Skip to main content

Advertisement

Log in

Advances in microRNA analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are single-stranded noncoding RNA molecules that act as key regulators of mRNA expression and are emerging biomarkers for disease. Their small size (18–25 nt) presents challenges to molecular recognition, labeling, and signal generation. Recent research activity in this field has aimed at the development of methods for miRNA quantification that combine high detectability, broad dynamic range, practicality, multiplexity, and low cost for prospective applications in diagnostic laboratories. This review article covers the most recent advances in microRNA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

AuNPs:

Gold nanoparticles

CRET:

Chemiluminescence resonance energy transfer

DNAzyme:

Deoxyribozyme

dsDNA:

Double-stranded DNA

DSN:

Duplex-specific nuclease

ECL:

Electrochemiluminescence

ERET:

Electrochemiluminescence resonance energy transfer

FRET:

Fluorescence resonance energy transfer

GCE:

Glass carbon electrode

GO:

Graphene oxide

HCR:

Hybridization chain reaction

HRP:

Horseradish peroxidase

ICP-MS:

Inductively coupled plasma–mass spectrometry

LNA:

Locked nucleic acid

LOD:

Limit of detection

LOQ:

Limit of quantification

MB:

Magnetic beads

PCR:

Polymerase chain reaction

PNA:

Peptide nucleic acid

QDs:

Quantum dots

RCA:

Rolling circle amplification

SA:

Streptavidin

SDA:

Strand displacement amplification

SERS:

Surface-enhanced Raman spectroscopy

SPR:

Surface plasmon resonance

ssDNA:

Single-stranded DNA

References

  1. Qavi AJ, Kindt JT, Bailey RC. Sizing up the future of microRNA analysis. Anal Bioanal Chem. 2010;398:2535–49.

    Article  CAS  Google Scholar 

  2. Graybill RM, Bailey RC. Emerging biosensing approaches for microRNA analysis. Anal Chem. 2016;88:431–50.

    Article  CAS  Google Scholar 

  3. Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA. 2004;101:15275–8.

  4. Zou L, Li R, Zhang M, Luo Y, Zhou N, Wang J, et al. Colorimetric sensing platform based upon recognizing hybridization chain reaction products with oligonucleotide modified gold nanoparticles through triplex formation. Nano. 2017;9:1986–92.

    CAS  Google Scholar 

  5. Miao X, Ning X, Li Z, Cheng Z. Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Sci Rep. 2016;6:32358.

    Article  CAS  Google Scholar 

  6. Miao J, Wang J, Guo J, Gao H, Han K, Jiang C, et al. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction. Sci Rep. 2016;6:32219.

    Article  CAS  Google Scholar 

  7. Ying N, Sun T, Chen Z, Song G, Qi B, Bu S, et al. Colorimetric detection of microRNA based hybridization chain reaction for signal amplification and enzyme for visualization. Anal Biochem. 2017;528:7–12.

    Article  CAS  Google Scholar 

  8. Wu H, Liu Y, Wang H, Wu J, Zhu F, Zou P. Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction. Biosens Bioelectron. 2016;81:303–8.

    Article  CAS  Google Scholar 

  9. Yin F, Liu H, Li Q, Gao X, Yin Y, Liu D. Trace microRNA quantification by means of plasmon-enhanced hybridization chain reaction. Anal Chem. 2016;88:4600–4.

    Article  CAS  Google Scholar 

  10. Song WJ. Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta. 2017;170:74–80.

    Article  CAS  Google Scholar 

  11. Wei Y, Zhou W, Li X, Chai Y, Yuan R, Xiang Y. Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers. Biosens Bioelectron. 2016;77:416–20.

    Article  CAS  Google Scholar 

  12. Liu H, Li Q, Li M, Ma S, Liu D. In situ hot-spot assembly as a general strategy for probing single biomolecules. Anal Chem. 2017;89:4776–80.

    Article  CAS  Google Scholar 

  13. Ye C, Wang MQ, Gao ZF, Zhang Y, Lei JL, Luo HQ, et al. Ligating dopamine as signal trigger onto the substrate via metal-catalyst-free click chemistry for “signal-on” photoelectrochemical sensing of ultralow microRNA levels. Anal Chem. 2016;88:11444–9.

    Article  CAS  Google Scholar 

  14. Torrente-Rodríguez RM, Campuzano S, Montiel VRV, Montoya JJ, Pingarrón JM. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification. Biosens Bioelectron. 2016;86:516–21.

    Article  Google Scholar 

  15. Tian T, Xiao H, Zhang Z, Long Y, Peng S, Wang S, et al. Sensitive and convenient detection of microRNAs based on cascade amplification by catalytic DNAzymes. Chem Eur J. 2013;19:92–5.

    Article  CAS  Google Scholar 

  16. Robertson NM, Toscano AE, LaMantia VE, Hizir MS, Rana M, Balcioglu M, et al. Unlocked nucleic acids for miRNA detection using two dimensional nano-graphene oxide. Biosens Bioelectron. 2017;89:551–7.

    Article  CAS  Google Scholar 

  17. Zhang K, Wang K, Zhu X, Xu F, Xie M. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method. Biosens Bioelectron. 2017;87:358–64.

    Article  CAS  Google Scholar 

  18. Zhou H, Yang C, Chen H, Li X, Li Y, Fan X. A simple G-quadruplex molecular beacon-based biosensor for highly selective detection of microRNA. Biosens Bioelectron. 2017;87:552–7.

    Article  CAS  Google Scholar 

  19. Lv W, Zhao J, Situ B, Li B, Ma W, Liu J, et al. A target-triggered dual amplification strategy for sensitive detection of microRNA. Biosens Bioelectron. 2016;83:250–5.

  20. Wang Q, Yin BC, Ye BC. A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy. Biosens Bioelectron. 2016;80:366–72.

    Article  CAS  Google Scholar 

  21. Feng Q-M, Shen Y-Z, Li M-X, Zhang Z-L, Zhao W, Xu J-J, et al. Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)3 2+ for microRNA detection. Anal Chem. 2016;88:937–44.

  22. Shuai HL, Huang KJ, Chen YX, Fang LX, Jia MP. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosens Bioelectron. 2017;89:989–97.

    Article  CAS  Google Scholar 

  23. Zhang J, Wu DZ, Cai SX, Chen M, Xia YK, Wu F, et al. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosens Bioelectron. 2016;75:452–7.

    Article  CAS  Google Scholar 

  24. Guo Y, Wang Y, Yang G, Xu JJ, Chen HY. MicroRNA-mediated signal amplification coupled with GNP/dendrimers on a mass-sensitive biosensor and its applications in intracellular microRNA quantification. Biosens Bioelectron. 2016;85:897–902.

    Article  CAS  Google Scholar 

  25. Zhang S, Liu R, Xing Z, Zhang S, Zhang X. Multiplex miRNA assay using lanthanide-tagged probes and the duplex-specific nuclease amplification strategy. Chem Commun. 2016;52:14310–3.

    Article  CAS  Google Scholar 

  26. Tian B, Ma J, Qiu Z, Zardan Gomez De La Torre T, Donolato M, Hansen MF, et al. Optomagnetic detection of microRNA based on duplex-specific nuclease-assisted target recycling and multilayer core-satellite magnetic superstructures. ACS Nano. 2017;11:1798–806.

    Article  CAS  Google Scholar 

  27. Lu W, Chen Y, Liu Z, Tang W, Feng Q, Sun J, et al. Quantitative detection of microRNA in one step via next generation magnetic relaxation switch sensing. ACS Nano. 2016;10:6685–92.

    Article  CAS  Google Scholar 

  28. Zhou X, Liang Y, Xu Y, Lin X, Chen J, Ma Y, et al. Triple cascade reactions: an ultrasensitive and specific single tube strategy enabling isothermal analysis of microRNA at sub-attomole level. Biosens Bioelectron. 2016;80:378–84.

    Article  CAS  Google Scholar 

  29. Tang Y, He X, Zhou Z, Tang J, Guo R, Feng X. Highly sensitive and selective miRNA detection based on a closed ring probe and multiple signal amplification. Chem Commun. 2016;52:13905–8.

    Article  CAS  Google Scholar 

  30. Zhang P, Li P, Wang H, Zhuo Y, Yuan R, Chai Y. DNA Nanomachine based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultrahigh sensitive detection of microRNA from cancer cells. Nano. 2017;9:2310–6.

  31. Cheng FF, Jiang N, Li X, Zhang L, Hu L, Chen X, et al. Target-triggered triple isothermal cascade amplification strategy for ultrasensitive microRNA-21 detection at sub-attomole level. Biosens Bioelectron. 2016;85:891–6.

    Article  CAS  Google Scholar 

  32. Xu Y, Wang Y, Liu S, Yu J, Wang H, Guo Y, et al. Ultrasensitive and rapid detection of miRNA with three-way junction structure-based trigger-assisted exponential enzymatic amplification. Biosens Bioelectron. 2016;81:236–41.

    Article  CAS  Google Scholar 

  33. Liu H, Tian T, Zhang Y, Ding L, Yu J, Yan M. Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification. Biosens Bioelectron. 2017;89:710–4.

    Article  Google Scholar 

  34. Liang L, Lan F, Yin X, Ge S, Yu J, Yan M. Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices. Biosens Bioelectron. 2017;95:181–8.

    Article  CAS  Google Scholar 

  35. Zhang J, Li C, Zhi X, Ramón GA, Liu Y, Zhang C, et al. Hairpin DNA-templated silver nanoclusters as novel beacons in strand displacement amplification for microRNA detection. Anal Chem. 2016;88:1294–302.

    Article  CAS  Google Scholar 

  36. Liao R, He K, Chen C, Chen X, Cai C. Double-strand displacement biosensor and quencher-free fluorescence strategy for rapid detection of microRNA. Anal Chem. 2016;88:4254–8.

    Article  CAS  Google Scholar 

  37. Yue S, Zhao T, Qi H, Yan Y, Bi S. Cross-catalytic hairpin assembly-based exponential signal amplification for CRET assay with low background noise. Biosens Bioelectron. 2017;94:671–6.

    Article  CAS  Google Scholar 

  38. Liu Q, Ma C, Liu XP, Wei YP, Mao CJ, Zhu JJ. A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosens Bioelectron. 2017;92:273–9.

    Article  CAS  Google Scholar 

  39. Yu YQ, Wang JP, Zhao M, Hong LR, Chai YQ, Yuan R, et al. Target-catalyzed hairpin assembly and intramolecular/intermolecular co-reaction for signal amplified electrochemiluminescent detection of microRNA. Biosens Bioelectron. 2016;77:442–50.

    Article  CAS  Google Scholar 

  40. Ye S, Li X, Wang M, Tang B. Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal Chem. 2017;89:5124–30.

    Article  CAS  Google Scholar 

  41. Yuan R, Yu X, Zhang Y, Xu L, Cheng W, Tu Z, et al. Target-triggered DNA nanoassembly on quantum dots and DNAzyme-modulated double quenching for ultrasensitive microRNA biosensing. Biosens Bioelectron. 2017;92:342–8.

    Article  CAS  Google Scholar 

  42. Deng H, Liu Q, Wang X, Huang R, Liu H, Lin Q, et al. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosens Bioelectron. 2017;87:931–40.

    Article  CAS  Google Scholar 

  43. Huang Y, Wang W, Wu T, Xu LP, Wen Y, Zhang X. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification. Anal Bioanal Chem. 2016;408:8195–202.

  44. Cheng N, Xu Y, Luo Y, Zhu L, Zhang Y, Huang K, et al. Specific and relative detection of urinary microRNA signatures in bladder cancer for point-of-care diagnostics. Chem Commun. 2017;53:4222–5.

    Article  CAS  Google Scholar 

  45. Wu X, Zhu S, Huang P, Chen Y. Highly specific quantification of microRNA by coupling probe-rolling circle amplification and Forster resonance energy transfer. Anal Biochem. 2016;502:16–23.

    Article  CAS  Google Scholar 

  46. Hong C, Baek A, Hah SS, Jung W, Kim DE. Fluorometric detection of microRNA using isothermal gene amplification and graphene oxide. Anal Chem. 2016;88:2999–3003.

    Article  CAS  Google Scholar 

  47. Niu C, Song Q, He G, Na N, Ouyang J. Near-infrared-fluorescent probes for bioapplications based on silica-coated gold nanobipyramids with distance-dependent plasmon-enhanced fluorescence. Anal Chem. 2016;88:11062–9.

    Article  CAS  Google Scholar 

  48. Kim E, Howes PD, Crowder SW, Stevens MM. Multi-amplified sensing of microRNA by a small DNA fragment-driven enzymatic cascade reaction. ACS Sens. 2017;2:111–8.

    Article  CAS  Google Scholar 

  49. Liu M, Zhang Q, Chang D, Gu J, Brennan JD, Li Y. A DNAzyme feedback amplification strategy for biosensing. Angew Chemie Int Ed. 2017;56:6142–6.

  50. Zheng X, Niu L, Wei D, Li X, Zhang S. Label-free detection of microRNA based on coupling multiple isothermal amplification techniques. Sci Rep. 2016;6:35982.

    Article  CAS  Google Scholar 

  51. Li Z, Lau C, Lu J. Effect of the concentration difference between magnesium ions and total ribonucleotide triphosphates in governing the specificity of T7 RNA polymerase-based rolling circle transcription for quantitative detection. Anal Chem. 2016;88:6078–83.

    Article  CAS  Google Scholar 

  52. He Y, Yang X, Yuan R, Chai Y. “Off” to “on” surface-enhanced Raman spectroscopy platform with padlock probe-based exponential rolling circle amplification for ultrasensitive detection of microRNA 155. Anal Chem. 2017;89:2866–72.

  53. Wu Y, Sheng K, Liu Y, Yu Q, Ye B. Enzyme spheres as novel tracing tags coupled with target-induced DNAzyme assembly for ultrasensitive electrochemical microRNA assay. Anal Chim Acta. 2016;948:1–8.

    Article  CAS  Google Scholar 

  54. Zheng YN, Bin LW, Xiong CY, Yuan YL, Chai YQ, Yuan R. Self-enhanced ultrasensitive photoelectrochemical biosensor based on nanocapsule packaging both donor-acceptor-type photoactive material and its sensitizer. Anal Chem. 2016;88:8698–705.

    Article  CAS  Google Scholar 

  55. Jin J, Vaud S, Zhelkovsky AM, Posfai J, McReynolds LA. Sensitive and specific miRNA detection method using SplintR Ligase. Nucleic Acids Res. 2016;44:e116.

    Article  Google Scholar 

  56. Tian H, Sun Y, Liu C, Duan X, Tang W, Li Z. Precise quantitation of microRNA in a single cell with droplet digital PCR based on ligation reaction. Anal Chem. 2016;88:11384–9.

    Article  CAS  Google Scholar 

  57. Wang H, Wang H, Duan X, Liu C, Li Z. Digital quantitative analysis of microRNA in single cell based on ligation-depended polymerase colony (Polony). Biosens Bioelectron. 2017;95:146–51.

    Article  CAS  Google Scholar 

  58. Leong SM, Tan KM-L, Chua HW, Huang M-C, Cheong WC, Li M-H, et al. Paper-based microRNA expression profiling from plasma and circulating tumor cells. Clin Chem. 2017;63:3.

    Article  Google Scholar 

  59. Wang M, Tong L, Wang S, Li K, Xiao J, Zhou Y. A multiplex sensitive quantification of microRNAs based on competitive PCR. Biotechnol Bioprocess Eng. 2017;22:95–9.

    Article  CAS  Google Scholar 

  60. Aviñó A, Huertas CS, Lechuga LM, Eritja R. Sensitive and label-free detection of miRNA-145 by triplex formation. Anal Bioanal Chem. 2016;408:885–93.

    Article  Google Scholar 

  61. Yang C-T, Pourhassan-Moghaddam M, Wu L, Bai P, Thierry B. Ultrasensitive detection of cancer prognostic miRNA biomarkers based on surface plasmon enhanced light scattering. ACS Sens. 2017;2:635–40.

    Article  CAS  Google Scholar 

  62. Hao K, He Y, Lu H, Pu S, Zhang Y, Dong H, et al. High-sensitive surface plasmon resonance microRNA biosensor based on streptavidin functionalized gold nanorods-assisted signal amplification. Anal Chim Acta. 2017;954:114–20.

    Article  CAS  Google Scholar 

  63. Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron. 2017;87:433–8.

    Article  CAS  Google Scholar 

  64. Li X, Cheng W, Li D, Wu J, Ding X, Cheng Q, et al. A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly. Biosens Bioelectron. 2016;80:98–104.

    Article  CAS  Google Scholar 

  65. Li J, Lei P, Ding S, Zhang Y, Yang J, Cheng Q, et al. An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosens Bioelectron. 2016;77:435–41.

    Article  Google Scholar 

  66. Wei T, Du D, Wang Z, Zhang W, Lin Y, Dai Z. Rapid and sensitive detection of microRNA via the capture of fluorescent dyes-loaded albumin nanoparticles around functionalized magnetic beads. Biosens Bioelectron. 2017;94:56–62.

    Article  CAS  Google Scholar 

  67. Metcalf GAD, Shibakawa A, Patel H, Sita-Lumsden A, Zivi A, Rama N, et al. Amplification-free detection of circulating microRNA biomarkers from body fluids based on fluorogenic oligonucleotide-templated reaction between engineered peptide nucleic acid probes: application to prostate cancer diagnosis. Anal Chem. 2016;88:8091–8.

    Article  CAS  Google Scholar 

  68. Chi BZ, Liang RP, Bin QW, Yuan YH, Qiu JD. Direct fluorescence detection of microRNA based on enzymatically engineered primer extension poly-thymine (EPEPT) reaction using copper nanoparticles as nano-dye. Biosens Bioelectron. 2017;87:216–21.

    Article  CAS  Google Scholar 

  69. Li RD, Wang Q, Yin BC, Ye BC. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy. Biosens Bioelectron. 2016;77:995–1000.

    Article  CAS  Google Scholar 

  70. He K, Liao R, Cai C, Liang C, Liu C, Chen X. Y-shaped probe for convenient and label-free detection of microRNA-21 in vitro. Anal Biochem. 2016;499:8–14.

    Article  CAS  Google Scholar 

  71. Zhu Y, Qiu D, Yang G, Wang M, Zhang Q, Wang P, et al. Selective and sensitive detection of miRNA-21 based on gold-nanorod functionalized polydiacetylene microtube waveguide. Biosens Bioelectron. 2016;85:198–204.

    Article  CAS  Google Scholar 

  72. James AM, Baker MB, Bao G, Searles CD. MicroRNA detection using a double molecular beacon approach: distinguishing between miRNA and pre-miRNA. Theranostics. 2017;7:634–46.

    Article  Google Scholar 

  73. Miao P, Tang Y, Wang B, Meng F. Near-infrared Ag2S quantum dots-based DNA logic gate platform for miRNA diagnostics. Anal Chem. 2016;88:7567–73.

  74. Zhao X, Xu L, Sun M, Ma W, Wu X, Kuang H, et al. Gold-quantum dot core-satellite assemblies for lighting up microRNA in vitro and in vivo. Small. 2016;12:4562–8.

    Google Scholar 

  75. Li WM, Chan CM, Miller AL, Lee CH. Dual functional roles of molecular beacon as a microRNA detector and inhibitor. J Biol Chem. 2017;292:3568–80.

    Article  CAS  Google Scholar 

  76. Aw SS, Tang MX, Teo YN, Cohen SM. A conformation-induced fluorescence method for microRNA detection. Nucleic Acids Res. 2016;44:1–9.

    Article  Google Scholar 

  77. Tang Y, Wang T, Chen M, He X, Qu X, Feng X. Tension promoted circular probe for highly selective microRNA detection and imaging. Biosens Bioelectron. 2016;85:151–6.

    Article  CAS  Google Scholar 

  78. Li C-Y, Cao D, Song C-Y, Xu C-M, Ma Y-Y, Zhang Z-L, et al. Integrating optical tweezers with up-converting luminescence: a non-amplification analytical platform for quantitative detection of microRNA-21 sequences. Chem Commun. 2017;53:4092–5.

    Article  CAS  Google Scholar 

  79. Lee H, Shapiro SJ, Chapin SC, Doyle PS. Encoded hydrogel microparticles for sensitive and multiplex microRNA detection directly from raw cell lysates. Anal Chem. 2016;88:3075–81.

    Article  CAS  Google Scholar 

  80. Shamsi MH, Choi K, Ng AHC, Chamberlain DM, Wheeler AR. Electrochemiluminescence on digital microfluidics for microRNA analysis. Biosens Bioelectron. 2016;77:845–52.

    Article  CAS  Google Scholar 

  81. Feng X, Gan N, Zhang H, Li T, Cao Y, Hu F, et al. Ratiometric biosensor array for multiplexed detection of microRNAs based on electrochemiluminescence coupled with cyclic voltammetry. Biosens Bioelectron. 2016;75:308–14.

    Article  CAS  Google Scholar 

  82. Zhou J, Gao PF, Zhang HZ, Lei G, Zheng LL, Liu H, et al. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection. Nano. 2017;9:4593–600.

    CAS  Google Scholar 

  83. Kim S, Park JE, Hwang W, Seo J, Lee YK, Hwang JH, et al. Optokinetically encoded nanoprobe-based multiplexing strategy for microRNA profiling. J Am Chem Soc. 2017;139:3558–66.

    Article  CAS  Google Scholar 

  84. Roy S, Soh JH, Ying JY. A microarray platform for detecting disease-specific circulating miRNA in human serum. Biosens Bioelectron. 2016;75:238–46.

    Article  CAS  Google Scholar 

  85. Koo H, Park I, Lee Y, Kim HJ, Jung JH, Lee JH, et al. Visualization and quantification of microRNA in a single cell using atomic force microscopy. J Am Chem Soc. 2016;138:11664–71.

    Article  CAS  Google Scholar 

  86. Huertas CS, Fariña D, Lechuga LM. Direct and label-free quantification of micro-RNA-181a at attomolar level in complex media using a nanophotonic biosensor. ACS Sens. 2016;1:748–56.

    Article  CAS  Google Scholar 

  87. Graybill RM, Para CS, Bailey RC. PCR-free, multiplexed expression profiling of microRNAs using silicon photonic microring resonators. Anal Chem. 2016;88:10347–51.

    Article  CAS  Google Scholar 

  88. Takalkar S, Xu H, Chen J, Baryeh K, Qiu W, Zhao JX, et al. Gold nanoparticle coated silica nanorods for sensitive visual detection of microRNA on a lateral flow strip biosensor. Anal Sci. 2016;32:617–22.

    Article  CAS  Google Scholar 

  89. Lu Z, Tang H, Wu D, Xia Y, Wu M, Yi X, et al. Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens Bioelectron. 2016;86:502–7.

    Article  CAS  Google Scholar 

  90. Jolly P, Batistuti MR, Miodek A, Zhurauski P, Mulato M, Lindsay MA, et al. Highly sensitive dual mode electrochemical platform for microRNA detection. Sci Rep. 2016;6:36719.

    Article  CAS  Google Scholar 

  91. Liu L, Chang Y, Xia N, Peng P, Zhang L, Jiang M, et al. Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Biosens Bioelectron. 2017;94:235–42.

  92. Azzouzi S, Mak WC, Kor K, Turner APF, Ben AM, Beni V. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of micro-RNA-21. Biosens Bioelectron. 2017;92:154–61.

  93. Kaplan M, Kilic T, Guler G, Mandli J, Amine A, Ozsoz M. A novel method for sensitive microRNA detection: electropolymerization based doping. Biosens Bioelectron. 2017;92:770–8.

    Article  CAS  Google Scholar 

  94. Cardoso AR, Moreira FTC, Fernandes R, Sales MGF. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron. 2016;80:621–30.

    Article  CAS  Google Scholar 

  95. Su S, Cao W, Liu W, Lu Z, Zhu D, Chao J, et al. Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosens Bioelectron. 2017;94:552–9.

  96. Gao A, Yang X, Tong J, Zhou L, Wang Y, Zhao J, et al. Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays. Biosens Bioelectron. 2017;91:482–8.

    Article  CAS  Google Scholar 

  97. Voccia D, Sosnowska M, Bettazzi F, Roscigno G, Fratini E, De Franciscis V, et al. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens Bioelectron. 2017;87:1012–9.

    Article  CAS  Google Scholar 

  98. Tu W, Cao H, Zhang L, Bao J, Liu X, Dai Z. Dual signal amplification using gold nanoparticles-enhanced zinc selenide nanoflakes and p19 protein for ultrasensitive photoelectrochemical biosensing of microRNA in cell. Anal Chem. 2016;88:10459–65.

    Article  CAS  Google Scholar 

  99. Koo KM, Carrascosa LG, Shiddiky MJA, Trau M. Poly(A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal Chem. 2016;88:2000–5.

  100. Pang X, Qi J, Zhang Y, Ren Y, Su M, Jia B, et al. Ultrasensitive photoelectrochemical aptasensing of miR-155 using efficient and stable CH3NH3PbI3 quantum dots sensitized ZnO nanosheets as light harvester. Biosens Bioelectron. 2016;85:142–50.

  101. Zhang K, Dong H, Dai W, Meng X, Lu H, Wu T, et al. Fabricating Pt/Sn–In2O3 nanoflower with advanced oxygen reduction reaction performance for high-sensitivity microRNA electrochemical detection. Anal Chem. 2017;89:648–55.

  102. McArdle H, Jimenez-Mateos EM, Raoof R, Carthy E, Boyle D, ElNaggar H, et al. “TORNADO”—theranostic one-step RNA detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Sci Rep. 2017;7:1750.

  103. Miao X, Wang W, Kang T, Liu J, Shiu KK, Leung CH, et al. Ultrasensitive electrochemical detection of miRNA-21 by using an iridium(III) complex as catalyst. Biosens Bioelectron. 2016;86:454–8.

    Article  CAS  Google Scholar 

  104. Zouari M, Campuzano S, Pingarron JM, Raouafi N. Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells. Biosens Bioelectron. 2017;91:40–5.

    Article  CAS  Google Scholar 

  105. Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Campuzano S, Farchado-Dinia M, Barderas R, San Segundo-Acosta P, et al. Fast electrochemical miRNAs determination in cancer cells and tumor tissues with antibody-functionalized magnetic micro-carriers. ACS Sens. 2016;1:896–903.

    Article  Google Scholar 

  106. Fang CS, Kim K, Yu B, Jon S, Kim M-S, Yang H. Ultrasensitive electrochemical detection of miRNA-21 using a zinc finger protein specific to DNA–RNA hybrids. Anal Chem. 2017;89:2024–31.

    Article  CAS  Google Scholar 

  107. Voccia D, Bettazzi F, Fratini E, Berti D, Palchetti I. Improving impedimetric nucleic acid detection by using enzyme-decorated liposomes and nanostructured screen-printed electrodes. Anal Bioanal Chem. 2016;408:7271–81.

    Article  CAS  Google Scholar 

  108. Zahid OK, Wang F, Ruzicka JA, Taylor EW, Hall AR. Sequence-specific recognition of microRNAs and other short nucleic acids with solid-state nanopores. Nano Lett. 2016;16:2033–9.

    Article  CAS  Google Scholar 

  109. Khan N, Mironov G, Berezovski MV. Direct detection of endogenous microRNAs and their post-transcriptional modifications in cancer serum by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem. 2016;408:2891–9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore K. Christopoulos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalogianni, D.P., Kalligosfyri, P.M., Kyriakou, I.K. et al. Advances in microRNA analysis. Anal Bioanal Chem 410, 695–713 (2018). https://doi.org/10.1007/s00216-017-0632-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0632-z

Keywords

Navigation