Skip to main content

Advertisement

Log in

Direct analysis of polyols using 3-nitrophenylboronic acid in capillary electrophoresis: thermodynamic and electrokinetic principles of molecular recognition

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The design of boronic acid sensors for photometric detection of carbohydrates has relied on exploiting differences in the thermodynamic stability of complex formation for molecular recognition. Herein, we introduce a direct method for analysis of sugar alcohols using 3-nitrophenylboronic acid (NPBA) as an electrokinetic probe in capillary electrophoresis (CE). Dynamic complexation of neutral polyols by NPBA during electromigration allows for their simultaneous resolution and UV detection based on formation of an anionic ternary boronate ester complex in phosphate buffer. Unlike conventional boronic acid sensors, thermodynamic and electrokinetic processes in CE allow for improved selectivity for the resolution of sugar alcohol stereoisomers having different vicinal polyol chain lengths even in cases when binding affinity is similar due to differences in their complex mobility. Three complementary approaches were investigated to compare the thermodynamics of polyol chelation with NPBA, namely direct binding assays by CE, UV absorbance spectroscopy and an indirect pK a depression method. Overall, CE offers a convenient platform for characterization of reversible arylboronic acid interactions in free solution while allowing for direct analysis of complex mixtures of neutral/UV-transparent polyols without complicated sample handling.

3-nitrophenylboronic acid (NPBA) functions as an electrokinetic probe in capillary electrophoresis for the separation and detection of polyols based on dynamic ternary boronate ester complexation in free solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CE:

Capillary electrophoresis

λ max :

Change in peak absorbance wavelength

∆pK a :

Change in apparent weak acidity equilibrium constant

EOF:

Electroosomotic flow

f AC :

Fraction of tetrahedral boronate ester complex

K :

Conditional formation constant

μ Aep :

Apparent electrophoretic mobility

μ ep AC :

Complex electrophoretic mobility

NPBA:

3-nitrophenylboronic acid

References

  1. Akinterinwa O, Khankal R, Cirino PC (2008) Curr Opin Biotech 19:461–467

    Article  CAS  Google Scholar 

  2. Burt, BA (2006) J Am Dent Assoc 137:190–196

    Google Scholar 

  3. Pingle SC, Mishra S, Marcuzzi A, Bhat SG et al (2004) J Biol Chem 279:43157–43167

  4. Mishra R, Seckler R, Bhat R (2005) J Biol Chem 280:15553–15560

    Article  CAS  Google Scholar 

  5. Oates PJ (2002) Int Rev Neurobiol 50:325–392

    Article  CAS  Google Scholar 

  6. Sim H-J, Jeong J-S, Kwon H-J, Kong TH et al (2009) J Chromatogr B 877:1607–1611

    Article  CAS  Google Scholar 

  7. Lee AYW, Chung SSM (1999) FASEB J 13:23–30

    CAS  Google Scholar 

  8. Kwang-Hyok S, Ui-Nam P, Sarkar C, Bhadra R, Clin Chim Acta 354: 41–47

  9. Yoshii H, Uchino H, Ohmura C, Watanabe K et al (2001) Diabetes Res Clin Practice 51:115–123

    Article  CAS  Google Scholar 

  10. Chalcraft KR, Britz-McKibbin P (2009) Anal Chem 81:307–314

    Article  CAS  Google Scholar 

  11. Wamelink MMC, Smith DEC, Jakobs C, Verhoeven NM (2005) J Inherit Metab Dis 28:951–963

    Article  CAS  Google Scholar 

  12. Lee J, Chung BC (2006) J Chromatogr B 831:126–131

    Article  CAS  Google Scholar 

  13. Kubo E, Urakami T, Fatma N, Akagi Y, Singh DP (2004) Biochem Biophys Res Comm 314:1050–1056

    Article  CAS  Google Scholar 

  14. Chung SSM, Ho ECM, Lam KSL, Chung SK (2003) J Am Soc Nephrol 14:S233–S236

    Article  CAS  Google Scholar 

  15. Fukuda T, Ishida S, Nakagama T, Koike S, Uchiyama K (2005) Bunseki Kagaku 54:969–973

    Article  CAS  Google Scholar 

  16. Anaja HP (2005) Clin Chim Acta 262:1–11

    Article  Google Scholar 

  17. Renner F, Schmitz A, Gehring H (1998) Clin Chem 44:886–887

    CAS  Google Scholar 

  18. Schadewaldt P, Hammen H-W, Stolpmann S, Kamalanathan L, Wendel U (2004) J Chromatogr B 801:249–255

    Article  CAS  Google Scholar 

  19. Yager C, Wherli S, Segal S (2006) Clin Chim Acta 366:216–224

    Article  CAS  Google Scholar 

  20. Ikegami T, Horie K, Saad N, Hosoya K et al (2008) Anal Bioanal Chem 391:2533–2542

    Article  CAS  Google Scholar 

  21. Wan ECH, Yu JZ (2007) Environ Sci Technol 41:2459–2466

    Article  CAS  Google Scholar 

  22. Cataldi TRI, Campa C, Casella IG, Bufo SA (1999) J Agric Food Chem 47:157–163

    Article  CAS  Google Scholar 

  23. Wannet WJB, Hermans JHM, Drift CVD, Camp HJMOD (2000) J Agric Food Chem 48:287–291

    Article  CAS  Google Scholar 

  24. Cataldi TRI, Margiotta G, Iasi L, Chio BD et al (2000) Anal Chem 72:3902–3907

    Article  CAS  Google Scholar 

  25. Guttman A (1996) Nature 380:461–462

    Article  CAS  Google Scholar 

  26. Ma S, Nashabeh W (1999) Anal Chem 71:5185–5192

    Article  CAS  Google Scholar 

  27. Szabo Z, Guttman A, Rejtar T, Karger BL (2010) Electrophoresis 31:1–7

    Article  Google Scholar 

  28. Kazarian AA, Hilder EF, Breadmore MC (2008) J Chromatogr A 1200:84–91

    Article  CAS  Google Scholar 

  29. Ye J, Baldwin RP (1994) J Chromatogr A 687:141–148

    Article  CAS  Google Scholar 

  30. Soga T, Serwe M (2000) Food Chem 69:339–344

    Article  CAS  Google Scholar 

  31. Pospisilova M, Polasek M, Safra J, Petriska I (2007) J Chromatogr A 1143:258–263

    Article  CAS  Google Scholar 

  32. Soga T, Imaizumi M (2001) Electrophoresis 22:3418–3425

    Article  CAS  Google Scholar 

  33. Xu X, Kok WT, Poppe H (1997) J Chromatogr A 786:333–345

    Article  CAS  Google Scholar 

  34. Gas B, Kenndler E (2004) Electrophoresis 25:3901–3912

    Article  CAS  Google Scholar 

  35. Kaiser C, Segui-Lines G, D'Amaral JC, Britz-McKibbin P (2008) Chem Comm :338–340

  36. James TD, Phillips MD, Shinkai S (2006) In boronic acids in saccharide recognition. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  37. Springsteen G, Wang B (2002) Tetrahedron 58:5291–5300

    Article  CAS  Google Scholar 

  38. Bosch LI, Fyles TM, James TD (2004) Tetrahedron 60:11175–11190

    Article  CAS  Google Scholar 

  39. Yan J, Springsteen G, Deeter S, Wang B (2004) Tetrahedron 60:11202–11209

    Google Scholar 

  40. Iwatsuki S, Nakajima S, Inamo M, Takagi HD, Ishihara K (2007) Inorg Chem 46:354–356

    Article  CAS  Google Scholar 

  41. Zhao J, James TD (2005) J Mater Chem 15:2896–2901

    Article  CAS  Google Scholar 

  42. Honda S, Iwase S, Makino A, Fujiwara S (1989) Anal Biochem 63:1541–1547

    Google Scholar 

  43. Hoffstetter-Kuhn S, Paulus A, Gassmann E, Widmer WH (1991) Anal Chem 63:1541–1547

    Article  CAS  Google Scholar 

  44. Tsukagoshi K, Hashimoto M, Ichien K, Gen S, Nakajima R (1997) Anal Sci 13:485–487

    Article  CAS  Google Scholar 

  45. Tsukagoshi K, Matsumoto K, Ueno F, Noda K et al (2006) J Chromatogr A 1123:106–112

    Article  CAS  Google Scholar 

  46. Fenn LS, McLean JA (2008) Chem Comm :5505–5507

  47. Miyamoto C, Suzuki K, Iwatsuki S, Inamo M et al (2008) Inorg Chem 47:1417–1419

    Article  CAS  Google Scholar 

  48. Ni W, Fang H, Springsteen G, Wang B (2004) J Org Chem 69:1999–2007

    Article  CAS  Google Scholar 

  49. Lim SH, Musto CJ, Park E, Zhong W, Suslick KS (2008) Org Lett 10:4405–4408

    Article  CAS  Google Scholar 

  50. Lorand JR, Edwards JO (1959) J Org Chem 24:769–774

    Article  CAS  Google Scholar 

  51. Dawber JG, Green SIE (1986) J Chem Soc Faraday Trans 1 82:3407–3413

    Article  CAS  Google Scholar 

  52. van Diun M, Peters JA, Kieboom APG, van Bekkum H (1985) Tetrahedron 41:3411–3421

    Article  Google Scholar 

  53. Norrild JC (2001) J Chem Soc Perkin Trans 2:719–726

    Google Scholar 

  54. Kinrade SD, del Nin JW, Schach AS, Sloan TA, Wilson KL, Knight CTG (1999) Science 285:1542–1545

    Article  CAS  Google Scholar 

  55. Buchberger W, Cousins SM, Haddad PR (1994) Tr Anal Chem 13:313–319

    Article  CAS  Google Scholar 

  56. Collet J, Gareil P (1995) J Chromatogr A 716:115–122

    Article  CAS  Google Scholar 

  57. Koy A, Waldhaus A, Hammen H-W, Wendel U, Mayatepek E, Schadewaldt P (2009) Neonatology 95:256–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Natural Science and Engineering Council of Canada. P.B.M. also wishes to acknowledge support in the form of a Japan Society for Promotion of Science—Invited Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Britz-McKibbin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, F., Britz-McKibbin, P. Direct analysis of polyols using 3-nitrophenylboronic acid in capillary electrophoresis: thermodynamic and electrokinetic principles of molecular recognition. Anal Bioanal Chem 398, 1349–1356 (2010). https://doi.org/10.1007/s00216-010-4038-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4038-4

Keywords

Navigation