊥ and f0 = ⊥.
This implies A →∗

type Π(x : B)F for some B type and F type (x : B).
If b0 � b in Type is finite we have A type |Π b0 ⊥ and so B type |b0 . So we have

B type |b.
For N : B |v:b we show F(N) type |f (v) by showing that F(N) type |w0 for

any w0 � f (v) finite in Type. By the remark on continuity of evaluation at the end
of Section 2, we can find b0 � b finite in Type and v0 � v finite in El b0 and
f0 � f finite in El b0 → Type such that w0 � f0(v0) in Type. We then have
A type |Π b0 f0 and N : B |v0:b1 for some b1 � b finite in Type. We can assume
b0 � b1, maybe changing b1 to b0 ∨ b1, and using Lemma 9.3. By Lemma 9.4, we
also have N : B |v0:b0 and hence F(N) |f0(v0) as needed to be shown.

The last assertion about conversion has a similar proof.
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Conversely assume A →∗
type Π(x : B)F with B type |b and N : B |v:b implies

F(N) |f (v) and N conv N ′ : B |v:b implies F(N) conv F(N ′) |f (v). We show
that A type |Π b0 f0 for all finite Π b0 f0 � Π b f in Type. We have B type |b0

by definition, and if N : B |v:b0 with v in El b0 finite, then N : B |v:b and so
F(N) type |f (v) and hence F(N) type |f0(v). We prove similarly that N conv N ′ :
B |v:b0 with v finite implies F(N) conv F(N ′) |f0(v).

Proposition 3 Given A type |Π b f and A →∗
type Π(x : B)F , we have M :

A |w:Π b f if, and only if, N : B |v:b implies M N : F(N) |w(v):f (v) and
N conv N ′ : B |v:b implies M N conv M N ′ : F(N) |w(v):f (v).

Proof Similar to the proof of Proposition 2.

The two last propositions hold by definition if Π b f is a finite element of Type.
Note that we could not have used these propositions directly on general, maybe
infinite, element as a definition of A type |Π b f since it might be that f (v) is as
complex as Π b f . The method we have used instead was thus first to define the
relation A type |Π b f for Π b f finite, and then extend this relation by “continu-
ity” on general elements. This is similar to the use of “inclusive predicates” [12, 15],
fundamental in denotational semantics.

Lemma 10 1. If A →type A′ and A′ type |a , then A type |a and A conv A′ |a .
2. If A type |a and M →A M ′ and M ′ : A |u:a , then M : A |u:a and M conv M ′ :

A |u:a .

Proof Both properties are shown by induction on a. The most interesting case is for
the second assertion when a = Π b f . We then have A →∗

type Π(x : B)F with
B type |b. If N : B |v:b, we have M N →F(N) M ′ N and M ′ N : F(N) |u(v):f (v). By
induction, we have M N : F(N) |u(v):f (v) and M N conv M ′ N : F(N) |u(v):f (v).
Similarly, if N conv N ′ |v:b, we get M N ′ conv M ′ N ′ : F(N) |u(v):f (v). Since
M ′ : A |u:a we have M ′ N conv M ′ N ′ : F(N) |u(v):f (v) and we get by transitivity
and symmetry M N conv M N ′ : F(N) |u(v):f (v).

We write σ : Γ |ρ to mean that we have Aσ type |�A�ρ and σ(x) : Aσ |ρ(x):�A�ρ
for all x : A in Γ . Note that, in particular, this implies that ρ fits Γ .

Similarly, we write σ conv σ ′ : Γ |ρ to mean that we have Aσ conv Aσ ′ |�A�ρ and
σ(x) conv σ ′(x) : Aσ |ρ(x):�A�ρ for all x : A in Γ .

Theorem 2 The following properties hold, given σ : Γ |ρ and σ conv σ ′ : Γ |ρ .

1. If Γ 	 A type, then Aσ type |�A�ρ .
2. If Γ 	 M : A, then Mσ : Aσ |�M�ρ:�A�ρ .
3. If Γ 	 A conv A′, then Aσ conv A′σ |�A�ρ .



660 Theory Comput Syst (2019) 63:647–665

4. If Γ 	 M conv M ′ : A, then Mσ conv M ′σ : Aσ |�M�ρ:�A�ρ .
5. If Γ 	 A type, then Aσ conv Aσ ′ |�A�ρ .
6. If Γ 	 M : A, then Mσ conv Mσ ′ : Aσ |�A�ρ .

Proof This follows from Propositions 2 and 3 and Lemma 10, and the fact that weak-
head reduction is stable under substitution.

Corollary 5 If 0 conv M : N, then M →∗
N 0. If S M0 conv M : N, then M →∗

N S M1
with M0 conv M1 : N. If A0 conv Π(x : B1)F1, then A0 →∗

type Π(x : B0)F0 with
B0 conv B1 and N : B0 implies F0(N) conv F1(N).

Proof For the first statement, we have �M� = �0� = 0. Using the previous theorem,
we get M : N |�M�:N that is M : N |0:N, which means precisely M →∗

N 0. The proof
of the second statement is similar.

If A0 conv Π(x : B1)F1, then �A0� = �Π(x : B1)F1� = Π �B1� �λ(x :
B1)F1� and we have A0 conv Π(x : B1)F1 |�A0� by Theorem 2. It follows that
A0 →∗

type Π(x : B0)F0 and B0 conv B1 |�B0� and N : B0 |v:�B1� implies
F0(N) conv F1(N) |�F0�(x=v). In particular, we have B0 conv B1 and, for v = ⊥, we
have F0(N) conv F1(N) if N : B0.

Note that we cannot conclude that dependent product is one-to-one for conversion
yet, since in the last case we get only that N : B0 implies F0(N) conv F1(N), for
N : B0 closed, which is not enough to conclude F0 conv F1 (x : B0). A simple
modification of our argument will apply however, as we shall see in the next section.

6 Connecting Syntax and Semantics, Second Version

We fix a context Δ = x1 : T1, x2 : T2(x1), . . . , xn : Tn(x1, . . . , xn−1). Working in
this context Δ corresponds to extend the type system with constants c1 : T1, c2 :
T2(c1), . . . , cn : Tn(c1, . . . , cn−1). We define the interpretation of these constants by
taking �ci� = ⊥.

We then have c1 : T1 |�c1�:�T1�, c2 : T2(c1) |�c2�:�T2(c1)�, . . . . All the reasoning of
the previous section applies with this addition of constants ci . Moving between con-
stants and variables, we deduce the following proposition, which does not mention
constants:

Proposition 4 If Δ 	 A0 conv Π(x : B1)F1, then A0 →∗
type Π(x : B0)F0 with

Δ 	 B0 conv B1 and Δ 	 N : B0 implies Δ 	 F0(N/x) conv F1(N/x).

Note that for this proposition, the context Δ is completely arbitrary. We can thus
deduce the following fact:
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Corollary 6 If Δ 	 A0 conv Π(x : B1)F1, then A0 →∗
type Π(x : B0)F0 such that

Δ 	 B0 conv B1 and Δ, x : B0 	 F0 conv F1.

Proof Since all judgments stay valid by extension of the context, we not only have
Δ 	 A0 conv Π(x : B1)F1. but also Δ, x : B0 	 A0 conv Π(x : B1)F1. We can then
apply the previous proposition, using Δ, x : B0 instead of Δ and taking x for u.

As in [2], an important application of the injectivity of dependent product for
conversion is subject-reduction, i.e. the following result.

Corollary 7 If A type and A → A′ then A′ type and A conv A′. If M : A and
M → M ′ then M ′ : A and M conv M ′ : A.

7 Connecting Syntax and Semantics, Third Version

We refine the domain as follows

D = [D → D] + Π D [D → D] + Ui + N + 0 + S D + T

and we add the following typing rules:

T type T : Ui T : N T : T
We extend the application operation u(v) by taking T(v) to be T for any value T. An
operational intuition about T is that it represents the semantics of an “exception”. We
also extend the definition of rec by rec(d0, d1) T = T. We finally refine the definition
of the projection function by adding the clauses

p N T = T
p Uj T = T
p T T = T
ptype T = T

We now introduce the special class of “neutral” terms

k ::= ci | k N | rec(λx A, M, M) k

and the predicate G(k) of “typable” neutral terms, which is defined by the following
clauses, where we define at the same time the type function τ(k):

1. Any constant ci is typable, G(ci), and τ(ci) = Ti is the given type of ci .
2. If G(k) and τ(k) →∗

type Π(x : B)F and N : B, then G(k N) and τ(k N) =
F(N)

3. If G(k) and τ(k) →∗
type N and T type (x : N) and M0 : T (0) and M1 : Π(x :

N)(T → T (S x)), then G(rec(λx T , M0, M1) k) and τ(rec(λx T , M0, M1) k) =
T (k)
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We define next an equivalence relation Q(k, k′) on elements satisfying G by the
clauses:

1. Q(ci, ci)

2. Q(k N, k′ N ′) if Q(k, k′) and τ(k) →∗
type Π(x : B)F and N : B and

τ(k′) →∗
type Π(x : B ′)F ′ and N ′ : B ′ and B conv B ′ and F conv F ′ (x : B)

3. Q(rec(λx T , M0, M1) k, rec(λx T ′, M ′
0, M

′
1) k′) if Q(k, k′) and τ(k) →∗

type N
and τ(k′) →∗

type N and T conv T ′ (x : N) and M0 conv M ′
0 : T (0) and

M1 conv M ′
1 : Π(x : N)(T → T (S x)).

We refine then the definitions of J |a and J |u:a by the clauses:

1. A type |T means that A →∗
type k for some k

2. A conv A′ |T means that A conv A′
3. M : A |T:a , where a is T or Ui or N, means M →∗

A k for some k

4. M conv M ′ : A |T:a , where a is T or Ui or N, means M conv M ′ : A

Lemma 11 If G(k) and τ(k) type |a , then k : τ(k) |p a T:a . If Q(k, k′) and
τ(k) type |a , then k conv k′ : τ(k) |p a T:a .

Proof By induction on a type. Let us for instance prove the first assertion in the case
where a = Π b f . We have τ(k) →∗

type Π(x : B)F with B type |b and N : B |v:b
implies F(N) type |f (v) and N conv N ′ : B |v:b implies F(N) conv F(N ′) |f (v).
It follows that N : B |v:b implies G(k N) and τ(k N) = F(N), so that k N :
F(N) |p (f (v)) T:f (v) by induction. Similarly we show that N conv N ′ |v:b implies
Q(k N, k N ′) and so k N conv k N ′ : F(N) |p (f (v)) T:f (v) by induction.

We explain now the semantics of the constants c1 : T1, c2 : T2(c1), . . . . We take
�c1� = p �T1� T and then �c2� = p �T2(c1)� T and so on. This is justified since T1
does not refer to any constant, and T2 refers at most to the constant c1, and so on. It
follows from the last lemma that we have Ti type |�Ti� and ci : Ti |�ci�:�Ti�.

Theorem 2 holds then with this semantics, since it holds for the constants ci .
We then have the following application, using as in the previous section the fact

that the context Δ is arbitrary.

Theorem 3 If Δ 	 M conv N : A, then M : A and N : A have the same Böhm tree.

Proof Corollary 7 implies that a term is convertible to (and hence as the same seman-
tics as) its weak head normal form. Theorem 2 shows then that, given any two
convertible terms, if one has a weak head normal form, so does the other term and
these weak head normal form have the same shape.



Theory Comput Syst (2019) 63:647–665 663

8 Conclusion

We have shown that constructors are one-to-one for dependent type theory with con-
version as judgment and η-conversion in a weak metatheory, while all existing proofs
[2] use strong logical principles. Our argument applies as well to partial type the-
ory, where we may have non terminating computations. An example is given in the
reference [11]: one introduces a new base type Ω , which is like the type of natural
numbers N with 0 deleted, and an element ω : Ω such that ω conv S ω : Ω . The type
Ω will be represented by a new finite element of the domain, while the element ω

will be the least upper bound of the sequence ⊥, S ⊥, S (S ⊥), . . .

Using strong logical principles, it should be possible to define a semantical notion
of totality on elements of the domain, and prove that a total element corresponds to a
finite Böhm tree. If we are only interested in the evaluation of closed expressions, the
techniques we have presented are enough to show canonicity of type theory extended
with bar recursion, as in [8], but with η-conversion in the type system.

On the other hand it is not clear how to extend the present method to a type system
with a type of all types. Do we still have adequacy in this case?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Typing and Conversion Rules of Type Theory

Rules for Contexts

() 	
Γ 	 A type

Γ, x : A 	
Γ 	

Γ 	 x : A
(x :A in Γ )

Like in [9], we don’t write explicitly the context in the next rules.

Typing Rules

M : A A conv B

M : B

A type B type (x : A)

Π(x : A)B type

A type B type (x : A) N : B (x : A)

λ(x : A)N : Π(x : A)B

A type B type (x : A) N : Π(x : A)B M : A

N M : B(x/M)

http://creativecommons.org/licenses/by/4.0/
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Conversion Rules

M conv N : A A conv B

M conv N : B

A type

A conv A

A conv C B conv C

A conv B

M : A

M conv M : A

M conv P : A N conv P : A

M conv N : A

A0 conv A1 B0 conv B1 (x : A0)

Π(x : A0)B0 conv Π(x : A1)B1

A type B type (x : A) N conv N ′ : Π(x : A)B M : A

N M conv N ′ M : B(x/M)

A type B type (x : A) N : Π(x : A)B M conv M ′ : A

N M conv N M ′ : B(x/M)

A type B type (x : A) N : B (x : A) M : A

(λ(x : A)N) M conv N(x/M) : B(x/M)

A type B type (x :A) N :Π(x :A)B N ′ :Π(x :A)B Nx conv N ′ x :B (x :A)

N conv N ′ : Π(x : A)B

Rules for Natural Numbers

N : U0 0 : N
M : N
S M : N

T type (x : N) M0 : T (0) M1 : Π(x : N) (T → T (S x))

rec(λx T , M0, M1) : Π(x : N)T

rec(λx T , M0, M1) 0conv M0

rec(λx T , M0, M1) (S n)conv M1 n (rec(λx T , M0, M1) n)

Rules for Universes

A : Ui B : Ui (x : A)

Π(x : A)B : Ui

A : Ui

A : Uj

i < j
Ui : Uj

i < j
A : Ui

A type

M conv N : Ui

M conv N : Uj

i < j
M conv N : Ui

M conv N

A0 conv A1 : Ui B0 conv B1 : Ui (x : A0)

Π(x : A0)B0 conv Π(x : A1)B1 : Ui
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