Skip to main content
Log in

Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Noncovalent interactions between proteins and small-molecule ligands widely exist in biological bodies and play significant roles in many physiological and pathological processes. Native mass spectrometry (MS) has emerged as a new powerful tool to study noncovalent interactions by directly analyzing the ligand–protein complexes. In this work, an ultrahigh-resolution native MS method based on a 15-T SolariX XR Fourier transform ion cyclotron resonance mass spectrometer was firstly used to investigate the interaction between human serum albumin (HSA) and flavonoids. Various flavonoids with similar structure were selected to unravel the relationship between the structure of flavonoids and their binding affinity for HSA. It was found that the position of the hydroxyl groups and double bond of flavonoids could influence the noncovalent interaction. Through a competitive experiment between HSA binding site markers and apigenin, the subdomain IIA (site 1) of HSA was determined as the binding site for flavonoids. Moreover, a cooperative allosteric interaction between apigenin and ibuprofen was found from their different HSA binding sites, which was further verified by circular dichroism spectroscopy and molecular docking studies. These results show that native MS is a useful tool to investigate the molecular interaction between a protein and its ligands.

Unravel the relationship between the structure of flavonoids and their binding affinity to HSA by native MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitova EN, El-Hawiet A, Schnier PD, Klassen JS. Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? J Am Soc Mass Spectrom. 2012;23(3):431–41.

    Article  CAS  Google Scholar 

  2. McFedries A, Schwaid A, Saghatelian A. Methods for the elucidation of protein-small molecule interactions. Chem Biol. 2013;20(5):667–73.

    Article  CAS  Google Scholar 

  3. Dufour C, Dangles O. Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim Biophys Acta. 2005;1721(1-3):164–73.

    Article  CAS  Google Scholar 

  4. Zsila F. Circular dichroism spectroscopy is a sensitive tool for investigation of bilirubin-enzyme interactions. Biomacromolecules. 2011;12(1):221–7.

    Article  CAS  Google Scholar 

  5. de Azevedo WF Jr, Dias R. Experimental approaches to evaluate the thermodynamics of protein-drug interactions. Curr Drug Targets. 2008;9(12):1071–6.

    Article  Google Scholar 

  6. Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev. 2002;102(2):555.

    Article  CAS  Google Scholar 

  7. Meyer B, Peters T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed. 2003;42(8):864–90.

    Article  CAS  Google Scholar 

  8. Bao J, Krylova SM, Wilson DJ, Oren R, Johnson PE, Krylov SN. Kinetic capillary electrophoresis with mass-spectrometry detection (KCE-MS) facilitates label-free solution-based kinetic analysis of protein-small molecule binding. Chem Bio Chem. 2011;12(12):2551–4.

    Article  CAS  Google Scholar 

  9. Gülbakan B, Barylyuk K, Zenobi R. Determination of thermodynamic and kinetic properties of biomolecules by mass spectrometry. Curr Opin Biotechnol. 2015;31:65–72.

    Article  Google Scholar 

  10. Sharon M, Horovitz A. Probing allosteric mechanisms using native mass spectrometry. Curr Opin Struct Biol. 2015;34:7–16.

    Article  CAS  Google Scholar 

  11. Ben-Nissan G, Sharon M. Capturing protein structural kinetics by mass spectrometry. Chem Soc Rev. 2011;40(7):3627–37.

    Article  CAS  Google Scholar 

  12. Wang X, Liu Y, Wang H. A structure-differential binding method for elucidating the interactions between flavonoids and cytochrome-c by ESI-MS and molecular docking. Talanta. 2013;116(22):368–75.

    Article  CAS  Google Scholar 

  13. Zhuang X, Zhao B, Liu S, Song F, Cui F, Liu Z, et al. Noncovalent interactions between superoxide dismutase and flavonoids studied by native mass spectrometry combined with molecular simulations. Anal Chem. 2016;88(23):11720–6.

    Article  CAS  Google Scholar 

  14. Bechara C, Robinson CV. Different modes of lipid binding to membrane proteins probed by mass spectrometry. J Am Chem Soc. 2015;137(16):5240.

    Article  CAS  Google Scholar 

  15. Yin S, Loo JA. Top-down mass spectrometry of supercharged native protein-ligand complexes. Int J Mass Spectrom. 2011;300(2–3):118–22.

    Article  CAS  Google Scholar 

  16. Clarke DJ, Murray E, Hupp T, Mackay CL, Langridge-Smith PRR. Mapping a noncovalent protein–peptide interface by top-down FTICR mass spectrometry using electron capture dissociation. J Am Soc Mass Spectrom. 2011;22(8):1432.

    Article  CAS  Google Scholar 

  17. Zhang Y, Cui W, Wecksler AT, Zhang H, Molina P, Deperalta G, et al. Native MS and ECD characterization of a Fab–antigen complex may facilitate crystallization for X-ray diffraction. J Am Soc Mass Spectrom. 2016;27(7):1139–42.

    Article  CAS  Google Scholar 

  18. Bors W, Michel C, Saran M. Flavonoid antioxidants: rate constants for reactions with oxygen radicals. Methods Enzymol. 1994;234:420–9.

    Article  CAS  Google Scholar 

  19. Li Y, Wang Q, He J, Yan J, Li H. Fluorescence spectroscopy and docking study in two flavonoids, isolated tectoridin and its aglycone tectorigenin, interacting with human serum albumin: a comparison study. Luminescence. 2015;31(1):38–46.

    Article  Google Scholar 

  20. Arroyomaya IJ, Camposterán J, Hernándezarana A, Mcclements DJ. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: binding of pelargonidin to dairy proteins. Food Chem. 2016;213:431.

    Article  CAS  Google Scholar 

  21. Wei J, Jin F, Wu Q, Jiang Y, Gao D, Liu H. Molecular interaction study of flavonoid derivative 3d with human serum albumin using multispectroscopic and molecular modeling approach. Talanta. 2014;126:116–21.

    Article  CAS  Google Scholar 

  22. Sun J, Kitova EN, Klassen JS. Method for stabilizing protein−ligand complexes in nanoelectrospray ionization mass spectrometry. Anal Chem. 2007;79(2):416–25.

    Article  CAS  Google Scholar 

  23. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57–61.

    CAS  Google Scholar 

  24. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.

    Article  CAS  Google Scholar 

  25. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    CAS  Google Scholar 

  26. Liu H, An X, Li S, Wang Y, Li J, Liu H. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol Biosyst. 2015;11(12):3347–54.

    Article  CAS  Google Scholar 

  27. Liu Y, Su B, Wang X. Study on the noncovalent interactions of saikosaponins and cytochrome c by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(7):719–27.

    Article  CAS  Google Scholar 

  28. EI-Hawiet A, Kitova EN, Klassen JS. Quantifying carbohydrate-protein interactions by electrospray ionization mass spectrometry analysis. Biochemistry. 2012;21(21):4244–53.

    Article  Google Scholar 

  29. Zdanov A, Li Y, Bundle DR, Deng SJ, Mackenzie CR, Narang SA, et al. Structure of a single-chain antibody variable domain (fv) fragment complexed with a carbohydrate antigen at 1.7-angstrom resolution. Proc Natl Acad Sci U S A. 1994;91(14):6423–7.

    Article  CAS  Google Scholar 

  30. Pal S, Saha C. A review on structure-affinity relationship of dietary flavonoids with serum albumins. J Biomol Struct Dyn. 2013;32(7):1132–47.

    Article  Google Scholar 

  31. Wu Q, Wang D, Zhou X, Zhang Z, Liu W, Wang Z. Study on the interaction between daidzein and human serum albumin. Spectrosc Spec Anal. 2009;29(7):1911–4.

    CAS  Google Scholar 

  32. Xie M, Xu X, Wang Y. Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochim Biophys Acta. 2005;1724(1):215–24.

    Article  CAS  Google Scholar 

  33. Cao H, Chen L, Xiao J. Binding citrus flavanones to human serum albumin: effect of structure on affinity. Mol Biol Rep. 2011;38(4):2257.

    Article  CAS  Google Scholar 

  34. Xiao J, Chen T, Cao H, Chen L, Yang F. Molecular property-affinity relationship of flavanoids and flavonoids for HSA in vitro. Mol Nutr Food Res. 2011;55(2):310–7.

    Article  CAS  Google Scholar 

  35. Edenharder R, Von PI, Rauscher R. Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutat Res. 1993;287(2):261–74.

    Article  CAS  Google Scholar 

  36. Carter DC, Ho JX. Structure of serum albumin. Adv Protein Chem. 1994;45:153–203.

    Article  CAS  Google Scholar 

  37. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 angstrom resolution. Protein Eng. 1999;12(6):439–46.

    Article  CAS  Google Scholar 

  38. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S. Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol. 2005;353(1):38–52.

    Article  CAS  Google Scholar 

  39. Fitos I, Visy J, Simonyi M, Hermansson J. Stereoselective allosteric binding interaction on human serum albumin between ibuprofen and lorazepam acetate. Chirality. 1999;11(2):115–20.

    Article  CAS  Google Scholar 

  40. Nicholas AB, Jonathan DH. Theoretical studies toward quantitative protein circular dichroism calculations. J Am Chem Soc. 1999;121(41):9636–44.

    Article  Google Scholar 

  41. Yuan J. lv Z, Liu Z, Hu Z, Zou G. Study on interaction between apigenin and human serum albumin by spectroscopy and molecular modeling. J Photochem Photobiol A. 2007;191(2-3):104–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of projects 21575142 and 21435006 by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianzhe Shi or Guowang Xu.

Ethics declarations

Conflict of interest

The authors do not have a conflict of interest.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Qin, Q., Chang, M. et al. Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling. Anal Bioanal Chem 410, 827–837 (2018). https://doi.org/10.1007/s00216-017-0564-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0564-7

Keywords

Navigation