Skip to main content
Log in

Sampling and analyte enrichment strategies for ambient mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry.

Scheme of sampling stretagies for ambient mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Ambient mass spectrometry. Science. 2006;311(5767):1566–70.

    Article  CAS  Google Scholar 

  2. Harris GA, Galhena AS, Fernandez FM. Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem. 2011;83(12):4508–38.

    Article  CAS  Google Scholar 

  3. Domin M, Cody R. Ambient ionization mass spectrometry. Cambridge: Royal Society of Chemistry; 2015.

    Google Scholar 

  4. Peacock PM, Zhang W-J, Trimpin S. Advances in ionization for mass spectrometry. Anal Chem. 2017;89(1):372–88.

    Article  CAS  Google Scholar 

  5. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–3.

    Article  CAS  Google Scholar 

  6. Venter A, Nefliu M, Cooks RG. Ambient desorption ionization mass spectrometry. Trends Anal Chem. 2008;27(4):284–90.

    Article  CAS  Google Scholar 

  7. Cody RB. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem. 2009;81(3):1101–7.

    Article  CAS  Google Scholar 

  8. Deng J, Yang Y, Wang X, Luan T. Strategies for coupling solid-phase microextraction with mass spectrometry. Trends Anal Chem. 2014;55:55–67.

    Article  CAS  Google Scholar 

  9. Fang L, Deng J, Yang Y, Wang X, Chen B, Liu H, et al. Coupling solid-phase microextraction with ambient mass spectrometry: strategies and applications. Trends Anal Chem. 2016;85:61–72.

    Article  CAS  Google Scholar 

  10. Bong Y, Li B, Malitsky S, Rogachev L, Aharoni A, Kaftan F, et al. Sample preparation for mass spectrometry imaging of plant tissues: a review. Front Plant Sci. 2016;7:60.

    Google Scholar 

  11. Laskin J, Lanekoff I. Ambient mass spectrometry imaging using direct liquid extraction techniques. Anal Chem. 2016;88(1):52–73.

    Article  CAS  Google Scholar 

  12. Morelato M, Beavis A, Kirkbride P, Roux C. Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Sci Int. 2013;226(1-3):10–21.

    Article  CAS  Google Scholar 

  13. Ifa DR, Manicke NE, Dill AL, Cooks G. Latent fingerprint chemical imaging by mass spectrometry. Science. 2008;321(5890):805.

    Article  CAS  Google Scholar 

  14. Pan Z, Gu H, Talaty N, Chen H, Shanaiah N, Hainline BE, et al. Principal component analysis of urine metabolites detected by NMR and DESI–MS in patients with inborn errors of metabolism. Anal Bioanal Chem. 2007;387(2):539–49.

    Article  CAS  Google Scholar 

  15. D'Agostino PA, Hancock JR, Chenier CL, Lepage CRJ. Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation. J Chromatogr A. 2006;1110(1-2):86–94.

    Article  Google Scholar 

  16. D'Agostino PA, Chenier CL. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(11):1617–24.

    Article  Google Scholar 

  17. D'Agostino PA, Chenier CL, Hancock JR, Lepage CRJ. Desorption electrospray ionisation mass spectrometric analysis of chemical warfare agents from solid-phase microextraction fibers. Rapid Commun Mass Spectrom. 2007;21(4):543–9.

    Article  Google Scholar 

  18. Kennedy JH, Aurand C, Shirey R, Laughlin BC, Wiseman JM. Coupling desorption electrospray ionization with solid-phase microextraction for screening and quantitative analysis of drugs in urine. Anal Chem. 2010;82(17):7502–8.

    Article  CAS  Google Scholar 

  19. Strittmatter N, Duering R-A, Takats Z. Analysis of wastewater samples by direct combination of thin-film microextraction and desorption electrospray ionization mass spectrometry. Analyst. 2012;137(17):4037–44.

    Article  CAS  Google Scholar 

  20. Denes J, Katona M, Hosszu A, Czuczy N, Takats Z. Analysis of biological fluids by direct combination of solid phase extraction and desorption electrospray ionization mass spectrometry. Anal Chem. 2009;81(4):1669–75.

    Article  CAS  Google Scholar 

  21. Cheng S, Wang J, Cai Y, Loo JA, Chen H. Enhancing performance of liquid sample desorption electrospray ionization mass spectrometry using trap and capillary columns. Int J Mass Spectrom. 2015;392:73–9.

    Article  CAS  Google Scholar 

  22. Rosting C, Pedersen-Bjergaard S, Hansen SH, Janfelt C. High-throughput analysis of drugs in biological fluids by desorption electrospray ionization mass spectrometry coupled with thin liquid membrane extraction. Analyst. 2013;138(20):5965–72.

    Article  CAS  Google Scholar 

  23. Wang H, Liu J, Cooks RG, Ouyang Z. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed. 2010;49(5):877–80.

    Article  CAS  Google Scholar 

  24. Deng J, Yang Y. Chemical fingerprint analysis for quality assessment and control of Bansha herbal tea using paper spray mass spectrometry. Anal Chim Acta. 2013;785:82–90.

    Article  CAS  Google Scholar 

  25. Zhang Z, Xu W, Manicke NE, Cooks RG, Ouyang Z. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal Chem. 2012;84(2):931–8.

    Article  CAS  Google Scholar 

  26. Wang Q, Zheng Y, Zhang X, Han X, Wang T, Zhang Z. A silica coated paper substrate: development and its application in paper spray mass spectrometry for rapid analysis of pesticides in milk. Analyst. 2015;140(23):8048–56.

    Article  CAS  Google Scholar 

  27. Zheng Y, Wang Q, Wang X, Chen Y, Wang X, Zhang X, et al. Development and application of zirconia coated paper substrate for high sensitivity analysis of therapeutic drugs in dried blood spots. Anal Chem. 2016;88(14):7005–13.

    Article  CAS  Google Scholar 

  28. Zargar T, Khayamian T, Jafari MT. Immobilized aptamer paper spray ionization source for ion mobility spectrometry. J Pharm Biomed Anal. 2017;132:232–7.

    Article  CAS  Google Scholar 

  29. Zhang M, Lin F, Xu J, Xu W. Membrane electrospray ionization for direct ultrasensitive biomarker quantitation in biofluids using mass spectrometry. Anal Chem. 2015;87(6):3123–8.

    Article  CAS  Google Scholar 

  30. Li T, Fan L, Wang Y, Huang X, Xu J, Lu J, et al. Molecularly imprinted membrane electrospray ionization for direct sample analyses. Anal Chem. 2017;89(3):1453–8.

    Article  CAS  Google Scholar 

  31. Liu W, Wang N, Lin X, Ma Y, Lin J-M. Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture. Anal Chem. 2014;86(14):7128–34.

    Article  CAS  Google Scholar 

  32. Zhang C, Manicke NE. Development of a paper spray mass spectrometry cartridge with integrated solid phase extraction for bioanalysis. Anal Chem. 2015;87(12):6212–9.

    Article  CAS  Google Scholar 

  33. Fang L, Deng J, Yu Y, Yang Y, Wang X, Liu H, et al. Coupling liquid-phase microextraction with paper spray for rapid analysis of malachite green, crystal violet and their metabolites in complex samples using mass spectrometry. Anal Methods. 2016;8(36):6651–6.

    Article  CAS  Google Scholar 

  34. Deng J, Wang W, Yang Y, Wang X, Chen B, Yao Z-P, et al. Slug-flow microextraction coupled with paper spray mass spectrometry for rapid analysis of complex samples. Anal Chim Acta. 2016;940:143–9.

    Article  CAS  Google Scholar 

  35. Hu B, So P-K, Chen H, Yao Z-P. Electrospray ionization using wooden tips. Anal Chem. 2011;83(21):8201–7.

    Article  CAS  Google Scholar 

  36. Yang Y, Deng J, Yao Z-P. Pharmaceutical analysis by solid-substrate electrospray ionization mass spectrometry with wooden tips. J Am Soc Mass Spectrom. 2014;25(1):37–47.

    Article  Google Scholar 

  37. Yang Y, Deng J. Internal standard mass spectrum fingerprint: A novel strategy for rapid assessing the quality of Shuang-Huang-Lian oral liquid using wooden-tip electrospray ionization mass spectrometry. Anal Chim Acta. 2014;837:83–92.

    Article  CAS  Google Scholar 

  38. So P-K, Ng T-T, Wang H, Hu B, Yao Z-P. Rapid detection and quantitation of ketamine and norketamine in urine and oral fluid by wooden-tip electrospray ionization mass spectrometry. Analyst. 2013;138(8):2239–43.

    Article  CAS  Google Scholar 

  39. Yang B-c, Wang F, Deng W, Zou Y, F-y L, Wan X-d, et al. Wooden-tip electrospray ionization mass spectrometry for trace analysis of toxic and hazardous compounds in food samples. Anal Methods. 2015;7(14):5886–90.

    Article  Google Scholar 

  40. Yang Y, Deng J, Yao Z-P. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines. Anal Chim Acta. 2015;887:127–37.

    Article  CAS  Google Scholar 

  41. Deng J, Yang Y, Fang L, Lin L, Zhou H, Luan T. Coupling solid-phase microextraction with ambient mass spectrometry using surface coated wooden-tip probe for rapid analysis of ultra trace perfluorinated compounds in complex samples. Anal Chem. 2014;86(22):11159–66.

    Article  CAS  Google Scholar 

  42. Deng J, Yu T, Yao Y, Peng Q, Luo L, Chen B, et al. Surface-coated wooden-tip electrospray ionization mass spectrometry for determination of trace fluoroquinolone and macrolide antibiotics in water. Anal Chim Acta. 2017;954:52–9.

    Article  CAS  Google Scholar 

  43. Hiraoka K, Nishidate K, Mori K, Asakawa D, Suzuki S. Development of probe electrospray using a solid needle. Rapid Commun Mass Spectrom. 2007;21(18):3139–44.

    Article  CAS  Google Scholar 

  44. Satarpai T, Siripinyanond A, Su H, Shiea J. Rapid characterization of trace aflatoxin B-1 in groundnuts, wheat and maize by dispersive liquid-liquid microextraction followed by direct electrospray probe tandem mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(8):728–36.

    Article  CAS  Google Scholar 

  45. Yu Z, Chen LC, Ninomiya S, Mandal MK, Hiraoka K, Nonami H. Piezoelectric inkjet assisted rapid electrospray ionization mass spectrometric analysis of metabolites in plant single cells via a direct sampling probe. Analyst. 2014;139(22):5734–9.

    Article  CAS  Google Scholar 

  46. Zaitsu K, Hayashi Y, Murata T, Ohara T, Nakagiri K, Kusano M, et al. Intact endogenous metabolite analysis of mice liver by probe electrospray ionization/triple quadrupole tandem mass spectrometry and its preliminary application to in vivo real-time analysis. Anal Chem. 2016;88(7):3556–61.

    Article  CAS  Google Scholar 

  47. Gong X, Zhao Y, Cai S, Fu S, Yang C, Zhang S, et al. Single cell analysis with probe ESI-mass spectrometry: detection of metabolites at cellular and subcellular levels. Anal Chem. 2014;86(8):3809–16.

    Article  CAS  Google Scholar 

  48. Deng J, Yang Y, Xu M, Wang X, Lin L, Yao Z-P, et al. Surface-coated probe nanoelectrospray ionization mass spectrometry for analysis of target compounds in individual small organisms. Anal Chem. 2015;87(19):9923–30.

    Article  CAS  Google Scholar 

  49. Gómez-Ríos GA, Pawliszyn J. Development of coated blade spray ionization mass spectrometry for the quantitation of target analytes present in complex matrices. Angew Chem Int Ed. 2014;53(52):14503–7.

    Article  Google Scholar 

  50. Piri-Moghadam H, Ahmadi F, Gómez-Ríos GA, Boyaci E, Reyes-Garcés N, Aghakhani A, et al. Fast quantitation of target analytes in small volumes of complex samples by matrix-compatible solid-phase microextraction devices. Angew Chem Int Ed. 2016;55(26):7510–4.

    Article  CAS  Google Scholar 

  51. Tascon M, Gómez-Ríos GA, Reyes-Garcés N, Poole J, Boyaci E, Pawliszyn J. Ultra-fast quantitation of voriconazole in human plasma by coated blade spray mass spectrometry. J Pharm Biomed Anal. 2017;44:106–11.

    Article  Google Scholar 

  52. Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77(8):2297–302.

    Article  CAS  Google Scholar 

  53. Li X, Wang X, Li L, Bai Y, Liu H. Direct analysis in real time mass spectrometry: a powerful tool for fast analysis. Mass Spectrom Lett. 2015;6(1):1–6.

    Article  Google Scholar 

  54. Li L-P, Feng B-S, Yang J-W, Chang C-L, Bai Y, Liu H-W. Applications of ambient mass spectrometry in high-throughput screening. Analyst. 2013;138(11):3097–103.

    Article  CAS  Google Scholar 

  55. Gross JH. Direct analysis in real time-a critical review on DART-MS. Anal Bioanal Chem. 2014;406(1):63–80.

    Article  CAS  Google Scholar 

  56. Vaclavik L, Cajka T, Hrbek V, Hajslova J. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal Chim Acta. 2009;645(1-2):56–63.

    Article  CAS  Google Scholar 

  57. Bai Y, Zhang J, Bai Y, Liu H. Direct analysis in real time mass spectrometry combined with single-drop liquid-liquid-liquid microextraction for the rapid analysis of multiple phytohormones in fruit juice. Anal Bioanal Chem. 2012;403(8):2307–14.

    Article  CAS  Google Scholar 

  58. Vaclavik L, Zachariasova M, Hrbek V, Hajslova J. Analysis of multiple mycotoxins in cereals under ambient conditions using direct analysis in real time (DART) ionization coupled to high resolution mass spectrometry. Talanta. 2010;82(5):1950–7.

    Article  CAS  Google Scholar 

  59. Zhou Z, Zhang J, Zhang W, Bai Y, Liu H. Rapid screening for synthetic antidiabetic drug adulteration in herbal dietary supplements using direct analysis in real time mass spectrometry. Analyst. 2011;136(12):2613–8.

    Article  CAS  Google Scholar 

  60. Morlock G, Schwack W. Determination of isopropylthioxanthone (ITX) in milk, yoghurt and fat by HPTLC-FLD, HPTLC-ESI/MS and HPTLC-DART/MS. Anal Bioanal Chem. 2006;385(3):586–95.

    Article  CAS  Google Scholar 

  61. Li Z, Zhang YW, Zhang YD, Bai Y, Liu HW. Rapid analysis of four Sudan dyes using direct analysis in real time-mass spectrometry. Anal Methods. 2015;7(1):86–90.

    Article  CAS  Google Scholar 

  62. Haunschmidt M, Klampfl CW, Buchberger W, Hertsens R. Determination of organic UV filters in water by stir bar sorptive extraction and direct analysis in real-time mass spectrometry. Anal Bioanal Chem. 2010;397(1):269–75.

    Article  CAS  Google Scholar 

  63. Bridoux MC, Malandain H, Leprince F, Progent F, Machuron-Mandard X. Quantitative analysis of phosphoric acid esters in aqueous samples by isotope dilution stir-bar sorptive extraction combined with direct analysis in real time (DART)-Orbitrap mass spectrometry. Anal Chim Acta. 2015;869:1–10.

    Article  CAS  Google Scholar 

  64. Ghani M, Maya F, Cerda V. Automated solid-phase extraction of organic pollutants using melamine-formaldehyde polymer-derived carbon foams. RSC Adv. 2016;6(54):48558–65.

    Article  CAS  Google Scholar 

  65. Li X, Xing J, Chang C, Wang X, Bai Y, Yan X, et al. Solid-phase extraction with the metal-organic framework MIL-101(Cr) combined with direct analysis in real time mass spectrometry for the fast analysis of triazine herbicides. J Sep Sci. 2014;37(12):1489–95.

    Article  CAS  Google Scholar 

  66. Jagerdeo E, Abdel-Rehim M. Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after online preconcentration utilizing microextraction by packed sorbent. J Am Soc Mass Spectrom. 2009;20(5):891–9.

    Article  CAS  Google Scholar 

  67. Cajka T, Riddellova K, Tomaniova M, Hajslova J. Recognition of beer brand based on multivariate analysis of volatile fingerprint. J Chromatogr A. 2010;1217(25):4195–203.

    Article  CAS  Google Scholar 

  68. Gómez-Ríos GA, Pawliszyn J. Solid phase microextraction (SPME)-transmission mode (TM) pushes down detection limits in direct analysis in real time (DART). Chem Commun. 2014;50(85):12937–40.

    Article  Google Scholar 

  69. Mirnaghi FS, Pawliszyn J. Reusable solid-phase microextraction coating for direct immersion whole-blood analysis and extracted blood spot sampling coupled with liquid chromatography-tandem mass spectrometry and direct analysis in real-time tandem mass spectrometry. Anal Chem. 2012;84(19):8301–9.

    Article  CAS  Google Scholar 

  70. Rodriguez-Lafuente A, Mirnaghi FS, Pawliszyn J. Determination of cocaine and methadone in urine samples by thin-film solid-phase microextraction and direct analysis in real time (DART) coupled with tandem mass spectrometry. Anal Bioanal Chem. 2013;405(30):9723–7.

    Article  CAS  Google Scholar 

  71. Wang X, Li XJ, Li Z, Zhang YD, Bai Y, Liu HW. Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Anal Chem. 2014;86(10):4739–47.

    Article  CAS  Google Scholar 

  72. Wang X, Li X, Bai Y, Liu H. Just dip it: online coupling of "dip-it" polymer monolith microextraction with plasma assisted laser desorption ionization mass spectrometry. Chem Commun. 2015;51:4615–8.

    Article  CAS  Google Scholar 

  73. Li X, Li Z, Wang X, Nie H, Zhang Y, Bai Y, et al. Monolith dip-it: a bifunctional device for increasing the sensitivity of direct analysis in real time. Analyst. 2016;141(16):4947–52.

    Article  CAS  Google Scholar 

  74. Li X, Wang X, Ma W, Ai W, Bai Y, Ding L, et al. Fast analysis of glycosides based on HKUST-1-coated monolith solid-phase microextraction and direct analysis in real-time mass spectrometry. J Sep Sci. 2017;40(7):1589–96.

    Article  CAS  Google Scholar 

  75. Wang H, Sun W, Zhang J, Yang X, Lin T, Ding L. Desorption corona beam ionization source for mass spectrometry. Analyst. 2010;135(4):688–95.

    Article  CAS  Google Scholar 

  76. Li X, Wang H, Sun W, Ding L. Desorption corona beam ionization coupled with a poly(dimethylsiloxane) substrate: broadening the application of ambient ionization for water samples. Anal Chem. 2010;82(22):9188–93.

    Article  CAS  Google Scholar 

  77. Chen D, Huang Y-Q, He X-M, Shi Z-G, Feng Y-Q. Coupling carbon nanotube film microextraction with desorption corona beam ionization for rapid analysis of Sudan dyes (I-IV) and rhodamine B in chilli oil. Analyst. 2015;140(5):1731–8.

    Article  CAS  Google Scholar 

  78. Chen D, Zheng H-B, Huang Y-Q, Hu Y-N, Yu Q-W, Yuan B-F, et al. Magnetic solid phase extraction coupled with desorption corona beam ionization-mass spectrometry for rapid analysis of antidepressants in human body fluids. Analyst. 2015;140(16):5662–70.

    Article  CAS  Google Scholar 

  79. Chen D, Hu Y-N, Hussain D, Zhu G-T, Huang Y-Q, Feng Y-Q. Electrospun fibrous thin film microextraction coupled with desorption corona beam ionization-mass spectrometry for rapid analysis of antidepressants in human plasma. Talanta. 2016;152:188–95.

    Article  CAS  Google Scholar 

  80. Huang Y-Q, You J-Q, Cheng Y, Sun W, Ding L, Feng Y-Q. Frontal elution paper chromatography for ambient ionization mass spectrometry: analyzing powder samples. Anal Methods. 2013;5(16):4105–11.

    Article  CAS  Google Scholar 

  81. Na N, Zhao M, Zhang S, Yang C, Zhang X. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom. 2007;18(10):1859–62.

    Article  CAS  Google Scholar 

  82. Mirabelli MF, Wolf J-C, Zenobi R. Direct coupling of solid-phase microextraction with mass spectrometry: sub-pg/g sensitivity achieved using a dielectric barrier discharge ionization source. Anal Chem. 2016;88(14):7252–8.

    Article  CAS  Google Scholar 

  83. Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z. Low-temperature plasma probe for ambient desorption ionization. Anal Chem. 2008;80(23):9097–104.

    Article  CAS  Google Scholar 

  84. Guo C, Tang F, Chen J, Wang X, Zhang S, Zhang X. Development of dielectric-barrier-discharge ionization. Anal Bioanal Chem. 2015;407(9):2345–64.

    Article  CAS  Google Scholar 

  85. Dumlao MC, Jeffress LE, Gooding JJ, Donald WA. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures. Analyst. 2016;141(12):3714–21.

    Article  CAS  Google Scholar 

  86. McEwen CN, McKay RG, Larsen BS. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal Chem. 2005;77(23):7826–31.

    Article  CAS  Google Scholar 

  87. Twohig M, Shockcor JP, Wilson ID, Nicholson JK, Plumb RS. Use of an atmospheric solids analysis probe (ASAP) for high throughput screening of biological fluids: preliminary applications on urine and bile. J Proteome Res. 2010;9(7):3590–7.

    Article  CAS  Google Scholar 

  88. Bruns EA, Perraud V, Greaves J, Finlayson-Pitts BJ. Atmospheric solids analysis probe mass spectrometry: a new approach for airborne particle analysis. Anal Chem. 2010;82(14):5922–7.

    Article  CAS  Google Scholar 

  89. Gómez-Ríos GA, Liu C, Tascon M, Reyes-Garcés N, Arnold DW, Covey TR, et al. Open port probe sampling interface for the direct coupling of biocompatible solid-phase microextraction to atmospheric pressure ionization mass spectrometry. Anal Chem. 2017;89(7):3805–9.

    Article  Google Scholar 

  90. Wu M-X, Wang H-Y, Zhang J-T, Guo Y-L. Multifunctional carbon fiber ionization mass spectrometry. Anal Chem. 2016;88(19):9547–53.

    Article  CAS  Google Scholar 

  91. Ji B, Xia B, Gao Y, Ma F, Ding L, Zhou Y. Generating electrospray ionization on ballpoint tips. Anal Chem. 2016;88(10):5072–9.

    Article  CAS  Google Scholar 

  92. Liu X-P, Wang H-Y, Zhang J-T, Wu M-X, Qi W-S, Zhu H, et al. Direct and convenient mass spectrometry sampling with ambient flame ionization. Sci Rep. 2015;5:16893–168911.

    Article  CAS  Google Scholar 

  93. Chen Y, Xu C, Xu F, Yang K, Wang Q, Zhao X, et al. Electro-filtering spray ionization source for soil analysis. Anal Lett. 2016;49(2):282–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Research and Application of the Common Technology of National Quality Infrastructure (grant no. 2016YFF0201106) and the National Natural Science Foundation of China (grant no. 21305159, 21575007, and 21527809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huwei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, W., Li, H. et al. Sampling and analyte enrichment strategies for ambient mass spectrometry. Anal Bioanal Chem 410, 715–724 (2018). https://doi.org/10.1007/s00216-017-0658-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0658-2

Keywords

Navigation