Skip to main content

Advertisement

Log in

LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl] propane-2-amine (4-EA-NBOMe) in rat urine and human liver S9 incubates and comparison of its screening power with further MS techniques

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

4-EA-NBOMe (N-(2-methoxybenzyl)-4-ethylamphetamine, 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl]propane-2-amine) is an amphetamine-derived new psychoactive substance (NPS) of the N-methoxybenzyl (NBOMe) group first seized by German custom authorities. In contrast to the phenethylamine NBOMes, studies on the pharmacological, toxicological, or metabolic properties are not yet published. The aims of the presented work were the use of LC-HR-MS/MS for identification of the phase I and II metabolites of 4-EA-NBOMe in rat urine and pooled human S9 fraction (pS9) incubations, to compare metabolite formation in both models, to identify involved monooxygenases, and to elucidate its detectability in standard urine screening approaches (SUSAs) using GC-MS, LC-MSn, and LC-HR-MS/MS. 4-EA-NBOMe was mainly metabolized by oxidation of the ethyl group to phenyl acetaldehyde, to benzoic acid, or to phenylacetic acid, by hydroxylation, and all combined with O-demethylation as well as by glucuronidation and sulfation of the main phase I metabolites in rats. With the exception of the oxidation to benzoic acid, all main metabolic reactions could be confirmed in the incubations with pS9. In total, 36 phase I and 33 phase II metabolites could be identified. Monooxygenase activity screenings revealed the general involvement of cytochrome-P450 (CYP) 1A2, CYP2B6, and CYP3A4. An intake of 4-EA-NBOMe was detectable only via its metabolites by all SUSAs after low-dose administration. The main targets for both LC-MS screenings should be the phenylacetic acid derivative, the mandelic acid derivative both with and without additional O-demethylation, and, for GC-MS, the hydroxy metabolite after conjugate cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2015) New psychoactive substances in Europe. An update from the EU Early Warning System. http://www.emcdda.europa.eu/attachements.cfm/att_235958_EN_TD0415135ENN.pdf

  2. United Nations Office on Drugs and Crime (UNODC) (2014) World drug report 2014. http://www.unodc.org/documents/data-and-analysis/WDR2014/World_Drug_Report_2014_web.pdf

  3. United Nations Office on Drugs and Crime (UNODC) (2015) World drug report 2015. https://www.unodc.org/documents/wdr2015/World_Drug_Report_2015.pdf

  4. United Nations Office on Drugs and Crime (UNODC) (2016) World drug report 2016. https://www.unodc.org/doc/wdr2016/WORLD_DRUG_REPORT_2016_web.pdf

  5. Caspar AT, Helfer AG, Michely JA, Auwaerter V, Brandt SD, Meyer MR, et al. Studies on the metabolism and toxicological detection of the new psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) in human and rat urine using GC-MS, LC-MSn, and LC-HR-MS/MS. Anal Bioanal Chem. 2015;407:6697–719.

    Article  CAS  Google Scholar 

  6. Caspar AT, Brandt SD, Stoever AE, Meyer MR, Maurer HH. Metabolic fate and detectability of the new psychoactive substances 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe) and 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine by GC-MS, LC-MSn, and LC-HR-MS/MS approaches. J Pharm Biomed Anal. 2017;134:158–69.

    Article  CAS  Google Scholar 

  7. Wohlfarth A, Roman M, Andersson M, Kugelberg FC, Diao X, Carlier J, et al. 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test Anal. 2017;9:680–98.

    Article  CAS  Google Scholar 

  8. Suzuki J, Dekker MA, Valenti ES, Arbelo Cruz FA, Correa AM, Poklis JL, et al. Toxicities associated with NBOMe ingestion—a novel class of potent hallucinogens: a review of the literature. Psychosomatics. 2015;56:129–39.

    Article  Google Scholar 

  9. Zuba D, Sekula K, Buczek A. 25C-NBOMe—new potent hallucinogenic substance identified on the drug market. Forensic Sci Int. 2013;227:7–14.

    Article  CAS  Google Scholar 

  10. Poklis JL, Charles J, Wolf CE, Poklis A. High-performance liquid chromatography tandem mass spectrometry method for the determination of 2CC-NBOMe and 25I-NBOMe in human serum. Biomed Chromatogr. 2013;27:1794–800.

    Article  CAS  Google Scholar 

  11. Poklis JL, Clay DJ, Poklis A. High-performance liquid chromatography with tandem mass spectrometry for the determination of nine hallucinogenic 25-NBOMe designer drugs in urine specimens. J Anal Toxicol. 2014;38:113–21.

    Article  CAS  Google Scholar 

  12. Poklis JL, Nanco CR, Troendle MM, Wolf CE, Poklis A. Determination of 4-bromo-2,5-dimethoxy-N-[(2-methoxyphenyl)methyl]-benzeneethanamine (25B-NBOMe) in serum and urine by high performance liquid chromatography with tandem mass spectrometry in a case of severe intoxication. Drug Test Anal. 2014;6:764–9.

    Article  CAS  Google Scholar 

  13. Poklis JL, Devers KG, Arbefeville EF, Pearson JM, Houston E, Poklis A. Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci Int. 2014;234:e14–20.

    Article  CAS  Google Scholar 

  14. Poklis JL, Raso SA, Alford KN, Poklis A, Peace MR. Analysis of 25I-NBOMe, 25B-NBOMe, 25C-NBOMe and other dimethoxyphenyl-N-[(2-methoxyphenyl) methyl]ethanamine derivatives on blotter paper. J Anal Toxicol. 2015;39:617–23.

    Article  CAS  Google Scholar 

  15. Boumrah Y, Humbert L, Phanithavong M, Khimeche K, Dahmani A, Allorge D. In vitro characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug 25B-NBOMe using LC-high resolution MS. Drug Test Anal. 2016;8:248–56.

    Article  CAS  Google Scholar 

  16. Nielsen LM, Holm NB, Leth-Petersen S, Kristensen JL, Olsen L, Linnet K. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test Anal. 2017;9:671–9.

    Article  CAS  Google Scholar 

  17. Temporal KH, Scott KS, Mohr ALA, Logan BK. Metabolic profile determination of NBOMe compounds using human liver microsomes and comparison with findings in authentic human blood and urine. J Anal Toxicol DOI. 2017; doi:10.1093/jat/bkx029.

  18. Hill SL, Doris T, Gurung S, Katebe S, Lomas A, Dunn M, et al. Severe clinical toxicity associated with analytically confirmed recreational use of 25I-NBOMe: case series. Clin Toxicol (Phila). 2013;51:487–92.

    Article  CAS  Google Scholar 

  19. Stellpflug SJ, Kealey SE, Hegarty CB, Janis GC. 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe): clinical case with unique confirmatory testing. J Med Toxicol. 2014;10:45–50.

    Article  CAS  Google Scholar 

  20. Tang MH, Ching CK, Tsui MS, Chu FK, Mak TW. Two cases of severe intoxication associated with analytically confirmed use of the novel psychoactive substances 25B-NBOMe and 25C-NBOMe. Clin Toxicol (Phila). 2014;52:561–5.

    Article  CAS  Google Scholar 

  21. Walterscheid JP, Phillips GT, Lopez AE, Gonsoulin ML, Chen HH, Sanchez LA. Pathological findings in 2 cases of fatal 25I-NBOMe toxicity. Am J Forensic Med Pathol. 2014;35:20–5.

    Article  Google Scholar 

  22. Suzuki J, Poklis JL, Poklis A. "My friend said it was good LSD": a suicide attempt following analytically confirmed 25I-NBOMe ingestion. J Psychoactive Drugs. 2014;46:379–82.

    Article  Google Scholar 

  23. Shanks KG, Sozio T, Behonick GS. Fatal intoxications with 25B-NBOMe and 25I-NBOMe in Indiana during 2014. J Anal Toxicol. 2015;39:602–6.

    Article  CAS  Google Scholar 

  24. Westphal F, Girreser U, Waldmuller D. Analytical characterization of four new ortho-methoxybenzylated amphetamine-type designer drugs. Drug Test Anal. 2016;8:910–9.

    Article  CAS  Google Scholar 

  25. Braden MR, Parrish JC, Naylor JC, Nichols DE. Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol Pharmacol. 2006;70:1956–64.

    Article  CAS  Google Scholar 

  26. Hansen M, Phonekeo K, Paine JS, Leth-Petersen S, Begtrup M, Brauner-Osborne H, et al. Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem Neurosci. 2014;5:243–9.

    Article  CAS  Google Scholar 

  27. Halberstadt AL, Geyer MA. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology. 2014;77:200–7.

    Article  CAS  Google Scholar 

  28. Nichols DE, Sassano MF, Halberstadt AL, Klein LM, Brandt SD, Elliott SP, et al. N-benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem Neurosci. 2015;6:1165–75.

    Article  CAS  Google Scholar 

  29. Maurer HH. Chemistry, pharmacology, and metabolism of emerging drugs of abuse [review]. Ther Drug Monit. 2010;32:544–9.

    Article  CAS  Google Scholar 

  30. Lawn W, Barratt M, Williams M, Horne A, Winstock A. The NBOMe hallucinogenic drug series: patterns of use, characteristics of users and self-reported effects in a large international sample. J Psychopharmacol. 2014;28:780–8.

    Article  CAS  Google Scholar 

  31. Bersani FS, Corazza O, Albano G, Valeriani G, Santacroce R, Bolzan Mariotti PF, Cinosi E, Simonato P, Martinotti G, Bersani G, Schifano F (2014) 25C-NBOMe: preliminary data on pharmacology, psychoactive effects, and toxicity of a new potent and dangerous hallucinogenic drug. Biomed Res Int 734749.

  32. Michely JA, Helfer AG, Brandt SD, Meyer MR, Maurer HH. Metabolism of the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their detectability in urine by GC-MS, LC-MSn, and LC-HR-MS/MS. Anal Bioanal Chem. 2015;407:7831–42.

    Article  CAS  Google Scholar 

  33. Wissenbach DK, Meyer MR, Remane D, Philipp AA, Weber AA, Maurer HH. Drugs of abuse screening in urine as part of a metabolite-based LC-MS(n) screening concept. Anal Bioanal Chem. 2011;400:3481–9.

    Article  CAS  Google Scholar 

  34. Richter LHR, Flockerzi V, Maurer HH, Meyer MR. Pooled human liver preparations, HepaRG, or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MAPB, and 5-API as examples. J Pharm Biomed Anal. 2017;143:32–42.

    Article  CAS  Google Scholar 

  35. Welter J, Meyer MR, Wolf E, Weinmann W, Kavanagh P, Maurer HH. 2-Methiopropamine, a thiophene analogue of methamphetamine: studies on its metabolism and detectability in the rat and human using GC-MS and LC-(HR)-MS techniques. Anal Bioanal Chem. 2013;405:3125–35.

    Article  CAS  Google Scholar 

  36. Wagmann L, Meyer MR, Maurer HH. What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse? Toxicol Lett. 2016;258:55–70.

    Article  CAS  Google Scholar 

  37. Meyer MR, Lindauer C, Welter J, Maurer HH. Dimethocaine, a synthetic cocaine derivative: studies on its in vivo metabolism and its detectability in urine by LC-HR-MSn and GC-MS using a rat model. Anal Bioanal Chem. 2014;406:1845–54.

    Article  CAS  Google Scholar 

  38. Maurer HH, Pfleger K, Weber AA. Mass spectral data of drugs, poisons, pesticides, pollutants and their metabolites. Weinheim: Wiley-VCH; 2016.

    Google Scholar 

  39. Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH. Orbitrap technology for comprehensive metabolite-based liquid chromatographic-high resolution-tandem mass spectrometric urine drug screening—exemplified for cardiovascular drugs. Anal Chim Acta. 2015;891:221–33.

    Article  CAS  Google Scholar 

  40. Maurer HH, Wissenbach DK, Weber AA. Maurer/Wissenbach/Weber MWW LC-MSn library of drugs, poisons, and their metabolites. Weinheim: Wiley-VCH; 2014.

    Google Scholar 

  41. Maurer HH, Meyer MR, Helfer AG, Weber AA. Maurer/Meyer/Helfer/Weber MMHW LC-HR-MS/MS library of drugs, poisons, and their metabolites. Weinheim: Wiley-VCH; 2017.

    Google Scholar 

  42. Engstrom K, Riihimaki V, Laine A. Urinary disposition of ethylbenzene and m-xylene in man following separate and combined exposure. Int Arch Occup Environ Health. 1984;54:355–63.

    Article  CAS  Google Scholar 

  43. Engstrom K, Elovaara E, Aitio A. Metabolism of ethylbenzene in the rat during long-term intermittent inhalation exposure. Xenobiotica. 1985;15:281–6.

    Article  CAS  Google Scholar 

  44. Saghir SA, Rick DL, McClymont EL, Zhang F, Bartels MJ, Bus JS. Mechanism of ethylbenzene-induced mouse-specific lung tumor: metabolism of ethylbenzene by rat, mouse, and human liver and lung microsomes. Toxicol Sci. 2009;107:352–66.

    Article  CAS  Google Scholar 

  45. Leth-Petersen S, Gabel-Jensen C, Gillings N, Lehel S, Hansen HD, Knudsen GM, et al. Metabolic fate of hallucinogenic NBOMes. Chem Res Toxicol. 2016;29:96–100.

    Article  CAS  Google Scholar 

  46. Shima N, Kamata HT, Katagi M, Tsuchihashi H. Urinary excretion of the main metabolites of methamphetamine, including p-hydroxymethamphetamine-sulfate and p-hydroxymethamphetamine-glucuronide, in humans and rats. Xenobiotica. 2006;36:259–67.

    Article  CAS  Google Scholar 

  47. Wink CSD, Meyer GMJ, Meyer MR, Maurer HH. Toxicokinetics of lefetamine and derived diphenylethylamine designer drugs—contribution of human cytochrome P450 isozymes to their main phase I metabolic steps. Toxicol Lett. 2015;238:39–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors like to thank Julian A. Michely, Sascha K. Manier, Lilian H. J. Richter, Lea Wagmann, Carsten Schröder, Gabriele Ulrich, and Armin A. Weber for support and/or helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Maurer.

Ethics declarations

The authors declare that the experiments have been conducted in accordance with all applicable institutional, national, or international guidelines for the care and use of rats.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caspar, A.T., Westphal, F., Meyer, M.R. et al. LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl] propane-2-amine (4-EA-NBOMe) in rat urine and human liver S9 incubates and comparison of its screening power with further MS techniques. Anal Bioanal Chem 410, 897–912 (2018). https://doi.org/10.1007/s00216-017-0526-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0526-0

Keywords

Navigation