
Theory Comput Syst (2017) 61:1337–1352
DOI 10.1007/s00224-017-9774-9

A Generalized Characterization of Algorithmic
Probability

Tom F. Sterkenburg1,2

Published online: 13 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract An a priori semimeasure (also known as “algorithmic probability” or “the
Solomonoff prior” in the context of inductive inference) is defined as the transfor-
mation, by a given universal monotone Turing machine, of the uniform measure on
the infinite strings. It is shown in this paper that the class of a priori semimeasures
can equivalently be defined as the class of transformations, by all compatible uni-
versal monotone Turing machines, of any continuous computable measure in place
of the uniform measure. Some consideration is given to possible implications for the
association of algorithmic probability with certain foundational principles of statistics.

Keywords Algorithmic probability · A priori semimeasure · Semicomputable
semimeasures · Monotone turing machines · Principle of indifference · Occam’s razor

1 Introduction

Levin [23] first considered the transformation of the uniform measure λ on the infi-
nite bit strings by a universal monotone machine U . This transformation λU is the
function that for each finite bit string returns the probability that the string is gen-

This article is part of the Topical Collection on Special Issue on Computability, Complexity and
Randomness (CCR 2015)

� Tom F. Sterkenburg
tom@cwi.nl

1 Algorithms and Complexity Group, Centrum Wiskunde & Informatica, Amsterdam,
The Netherlands

2 Faculty of Philosophy, University of Groningen, Groningen, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9774-9&domain=pdf
mailto:tom@cwi.nl

1338 Theory Comput Syst (2017) 61:1337–1352

erated by machine U , when U is supplied a stream of uniformly random input
(produced by tossing a fair coin, say). Levin attached to λU the interpretation of an “a
priori probability” distribution, because λU dominates every other semicomputable
semimeasure and so the initial assumption that a sequence is randomly generated
from λU is in an exact sense the weakest of randomness assumptions.

Earlier on, Solomonoff [20] described in a somewhat less precise way a very sim-
ilar definition. His motivation was an “a priori probability” distribution to serve as an
objective starting point in inductive inference. In this context the definition is known
under various headers, including “the Solomonoff prior” and “algorithmic probabil-
ity”; and it has been associated with certain foundational principles from statistics, to
explain or support its merits as an idealized inductive method.

As commonly presented, however, the association with two main such principles
(firstly, the principle of indifference, and secondly, the principle of Occam’s razor)
seems to essentially rest on the definition of λU as a universal transformation of the
uniform measure λ.

This raises the question whether the a priori semimeasures (as we will call the
functions λU here) must be defined, as they always are, as the universal transforma-
tions of the uniform measure, or that the a priori semimeasures can equivalently be
defined as universal transformations of other computable measures.

The main result of this paper is that any a priori semimeasure can indeed be
obtained as a universal transformation of any continuous computable measure. That
is, for any continuous computable measure, an a priori semimeasure can equivalently
be defined as giving the probabilities for finite strings being generated by a uni-
versal machine that is presented with a stream of bits sampled from this measure.
More precisely, for any continuous computable measure μ, it is shown that the class
of functions λU for all universal monotone machines U coincides with the class of
functions μU (i.e., the transformation by U of μ) for all (μ-compatible) universal
machines U .

This work will be done in Section 2. First, in the current section, we cover
basic notions and notation (Section 1.1), discuss the characterization of the semi-
computable semimeasures as the transformations via monotone machines of a
continuous computable measure (Section 1.2), and the analogous characterization for
semicomputable discrete semimeasures and prefix-free machines (Section 1.3).

1.1 Basic Notions and Notation

1.1.1 Bit Strings

Let B := {0, 1} denote the set of bits; B∗ the set of all finite bit strings; Bn the set of
bit strings σ of length |σ | = n; B≤n the set of bit strings σ of length |σ | ≤ n; Bω the
class of all infinite bit strings. The empty string is ε. The concatenation of bit strings
σ and τ is written στ ; we write σ � τ if σ is an initial segment of τ (so there is a
ρ such that σρ = τ ; we write σ ≺ τ if ρ �= ε). The initial segment of σ of length
n ≤ |σ | is denoted σ �n; the initial segment σ �|σ |−1 is denoted σ−. Strings σ and τ

are comparable, σ ∼ τ , if σ � τ or τ ≺ σ ; if σ and τ are not comparable we write
σ | τ .

Theory Comput Syst (2017) 61:1337–1352 1339

For given finite string σ , the class �σ � := {σX : X ∈ B
ω} ⊆ B

ω is the class of
infinite extensions of σ . Likewise, for A ⊆ B

∗, let �A� := {σX : σ ∈ A, X ∈ B
ω}.

1.1.2 Computable Measures

A probability measure over the infinite strings is generated by a premeasure, a
function m : B∗ → [0, 1] that satisfies
1. m(ε) = 1;
2. m(σ0) + m(σ1) = m(σ) for all σ ∈ B

∗.

A premeasure m gives rise to an outer measure μ∗
m : P(Bω) → [0, 1] by

μ∗
m(A) = inf

{∑
σ∈A

m(σ) : A ⊆ �A�

}
.

By restricting μ∗
m to the measurable sets, i.e., the setsA ⊆ B

ω such that μ∗
m(B) =

μ∗
m(B ∩ A) + μ∗

m(B \ A) for all B ⊆ B
ω, we finally obtain the corresponding

(probability) measure μm, that satisfies μm(�σ �) = m(σ) for all σ ∈ B
∗.

The uniform (Lebesgue) measure λ is given by the premeasure m with m(σ) =
2−|σ | for all σ ∈ B

∗. A measure μ is nonatomic or continuous if there is no X ∈ B
ω

with μ({X}) > 0.
We call a total real-valued function f : B

∗ → R computable if its values are
uniformly computable reals: there is a computable g : B

∗ × N → Q such that
|g(σ, k)−f (σ)| < 2−k for all σ, k. This allows us to talk about computable premea-
sures. A measure μ we then call computable if μ = μ∗

m for a computable premeasure
m.

1.1.3 Semicomputable Semimeasures

We call a total real-valued function f : B∗ → R (lower) semicomputable if there
are uniformly computable functions ft : B∗ → Q such that for all σ ∈ B

∗, we have
ft+1(σ) ≥ ft (σ) for all t ∈ N and limt→∞ ft (σ) = f (σ).

Levin [23, Definition 3.6] introduced the notion of a semicomputable measure
over the collection B

∗ ∪ B
ω of finite and infinite strings. This is equivalent to a

semimeasure over the infinite strings that is generated from a premeasure m that only
needs to satisfy

1. m(ε) ≤ 1;
2. m(σ0) + m(σ1) ≤ m(σ) for all σ ∈ B

∗.

Following [5], we will simply treat a semimeasure as a function over the cones
{�σ � : σ ∈ B

∗}:

Definition 1 A semicomputable semimeasure is a function ν : {�σ � : σ ∈ B
∗} →

[0, 1] such that ν(�·�) : B∗ → [0, 1] is semicomputable, and

1. ν(�ε�) ≤ 1;
2. ν(�σ0�) + ν(�σ1�) ≤ ν(�σ �) for all σ ∈ B

∗.

1340 Theory Comput Syst (2017) 61:1337–1352

Moreover, we follow the custom of writing ν(σ) for ν(�σ �). Let M denote the
class of all semicomputable semimeasures.1

1.2 Monotone Machines and Semicomputable Semimeasures

1.2.1 Machines

The following definition is due to Levin [10]. (Similar machine models were already
described in [23], and by Solomonoff [20] and Schnorr [19]; see [3].)

Definition 2 A monotone machine is a c.e. set M ⊆ B
∗ ×B

∗ of pairs of strings such
that if (ρ1, σ1), (ρ2, σ2) ∈ M and ρ1 � ρ2 then σ1 ∼ σ2.

We will not go into the concrete machine model that corresponds to the above
abstract definition (see, for instance, [5, p. 145]); we only note that a machine M as
defined above induces a function NM : B∗ ∪B

ω → B
∗ ∪B

ω by NM(X) = sup�{σ ∈
B

∗ : ∃ρ � X ((ρ, σ) ∈ M)} (cf. [7]).

1.2.2 Transformations

Imagine that we feed a monotone machine M a stream of input that is generated from
a computable measureμ. As a result, machineM produces a (finite or infinite) stream
of output. The probabilities for the possible initial segments of the output stream are
themselves given by a semicomputable semimeasure (as can easily be verified). We
will call this semimeasure the transformation of μ by M .

Definition 3 The transformation μM of computable measure μ by monotone
machine M is defined by

μM(σ) := μ(�{ρ : ∃σ ′ � σ((ρ, σ ′) ∈ M)}�).

1.2.3 Characterizations ofM

For every given semicomputable semimeasure ν, one can obtain a machine M that
transforms the uniform measure λ to ν. Together with the straightforward con-
verse that every function λM defines a semicomputable semimeasure, this gives a
characterization of the class M of semicomputable semimeasures as

M = {λM}M, (1)

where {λM}M is the class of functions λM for all monotone machines M .

1Semimeasures as defined here are often referred to as continuous semimeasures, in contradistinction to
the discrete semimeasures defined in Section 1.3 below (cf. [5, 13]). Due to the possibility of confusion
with the earlier meaning of “continuous” as synonymous to “nonatomic,” we will avoid this usage here.

Theory Comput Syst (2017) 61:1337–1352 1341

A proof of this fact by the construction of an M that transforms λ to given ν

was first outlined by Levin in [23, Theorem 3.2]. (Also see [13, Theorem 4.5.2].)
Moreover, it can be deduced from [23, Theorem 3.1(b), 3.2] that M can be char-
acterized as the class of transformations of computable measures other than λ.
Namely, we have that M coincides with {μM}M for any computable μ that is
continuous.

A detailed construction to prove the characterization (1) was published by Day
[4, Theorem 4(ii)]. (Also see [5, Theorem 3.16.2(ii)].) The following proof of the
case for any continuous computable measure is an adaptation of this construction.

Theorem 1 (Levin) For every continuous computable measure μ, and for every
semicomputable semimeasure ν, there is a monotone machine M such that ν = μM .

Proof Let ν be any semicomputable semimeasure, with uniformly computable
approximation functions ft . We construct in stages s = 〈σ, t〉 a monotone machine
M that transforms μ into ν. Let Ds(σ) := {ρ ∈ B

∗ : (ρ, σ) ∈ Ms}.

Construction Let M0 := ∅.
At stage s = 〈σ, t〉, if μ(�Ds−1(σ)�) = ft (σ) then let Ms := Ms−1.
Otherwise, first consider the case σ �= ε. By Lemma 1 in [4] there is a set R ⊆ B

s

of available strings of length s such that �R� = �Ds−1(σ
−)� \ (�Ds−1(σ

−0)� ∪
�Ds−1(σ

−1)�). Denote x := μ(�R�), the amount of measure available for descrip-
tions for σ , which equals μ(�Ds−1(σ

−)�) − μ(�Ds−1(σ
−0)�) − μ(�Ds−1(σ

−1)�)
because we ensure by construction that �Ds−1(σ

−)� ⊇ �Ds−1(σ
−0)�∪�Ds−1(σ

−1)�
and �Ds−1(σ

−0)� ∩ �Ds−1(σ
−1)� = ∅. Denote y := ft (σ) − μ(�Ds−1(σ)�), the

amount of measure the current descriptions fall short of the latest approximation of
ν(σ). We collect in the auxiliary set As a number of available strings from R such
that μ(�As�) is maximal while still bounded by min{x, y}.

If σ = ε, then denote y := ft (ε) − μ(�Ds−1(ε)�). Collect in As a number of
available strings from R ⊆ B

s with �R� = B
ω \ �Ds−1(ε)� such that μ(�As�) is

maximal but bounded by y.
Put Ms := Ms−1 ∪ {(ρ, σ) : ρ ∈ As}.

Verification The verification of the fact that M is a monotone machine is identical to
that in [4].

It remains to prove that μM(σ) = ν(σ) for all σ ∈ B
∗. Since by construction

�Ds(σ
′)� ⊆ �Ds(σ)� for any σ ′ � σ , we have that μMs (σ) = μ(∪σ ′�σ �Ds(σ

′)�) =
μ(�Ds(σ)�). HenceμM(σ) = lims→∞ μ(�Ds(σ)�), and our objective is to show that
lims→∞ μ(�Ds(σ)�) = ν(σ). To that end it suffices to demonstrate that for every
δ > 0 there is some stage s0 where μ(�Ds0(σ)�) > ν(σ) − δ. We prove this by
induction.

For the base step, let σ = ε. Choose positive δ′ < δ. There will be a stage s0 =
〈ε, t0〉 where ft0(ε) > ν(ε) − δ′, and (since μ is continuous) μ(�ρ�) ≤ δ − δ′ for all
ρ ∈ B

s0 . Then, if not already μ(�Ds0−1(ε)�) > ν(ε) − δ, the latter guarantees that
the construction will select a number of available strings in As0 such that ν(ε) − δ <

1342 Theory Comput Syst (2017) 61:1337–1352

μ(�Ds0−1(ε)�) + μ(�As�) ≤ ft0(ε). It follows that μ(�Ds0(ε)�) = μ(�Ds0−1(ε)�) +
μ(�As�) > ν(ε) − δ as required.

For the inductive step, let σ �= ε, and denote by σ ′ the one-bit extension of σ−
with σ ′ | σ . Choose positive δ′ < δ. By induction hypothesis, there exists a stage s′

0
such that μ(�Ds′

0
(σ−)�) > ν(σ−) − δ′. At this stage s′

0, we have

μ(�Ds′
0
(σ−)�) − μ(�Ds′

0
(σ ′)�) ≥ μ(�Ds′

0
(σ−)� − ν(σ ′)

> ν(σ−) − δ′ − ν(σ ′)
≥ ν(σ) − δ′,

where the last inequality follows from the semimeasure property ν(σ−) ≥ ν(σ) +
ν(σ ′). There will be a stage s0 = 〈σ, t0〉 ≥ s′

0 with ft0(σ) > ν(σ) − δ′ and μ(�ρ�) ≤
δ − δ′ for all ρ ∈ B

s0 . Clearly, min{μ(�Ds0(σ
−)�) − μ(�Ds0(σ

′)�), ft0(σ)} >

ν(σ)−δ′. Then, as in the base case, if not alreadyμ(�Ds0−1(σ)�) > ν(σ)−δ, the con-
struction selects a number of available descriptions such thatμ(�Ds0(σ)�) > ν(σ)−δ

as required.

Corollary 1 For every continuous computable measure μ,

{μM}M = M.

1.3 Prefix-Free Machines and Discrete Semimeasures

The notions of a semicomputable discrete semimeasure on the finite strings and a
prefix-freemachine can be traced back to Levin [11] and Gács [6], and independently
Chaitin [1].

Definition 4 A semicomputable discrete semimeasure is a semicomputable function
P : B∗ → R

≥0 such that
∑

σ∈B∗ P(σ) ≤ 1.

Definition 5 A prefix-free machine is a partial computable function T : B∗ → B
∗

with prefix-free domain.

Definition 6 The transformation of computable measure μ by prefix-free machine T

is the semicomputable discrete semimeasure Q
μ
T : B∗ → [0, 1] defined by

Q
μ
T (σ) := μ(�{ρ : (ρ, σ) ∈ T }�).

Let P denote the class of all semicomputable discrete semimeasures. Analogous
to class M and the monotone machines, class P is characterized as the class of all
prefix-free machine transformations of μ, for any continuous computable μ. The fact
that every P can be obtained as a transformation of λ is usually inferred from the
effective version of Kraft’s inequality (e.g., [5, p. 130], [14, Exercise 2.2.23]). How-
ever, we can easily prove the general case in a direct manner by a much simplified
version of the construction for Theorem 1.

Theory Comput Syst (2017) 61:1337–1352 1343

Proposition 1 For every continuous computable measure μ, and for every semi-
computable discrete semimeasure P , there is a prefix-free machine T such that
P = Q

μ
T .

Proof Let P be any semicomputable discrete semimeasure, with uniformly com-
putable approximation functions ft . We construct a prefix-free machine T in stages
s = 〈σ, t〉. Let Ds(σ) = {ρ ∈ B

∗ : (ρ, σ) ∈ Ts}.

Construction Let T0 = ∅.
At stage s = 〈σ, t〉, if μ(�Ds−1(σ)�) = ft (σ) then let Ts := Ts−1.
Otherwise, let the set R ⊆ B

s of available strings be such that �R� = B
ω \

�∪τ∈B∗Ds−1(τ)�. Collect in the auxiliary set As a number of available strings ρ from
R with

∑
ρ∈As

μ(�ρ�) maximal but bounded by ft (σ) − μ(�Ds−1(σ)�), the amount
of measure the current descriptions fall short of the latest approximation of P(σ).
Put Ts := Ts−1 ∪ {(ρ, σ) : ρ ∈ As}.
Verification It is immediate from the construction that ∪σ∈B∗Ds(σ) is prefix-free at
all stages s, so T = lims→∞ Ts is a prefix-free machine. To show that Q

μ
T (σ) =

lims→∞ μ(�Ds(σ)�) equals P(σ) for all σ ∈ B
∗, it suffices to demonstrate that for

every δ > 0 there is some stage s0 where μ(�Ds0(σ)�) > P (σ) − δ.
Choose positive δ′ < δ. Wait for a stage s0 = 〈σ, t0〉 with μ(�ρ�) ≤ δ − δ′ for all

ρ ∈ B
s0 and ft0(σ) > P (σ) − δ′. Clearly, the available μ-measure

μ(�R�) = 1 −
∑
τ∈B∗

μ(�Ds0−1(τ)�)

≥ 1 − μ(�Ds0−1(σ)�) −
∑

τ∈B∗\{σ }
P(τ)

≥ P(σ) − μ(�Ds0−1(σ)�)

≥ ft0(σ) − μ(�Ds0−1(σ)�).

Consequently, if not already μ(�Ds0−1(σ)�) > P (σ) − δ, then the construction
collects in As0 a number of descriptions of length s0 from R such that μ(�Ds0(σ)�) =
μ(�Ds0−1(σ)�) + ∑

ρ∈As0
μ(�ρ�) > P (σ) − δ as required.

Corollary 2 For every continuous computable measure μ,

{Qμ
T }T = P .

2 The A Priori Semimeasures

In this section we show that the class of a priori semimeasures can be character-
ized as the class of universal transformations of any continuous computable measure.
Section 2.1 introduces the class of a priori semimeasures. Section 2.2 is an inter-
lude devoted to the representation of the a priori semimeasures as universal mixtures.

1344 Theory Comput Syst (2017) 61:1337–1352

Section 2.3 presents the generalized characterization, and concludes with a brief
discussion of how this reflects on the association with foundational principles.

2.1 A Priori Semimeasures

2.1.1 Universal Machines

Let {ρe}e∈N ⊆ B
∗ be any computable prefix-free and non-repeating enumeration

of finite strings, that will serve as an encoding of some computable enumeration
{Me}e∈N of all monotone machines. We say that a monotone machine U is universal
(by adjunction) if for some such encoding {ρe}e∈N, we have for all ρ, σ ∈ B

∗ that

(ρeρ, σ) ∈ U ⇔ (ρ, σ) ∈ Me.

By a universal machine we will mean a monotone machine that is universal by
adjunction. Contrast this to weak universality, which is the more general property
that for all M there is a cM ∈ N such that

(ρ, σ) ∈ M ⇒ ∃ρ′ (|ρ′| < |ρ| + cM & (ρ, σ) ∈ U
)
.

2.1.2 A Priori Semimeasures

We call a transformation by a universal machine a universal transformation. The a
priori semimeasures are the universal transformations of the uniform measure.

Definition 7 An a priori semimeasure is defined by

λU(σ) := λ(�{ρ : ∃σ ′ � σ((ρ, σ ′) ∈ U)}�)
for universal monotone machine U .

Let A denote the class {λU }U of a priori semimeasures. The next result implies
that every element ofA can also be obtained as the transformation of λ by a machine
that is not universal.

Proposition 2 For every continuous computable measure μ, there is for every semi-
computable semimeasure ν a non-universal monotone machine M such that ν =
μM .

Proof Let U be an arbitrary universal machine. We will adapt the construction of
Theorem 1 of a machine M with μM = ν in such a way that for every constant c ∈ N

there is a σ such that for some ρ′ with (ρ′, σ) ∈ U , we have that |ρ| > |ρ′| + c for
all ρ with (ρ, σ) ∈ M . This ensures that M is not even weakly universal.

Construction The only change to the earlier construction is that at stage s we try to
collect available strings of length ls , where ls is defined as follows. Let l0 = 0. For
s = 〈σ, t〉 with t > 0, let ls = ls−1 + 1. In case s = 〈σ, 0〉, enumerate pairs in U

until a pair (ρ′, σ) for some ρ′ is found. Let ls := max{ls−1 + 1, |ρ′| + s}.

Theory Comput Syst (2017) 61:1337–1352 1345

Verification The verification that μM = ν proceeds as before. In addition, the con-
struction guarantees that for every c ∈ N, we have for σ with c = 〈σ, 0〉 that
|ρ| > |ρ′|+c for the first enumerated ρ′ with (ρ′, σ) ∈ U and all ρ with (ρ, σ) ∈ M .

We define a discrete a priori semimeasure in like manner.

Definition 8 A discrete a priori semimeasure is defined by

Qλ
U(σ) := λ(�{ρ : (ρ, σ) ∈ U}�)

for a universal prefix-free machine U , meaning that U is defined by

(ρeρ, σ) ∈ U ⇔ (ρ, σ) ∈ Te

for all ρ, σ ∈ B
∗ and some computable prefix-free and non-repeating enumeration

{ρe}e∈N ⊆ B
∗ that serves as an encoding of some computable enumeration {Te}e∈N

of all prefix-free machines.

2.2 Universal Mixtures

Every element of A is equal to a universal mixture

ξW (·) :=
∑
i∈N

W(i)νi(·) (2)

for some effective enumeration {νi}i∈N = M of all semicomputable semimea-
sures, and some semicomputable weight function W : N → [0, 1] that satisfies∑

i∈N W(i) ≤ 1 and W(i) > 0 for all i. Conversely, one can show that every
universal mixture equals λU for some universal machine U [22].

It is easy to see from the mixture form of the a priori semimeasures that every
element of A is universal in the sense that it dominates every other semicomputable
semimeasure. That is, for every λU ∈ A there is for every ν ∈ M a constant cν ∈ N,
depending only on λU and ν, such that λU(σ) ≥ c−1

ν ν(σ) for all σ ∈ B
∗. The

converse does not hold: not all universal elements ofM are of the form λU or equiv-
alently ξW . For instance, the sum of ξW (σ) for all strings σ of the same length n will
always fall short of 1 (because it does so for some semimeasures), but we can readily
define a universal κ ∈ M with (say) κ(σ) = λ(σ) for all σ up to a finite length n.

The aim of the current subsection is to strengthen the above statement of the
equivalence of the a priori semimeasures and the universal mixtures, as follows.

First, let us call an enumeration {νi}i∈N of all semicomputable semimeasures
acceptable if it is generated from an enumeration {Mi}i of all monotone Turing
machines by the procedure of Theorem 1, i.e., νi = λMi

. This terminology matches
that of the definition of acceptable numberings of the partial computable functions
[18, p. 41]. Every effective listing of all Turing machines yields an acceptable num-
bering. Importantly, any two acceptable numberings differ only by a computable
permutation [17]; in our case, for any two acceptable enumerations {νi}i and {ν̄i}i
there is a computable permutation f : N → N of indices such that ν̄i = νf (i).

1346 Theory Comput Syst (2017) 61:1337–1352

Furthermore, let us call a semicomputable weight function W proper if∑
i W(i) = 1; this implies that W is computable.
Then we can show that for any acceptable enumeration of all semicomputable

semimeasures, all elements in A are expressible as some mixture with a proper
weight function over this enumeration.

Proposition 3 For every acceptable enumeration {νi}i of M, every element in A is
equal to ξW (·) = ∑

i W(i)νi(·) for some proper W .

Proof Given λU ∈ A, with enumeration {Mi}i of all monotone machines corre-
sponding to U . We know that λU is equal to ξ̄W̄ (·) = ∑

i W̄ (i)ν̄i (·) for some
acceptable enumeration {ν̄i}i = {λMi

}i of M and semicomputable weight function
W̄ . First we show that ξ̄W̄ is equal to ξW ′(·) = ∑

i W ′(i)νi(·) for given acceptable
enumeration {νi}i and a semicomputable W ′; then we show that it is also equal to
ξW (·) = ∑

i W(i)νi(·) for proper W .
Since enumerations {νi}i and {ν̄e}e are both acceptable, there is a 1-1 computable

f such that ν̄i = νf (i). Then

∑
i

W̄ (i)ν̄i (·) =
∑

i

W̄ (i)νf (i)(·)

=
∑

i

W̄ (f −1(i))νi(·)

=
∑

i

W ′(i)νi(·),

with W ′ : i �→ W̄ (f −1(i)).
We proceed with the description of a proper W . The idea is to have W assign

to each i a positive computable weight that does not exceed W ′(i), additional com-
putable weight to the index of a single suitably defined semimeasure in order to regain
the original mixture, and all of the remaining weight to an “empty” semimeasure.

Let q ∈ Q be such that ξW ′(ε) < q < 1, and let c be such that
∑

i 2
−i−c < 1− q.

Let W ′
0(i) denote the first approximation of semicomputable W ′(i) that is positive.

We now define computable g : N → Q by

g(i) = min{2−i−c, W ′
0(i)}.

Clearly,
∑

i g(i) < 1−q. Moreover,
∑

i g(i) is computable because for any δ > 0 we
have a j ∈ N with

∑
i>j 2

−i−c < δ, hence
∑

i≤j g(i) <
∑

i g(i) <
∑

i≤j g(i) + δ.

Next, define π(·) = q−1 ∑
i

(
W ′(i) − g(i)

)
νi(·). This is a semimeasure because

π(ε) ≤ q−1ξW ′(ε) < q−1q = 1. Let k be such that νk = π , and let l be such that νl

is the “empty” semimeasure with ν(σ) = 0 for all σ ∈ B
∗ (both indices exist even if

we cannot effectively find them).

Theory Comput Syst (2017) 61:1337–1352 1347

Finally, we define W by

W(i) =
⎧⎨
⎩

g(i) if i �= k, l

g(i) + q if i = k

1 − q − ∑
j �=l g(j) if i = l

.

Weight function W is computable and indeed proper, and∑
i

W(i)νi(·) =
∑

i

g(i)νi(·) + qνk(·) + 0

=
∑

i

g(i)νi(·) +
∑

i

(
W ′(i) − g(i)

)
νi(·)

=
∑

i

W ′(i)νi(·).

As a kind of converse, we can derive that any universal mixture is also equal to
a universal mixture with a universal weight function, i.e., a weight function W such
that for all other W ′ there is a cW ′ with W(i) ≥ c−1

W ′W ′(i) for all i.

Proposition 4 For every acceptable enumeration {νi}i of M, every element in A is
equal to ξW (·) = ∑

i W(i)νi(·) for some universal W .

Proof By the above proposition we know that any given element in A equals
ξW ′(·) = ∑

i W ′(i)νi(·) for some (computable) W ′ over given {νi}i . Let k be such
that νk(·) = ∑

i 2
−K(i)νi(·), with K(i) the prefix-free Kolmogorov complexity (via

some universal prefix-free machine U) of the i-th lexicographically ordered string;
2−K(·) is a universal weight function. Define

W(i) =
{

W ′(i) + W ′(k) · 2−K(i) if i �= k

W ′(k) · 2−K(i) if i = k
,

which is a weight function because
∑

i W(i) <
∑

i �=k W ′(i) + W ′(k) = ∑
i W ′(i).

Moreover, W is universal because 2−K(·) is, and∑
i

W(i)νi(·) =
∑
i �=k

W ′(i)νi(·) + W ′(k)
∑

i

2−K(i)νi(·)

=
∑

i

W ′(i)νi(·).

Hutter [8, p. 102–03] argues that a universal mixture with weight function 2−K(i)

is optimal among all universal mixtures, essentially because this weight function is
universal. The above result shows that this optimality is meaningless: every universal
mixture can be represented so as to have a universal weight function.

1348 Theory Comput Syst (2017) 61:1337–1352

2.3 The Generalized Characterization

We are now ready to show that the universal transformations of any continuous com-
putable measure μ yield the same class A of a priori semimeasures. A minor caveat
is that we will need to restrict the universal machines U to those machines with asso-
ciated encodings {ρe}e that do not receive measure 0 from μ: so μ(�ρe�) > 0 for all
e ∈ N. Call (the associated encodings of) those machines compatible with measure
μ. This is clearly no restriction for measures that give positive probability to every
finite string (such as the uniform measure): all machines are compatible with such
measures.

We will prove:

Theorem 2 Let μ, μ̄ be continuous computable measures. For any universal
machine U that is compatible with μ, there is a universal machine V such that
μU = μ̄V .

It follows that {μU }U = {μ̄V }V for any two continuous computable μ and μ̄,
with U ranging over those universal machines compatible with μ and V over those
universal machines compatible with μ̄. In particular, since λ is itself a continuous
computable measure, we have that {μU }U = A.

Our proof strategy is to expand the approach taken in [22] to show the coincidence
of the a priori semimeasures and the universal mixtures. Let us first derive the fact
that a universal transformation of μ is an a priori semimeasure.

Proposition 5 Let μ be a continuous computable measure and let U be a universal
machine compatible with μ. Then μU ∈ A.

The proof rests on a fixed-point lemma that is a refined version of Corollary 1.
For given encoding {ρe}e, define μρe(·) := μ(· | �ρe�) for any e ∈ N. Here the

conditional measure μ(�τ� | �σ �) := μ(�στ�)
μ(�σ�)

for any σ, τ ∈ B
∗. Let μ

ρ
M denote the

transformation of μρ by M .

Lemma 1 Given encoding {ρe}e∈N of the monotone machines as above. For every
continuous computable measure μ,

{μρe

Me
}e = M.

Proof Let ν be any semicomputable semimeasure. Since μρe is obviously a continu-
ous computable measure for every e ∈ N, by the construction of Theorem 1 we obtain
for every e a monotone machine M with ν = μ

ρe

M . Indeed, there is a total computable
function g : N → N that for given e retrieves an index g(e) in the given enumeration
{Me}e∈N such that ν = μ

ρe

Mg(e)
. But by Kleene’s Recursion Theorem [18], there must

be a fixed point ê such that Mg(ê) = Mê, hence μ
ρê

Mê
= μ

ρê

Mg(ê)
.

This shows that for every ν there is an index e such that ν = μ
ρe

Me
. Conversely, the

function μ
ρe

Me
is a semicomputable semimeasure for every e.

Theory Comput Syst (2017) 61:1337–1352 1349

Proof of Proposition 5 Given continuous computable μ and universal U compatible
with μ. We write out

μU(σ) = μ(�{ρ : ∃σ ′ � σ((ρ, σ ′) ∈ U)}�)
=

∑
e

μ(�{ρeρ : ∃σ ′ � σ((ρ, σ ′) ∈ Me)}�)

=
∑

e

μ(�ρe�)μ(�{ρ : ∃σ ′ � σ((ρ, σ ′) ∈ Me)}� | �ρe�)

=
∑

e

μ(�ρe�)μ
ρe

Me
(σ).

Lemma 1 tells us that the μ
ρe

Me
range over all elements in M. Moreover, W(e) :=

μ(�ρe�) is a weight function because {ρe}e is prefix-free and U is compatible with
μ, so μU is a universal mixture.

We now proceed to prove that every universal transformation of μ indeed equals
some universal transformation of μ̄.

Proof of Theorem 2 Given continuous computable μ and μ̄, and universal U com-
patible with μ. Write out as before

μU(σ) =
∑

e

μ(�ρe�)μ
ρe

Me
(σ).

Note that the function

P(σ) =
{

μ(�σ �) if σ = ρe for some e ∈ N

0 otherwise

is a semicomputable discrete semimeasure. Hence by Proposition 1 we can construct
a prefix-free machine T that transforms μ̄ into P : so Q

μ̄
T = P . Denote ne := #{τ :

(τ, ρe) ∈ T } the number of T -descriptions of ρe, and let 〈·, ·〉 : N × N → N be a
partial computable pairing function that maps the pairs (e, i) with i < ne onto N. Let
τ〈e,i〉 be the i-th enumerated T -description of ρe. We then have∑

e

μ(�ρe�)μ
ρe

Me
(σ) =

∑
e

Q
μ̄
T (ρe)μ

ρe

Me
(σ)

=
∑

e

∑
i<ne

μ̄(�τ〈e,i〉�)μρe

Me
(σ).

Now for every 〈e, i〉 for which τ〈e,i〉 becomes defined we can run the construction
of Theorem 1 on μ̄τ〈e,i〉 and μ

ρe

Me
. In this way we obtain an enumeration of machines

{Nd}d such that μ̄
τ〈e,i〉
N〈e,i〉 = μ

ρe

Me
(with i < ne) for all e. Then∑

e

∑
i<ne

μ̄(�τ〈e,i〉�)μρe

Me
(σ) =

∑
d

μ̄(�τd�)μ̄
τd

Nd
(σ),

which we can rewrite to μ̄V (σ), defining V by (τdρ, σ) ∈ V :⇔ (ρ, σ) ∈ Nd .

1350 Theory Comput Syst (2017) 61:1337–1352

It remains to verify that V is in fact universal. Namely, we cannot take for granted
that {Nd}d is an enumeration of all machines, whence it is not clear that V is univer-
sal.2 Note that it is enough if there were a single universal machine V ′ in {Nd}d∈N, but
even that is not obvious (by Proposition 2 we know that for all continuous computable
μ there are for any universal U non-universal N such that μN = μU).

However, there is a simple patch to the enumeration that guarantees this fact.
Namely, given an arbitrary universal machine V ′, we may simply put Nd := V ′ at
some d = 〈e, i〉 where it so happens that μ̄

τ〈e,i〉
V ′ = μ

ρe

Me
. Our final objective is thus

to show that μ̄
τ〈e,i〉
V ′ = μ

ρe

Me
for some e, i. To that end, define computable function

g : N → N by μ
ρe

Mg(e)
= μ̄

τ〈e,0〉
V ′ . Since Q

μ̄
T (ρe) > 0 for each e, the string τ〈e,0〉 is

defined for each e. Hence μ̄
τ〈e,0〉
V ′ is defined, and g, that retrieves the index g(e) of

a machine that transforms μρe to this semimeasure, is total. Then by the Recursion
Theorem there is an index ê such that Mê = Mg(ê), so μ

ρê

Mê
= μ

ρê

Mg(ê)
= μ̄

τ〈ê,0〉
V ′ .

Corollary 3 For any continuous computable μ, and U ranging over those universal
machines that are compatible with μ,

{μU }U = A.

Discrete versions of the above results are derived in an identical manner. Ulti-
mately, we have the following discrete analogue to Corollary 3, where we let Q
denote the class of all discrete a priori semimeasures.

Proposition 6 For any continuous computable μ, and U ranging over those prefix-
free machines that are compatible with μ,

{Qμ
U }U = Q.

2.3.1 Discussion

We now return to the association of the function λU (as well as its discrete counterpart
Qλ

U) with foundational principles.
First, there is the association with the principle of insufficient reason or indiffer-

ence. This is the principle that in the absence of discriminating evidence, probability
should be equally distributed over all possibilities. Solomonoff writes, “If we con-
sider the input sequence to be the ‘cause’ of the observed output sequence, and we
consider all input sequences of a given length to be equiprobable (since we have no
a priori reason to prefer one rather than the other) then we obtain the present model
of induction.” [20, p. 19]. Also see [12, 16].

Second, there is the association with Occam’s razor. Solomonoff writes, “That
[this model] might be valid is suggested by ‘Occam’s razor,’ one interpretation of
which is that the more ‘simple’ or ‘economical’ of several hypotheses is the more

2This is also an (overlooked) issue in the original proof [22, Lemma 4]. It is easily resolved by the same
approach we will be taking here, where it is immediate that for given universal V there is an e with
λV = νe .

Theory Comput Syst (2017) 61:1337–1352 1351

likely . . . —the most ‘simple’ hypothesis being that with the shortest ‘description.’”
[20, p. 3]. Also see [2, 9, 13, 15, 21].

Note that so stated, these associations very much rely on the fact that the uniform
measure λ always assigns larger probability to shorter strings, and equal probabil-
ity to equal-length strings. This is a unique feature of λ. The results of this paper,
however, show that the choice of the uniform measure in defining algorithmic proba-
bility is only circumstantial: we could pick any continuous computable measure, and
still obtain, as the universal transformations of this measure instead of λ, the very
same class of a priori semimeasures. This suggests that properties derived from the
presence of λ in the definition are artifacts of a particular choice of characterization
rather than an indicative property of algorithmic probability, and hence undermines
both associations insofar as they indeed hinge on the uniform measure.

Acknowledgements This research was supported by NWO Vici project 639.073.904. I am grateful to
the anonymous reviewers for their thoughtful comments, to Alexander Shen for valuable remarks on an
earlier version of this paper, to Peter Grünwald, Jan Leike, and Daniël Noom for helpful discussions, and
to Jeanne Peijnenburg for the question that initiated this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc. Comput.
Mach. 22(3), 329–340 (1975)

2. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)
3. Day, A.R.: On the computational power of random strings. Annals of Pure and Applied Logic 160,

214–228 (2009)
4. Day, A.R.: Increasing the gap between descriptional complexity and algorithmic probability. Trans.

Am. Math. Soc. 363(10), 5577–5604 (2011)
5. Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and complexity. Springer, New York

(2010)
6. Gács, P.: On the symmetry of algorithmic information. Soviet Mathematics Doklady 15(5), 1477–

1480 (1974)
7. Gács, P.: Expanded and improved proof of the relation between description complexity and algorith-

mic probability. Unpublished manuscript (2016)
8. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability.

Springer, Berlin (2005)
9. Hutter, M.: On universal prediction and Bayesian confirmation. Theor. Comput. Sci. 384(1), 33–48

(2007)
10. Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14(5), 1413–1416

(1973)
11. Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foundation of

probability theory. Probl Inf Transm 10(3), 206–210 (1974)
12. Li, M., Vitányi, P.M.B.: Philosophical issues in Kolmogorov complexity. In: Kuich, W. (ed.) Pro-

ceedings of the 19th International Colloquium on Automata, Languages and Programming, pp. 1–16.
Springer (1992)

13. Li, M., Vitányi, P.M.B. An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn.
Springer, New York (2008)

http://creativecommons.org/licenses/by/4.0/

1352 Theory Comput Syst (2017) 61:1337–1352

14. Nies, A.: Computability and randomness. Oxford University Press (2009)
15. Ortner, R., Leitgeb, H.: Mechanizing induction. In: Gabbay, D.M., Hartmann, S., Woods, J. (eds.)

Inductive Logic, volume 10 of Handbook of the History of Logic, pp. 719–772. Elsevier (2011)
16. Rathmanner, S., Hutter, M.: A philosophical treatise of universal induction. Entropy 13(6), 1076–1136

(2011)
17. Rogers, H., Jr.: Gödel numberings of partial recursive functions. J. Symb. Log. 23(3), 331–341 (1958)
18. Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York

(1967)
19. Schnorr, C.-P.: Process complexity and effective random tests. J. Comput. Syst. Sci. 7, 376–388 (1973)
20. Solomonoff, R.J.: A formal theory of inductive inference. Parts I and II. Inf Control 7(1–22), 224–254

(1964)
21. Solomonoff, R.J.: The discovery of algorithmic probability. J. Comput. Syst. Sci. 55(1), 73–88 (1997)
22. Wood, I., Sunehag, P., Hutter, M.: (Non-)equivalence of universal priors. In: Dowe, D.L. (ed.) Papers

from the Solomonoff Memorial Conference, Lecture Notes in Artificial Intelligence 7070, pp. 417–
425. Springer (2013)

23. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of
information and randomness by means of the theory of algorithms. Russ. Math. Surv. 26(6), 83–124
(1970)

	A Generalized Characterization of Algorithmic Probability
	Abstract
	Introduction
	Basic Notions and Notation
	Bit Strings
	Computable Measures
	Semicomputable Semimeasures

	Monotone Machines and Semicomputable Semimeasures
	Machines
	Transformations
	Characterizations of M

	Prefix-Free Machines and Discrete Semimeasures

	The A Priori Semimeasures
	A Priori Semimeasures
	Universal Machines
	A Priori Semimeasures

	Universal Mixtures
	The Generalized Characterization
	Discussion

	Acknowledgements
	Open Access
	References

