Skip to main content

Advertisement

Log in

Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

OTA:

Ochratoxin A

MAPK:

Mitogen-activated protein kinase

ERK1-2:

Extracellular signal-regulated kinase 1–2

MEK1-2:

Mitogen-activated protein kinase kinase 1–2

JNK:

c-Jun N-terminal kinase

SAPK:

Stress-activated protein kinase

PI3K:

Phosphatidylinositol-3 kinase

Akt:

v-Akt murine thymoma viral oncogene homolog

c-MET:

Mesenchymal epithelial transition factor

PDK1:

3-Phosphoinositide-dependent protein kinase-1

PTEN:

Phosphatase and tensin homologue deleted on chromosome 10

PARP:

Poly (ADP-Ribosyl) polymerase

References

  • Alessi DR, James SR, Downes CP et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha. Curr Biol 7(4):261–269

    Article  CAS  PubMed  Google Scholar 

  • Alvarez L, Gil AG, Ezpeleta O, Garcia-Jalon JA, Lopez de Cerain A (2004) Immunotoxic effects of Ochratoxin A in Wistar rats after oral administration. Food Chem Toxicol 42(5):825–834

    Article  CAS  PubMed  Google Scholar 

  • Arbillaga L, Azqueta A, Ezpeleta O, Lopez de Cerain A (2007a) Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: evidence of the relationship with cytotoxicity. Mutagenesis 22(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Arbillaga L, Azqueta A, van Delft JH, Lopez de Cerain A (2007b) In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicol Appl Pharmacol 220(2):216–224

    Article  CAS  PubMed  Google Scholar 

  • Banumathy G, Cairns P (2010) Signaling pathways in renal cell carcinoma. Cancer Biol Ther 10(7):658–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boorman GA, McDonald MR, Imoto S, Persing R (1992) Renal lesions induced by Ochratoxin A Exposure in the F344 Rat. Toxicol Pathol 20(2):236–245

    Article  CAS  PubMed  Google Scholar 

  • Chambard JC, Lefloch R, Pouyssegur J, Lenormand P (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta 1773(8):1299–1310

    Article  CAS  PubMed  Google Scholar 

  • Christensen JG, Schreck R, Burrows J et al (2003) A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63(21):7345–7355

    CAS  PubMed  Google Scholar 

  • Clark HA, Snedeker SM (2006) Ochratoxin a: its cancer risk and potential for exposure. J Toxicol Environ Health B Crit Rev 9(3):265–296

    Article  CAS  PubMed  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui J, Liu J, Wu S et al (2013) Oxidative DNA damage is involved in ochratoxin A-induced G2 arrest through ataxia telangiectasia-mutated (ATM) pathways in human gastric epithelium GES-1 cells in vitro. Arch Toxicol 87(10):1829–1840

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Park G, Perry JL et al (2004) Molecular aspects of the transport and toxicity of ochratoxin a. Acc Chem Res 37(11):874–881

    Article  CAS  PubMed  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290

    Article  CAS  PubMed  Google Scholar 

  • Dulak AM, Gubish CT, Stabile LP, Henry C, Siegfried JM (2011) HGF-independent potentiation of EGFR action by c-Met. Oncogene 30(33):3625–3635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2001) Safety evaluation of certain mycotoxins in food. World Health Organization: IPCS, Geneva

  • Faucet V, Pfohl-Leszkowicz A, Dai J, Castegnaro M, Manderville RA (2004) Evidence for covalent DNA adduction by ochratoxin A following chronic exposure to rat and subacute exposure to pig. Chem Res Toxicol 17(9):1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Franke TF, Yang SI, Chan TO et al (1995) The protein-kinase encoded by the Akt protooncogene is a target of the Pdgf-activated phosphatidylinositol 3-Kinase. Cell 81(5):727–736

    Article  CAS  PubMed  Google Scholar 

  • Gautier J, Richoz J, Welti DH et al (2001) Metabolism of ochratoxin A: absence of formation of genotoxic derivatives by human and rat enzymes. Chem Res Toxicol 14(1):34–45

    Article  CAS  PubMed  Google Scholar 

  • Gekle M, Schwerdt G, Freudinger R et al (2000) Ochratoxin A induces JNK activation and apoptosis in MDCK-C7 cells at nanomolar concentrations. J Pharmacol Exp Ther 293(3):837–844

    CAS  PubMed  Google Scholar 

  • Gekle M, Sauvant C, Schwerdt G (2005) Ochratoxin A at nanomolar concentrations: a signal modulator in renal cells. Mol Nutr Food Res 49(2):118–130

    Article  CAS  PubMed  Google Scholar 

  • Gross-Steinmeyer K, Weymann J, Hege HG, Metzler M (2002) Metabolism and lack of DNA reactivity of the mycotoxin ochratoxin A in cultured rat and human primary hepatocytes. J Agr Food Chem 50(4):938–945

    Article  CAS  Google Scholar 

  • Hara S, Oya M, Mizuno R, Horiguchi A, Marumo K, Murai M (2005) Akt activation in renal cell carcinoma: contribution of a decreased PTEN expression and the induction of apoptosis by an Akt inhibitor. Ann Oncol 16(6):928–933

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann D, Fuchs TC, Henzler T et al (2010) Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology 277(1–3):49–58

    Article  CAS  PubMed  Google Scholar 

  • Hong SK, Yoon S, Moelling C, Arthan D, Park JI (2009) Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem 284(48):33006–33018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath A, Upham BL, Ganev V, Trosko JE (2002) Determination of the epigenetic effects of ochratoxin in a human kidney and a rat liver epithelial cell line. Toxicon 40(3):273–282

    Article  CAS  PubMed  Google Scholar 

  • Hult K, Plestina R, Habazin-Novak V, Radic B, Ceovic S (1982) Ochratoxin-a in human-blood and Balkan endemic nephropathy. Arch Toxicol 51(4):313–321

    Article  CAS  Google Scholar 

  • Jeffers M, Schmidt L, Nakaigawa N et al (1997) Activating mutations for the Met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 94(21):11445–11450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jennings P, Weiland C, Limonciel A et al (2012) Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol 86(4):571–589

    Article  CAS  PubMed  Google Scholar 

  • Jennings-Gee JE, Tozlovanu M, Manderville R, Miller MS, Pfohl-Leszkowicz A, Schwartz GG (2010) Ochratoxin A: in utero exposure in mice induces adducts in testicular DNA. Toxins 2(6):1428–1444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jo SK, Cho WY, Sung SA, Kim HK, Won NH (2005) MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int 67(2):458–466

    Article  CAS  PubMed  Google Scholar 

  • Kuiper-Goodman T (1996) Risk assessment of ochratoxin A: an update. Food Addit Contam 13:53–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Dwivedi P, Sharma AK, Singh ND, Patil RD (2007) Ochratoxin A and citrinin nephrotoxicity in New Zealand White rabbits: an ultrastructural assessment. Mycopathologia 163(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Ansari KM, Chaudhari BP et al (2012) Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin. PLoS ONE 7(10):e47280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar R, Alam S, Chaudhari BP et al (2013) Ochratoxin A-induced cell proliferation and tumor promotion in mouse skin by activating the expression of cyclin-D1 and cyclooxygenase-2 through nuclear factor-kappa B and activator protein-1. Carcinogenesis 34(3):647–657

    Article  CAS  PubMed  Google Scholar 

  • Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311(5762):847–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Choi EJ, Jin C, Kim DH (2005) Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol 97(1):26–34

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yin S, Dong Y, Fan L, Hu H (2011) p53 activation inhibits ochratoxin A-induced apoptosis in monkey and human kidney epithelial cells via suppression of JNK activation. Biochem Biophys Res Commun 411(2):458–463

    Article  CAS  PubMed  Google Scholar 

  • Linehan WM, Srinivasan R, Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7(5):277–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma FY, Liu J, Nikolic-Paterson DJ (2009) The role of stress-activated protein kinase signaling in renal pathophysiology. Braz J Med Biol Res 42(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Mally A (2012) Ochratoxin A and mitotic disruption: mode of action analysis of renal tumor formation by ochratoxin A. Toxicol Sci 127(2):315–330

    Article  CAS  PubMed  Google Scholar 

  • Mally A, Zepnik H, Wanek P et al (2004) Ochratoxin A: lack of formation of covalent DNA adducts. Chem Res Toxicol 17(2):234–242

    Article  CAS  PubMed  Google Scholar 

  • Mantle P, Kulinskaya E, Nestler S (2005) Renal tumourigenesis in male rats in response to chronic dietary ochratoxin A. Food Addit Contam A 22:58–64

    Article  CAS  Google Scholar 

  • Marin-Kuan M, Nestler S, Verguet C et al (2007) MAPK-ERK activation in kidney of male rats chronically fed ochratoxin A at a dose causing a significant incidence of renal carcinoma. Toxicol Appl Pharmacol 224(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Marin-Kuan M, Ehrlich V, Delatour T, Cavin C, Schilter B (2011) Evidence for a role of oxidative stress in the carcinogenicity of ochratoxin a. J Toxicol 2011:645361

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Abrams SL et al (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul 46:249–279

    Article  CAS  PubMed  Google Scholar 

  • Mosesso P, Cinelli S, Pinero J, Bellacima R, Pepe G (2008) In vitro cytogenetic results supporting a DNA nonreactive mechanism for Ochratoxin A, potentially relevant for its carcinogenicity. Chem Res Toxicol 21(6):1235–1243

    Article  CAS  PubMed  Google Scholar 

  • Nowak G (2002) Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+transport, and cisplatin-induced apoptosis in renal cells. J Biol Chem 277(45):43377–43388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obrecht-Pflumio S, Dirheimer G (2000) In vitro DNA and dGMP adducts formation caused by ochratoxin A. Chem-Biol Interact 127(1):29–44

    Article  CAS  PubMed  Google Scholar 

  • O’Brien E, Dietrich DR (2005) Ochratoxin A: the continuing enigma. Crit Rev Toxicol 35(1):33–60

    Article  PubMed  Google Scholar 

  • Park HS, Kim MS, Huh SH et al (2002) Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. J Biol Chem 277(4):2573–2578

    Article  CAS  PubMed  Google Scholar 

  • Petrik J, Zanic-Grubisic T, Barisic K et al (2003) Apoptosis and oxidative stress induced by ochratoxin A in rat kidney. Arch Toxicol 77(12):685–693

    Article  CAS  PubMed  Google Scholar 

  • Pfohl-Leszkowicz A (2009) Ochratoxin A and aristolochic acid involvement in nephropathies and associated urothelial tract tumours. Arh Hig Rada Toksikol 60(4):465–483

    Article  CAS  PubMed  Google Scholar 

  • Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51(1):61–99

    Article  CAS  PubMed  Google Scholar 

  • Pfohl-Leszkowicz A, Petkova-Bocharova T, Chernozemsky IN, Castegnaro M (2002) Balkan endemic nephropathy and associated urinary tract tumours: a review on aetiological causes and the potential role of mycotoxins. Food Addit Contam 19(3):282–302

    Article  CAS  PubMed  Google Scholar 

  • Qian CN, Furge KA, Knol J et al (2009) Activation of the PI3K/AKT pathway induces urothelial carcinoma of the renal pelvis: identification in human tumors and confirmation in animal models. Cancer Res 69(21):8256–8264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rached E, Pfeiffer E, Dekant W, Mally A (2006) Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics? Toxicol Sci 92(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Rached E, Hard GC, Blumbach K et al (2007) Ochratoxin A: 13-week oral toxicity and cell proliferation in male F344/n rats. Toxicol Sci 97(2):288–298

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y, Diaz LA Jr, Schmidt-Kittler O et al (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7(6):561–573

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Sauvant C, Holzinger H, Gekle M (2005) Proximal tubular toxicity of ochratoxin A is amplified by simultaneous inhibition of the extracellular signal-regulated kinases 1/2. J Pharmacol Exp Ther 313(1):234–241

    Article  CAS  PubMed  Google Scholar 

  • Sava V, Reunova O, Velasquez A, Harbison R, Sanchez-Ramos J (2006) Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology 27(1):82–92

    Article  CAS  PubMed  Google Scholar 

  • Schilter B, Marin-Kuan M, Delatour T, Nestler S, Mantle P, Cavin C (2005) Ochratoxin A: potential epigenetic mechanisms of toxicity and carcinogenicity. Food Addit Contam 22:88–93

    Article  CAS  PubMed  Google Scholar 

  • Schramek H, Wilflingseder D, Pollack V, Freudinger R, Mildenberger S, Gekle M (1997) Ochratoxin A-induced stimulation of extracellular signal-regulated kinases 1/2 is associated with Madin-Darby canine kidney-C7 cell dedifferentiation. J Pharmacol Exp Ther 283(3):1460–1468

    CAS  PubMed  Google Scholar 

  • Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993) Scatter factor hepatocyte growth-factor and its receptor, the C-Met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123(1):223–235

    Article  CAS  PubMed  Google Scholar 

  • Steelman LS, Chappell WH, Abrams SL et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 3(3):192–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stemmer K, Ellinger-Ziegelbauer H, Ahr HJ, Dietrich DR (2007) Carcinogen-specific gene expression profiles in short-term treated Eker and wild-type rats indicative of pathways involved in renal tumorigenesis. Cancer Res 67(9):4052–4068

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam S, Zirrgiebel U, von Bohlen Und Halbach O et al (2004) ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol 165(3):357–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Murakami H, Kawaguchi K et al (2009) Activation of the PI3K-AKT pathway in human malignant mesothelioma cells. Mol Med Rep 2(2):181–188

    CAS  PubMed  Google Scholar 

  • Tang D, Okada H, Ruland J et al (2001) Akt is activated in response to an apoptotic signal. J Biol Chem 276(32):30461–30466

    Article  CAS  PubMed  Google Scholar 

  • Tewari M, Quan LT, Orourke K et al (1995) Yama/CPP32-Beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81(5):801–809

    Article  CAS  PubMed  Google Scholar 

  • Thomson S, Petti F, Sujka-Kwok I, Epstein D, Haley JD (2008) Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clin Exp Metastasis 25(8):843–854

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20(14):5010–5018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Martindale JL, Holbrook NJ (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 275(50):39435–39443

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu J, Cui J et al (2012) ERK and p38 MAPK signaling pathways are involved in ochratoxin A-induced G2 phase arrest in human gastric epithelium cells. Toxicol Lett 209(2):186–192

    Article  CAS  PubMed  Google Scholar 

  • WHO/IARC (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr Eval Carcinog Risk Chem Hum 56:489

  • Woods DC, Johnson AL (2006) Phosphatase activation by epidermal growth factor family ligands regulates extracellular regulated kinase signaling in undifferentiated hen granulosa cells. Endocrinology 147(10):4931–4940

    Article  CAS  PubMed  Google Scholar 

  • Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling: which way to target? Trends Pharmacol Sci 24(7):366–376

    Article  CAS  PubMed  Google Scholar 

  • Xu AM, Huang PH (2010) Receptor tyrosine kinase coactivation networks in cancer. Cancer Res 70(10):3857–3860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Stabile LP, Gubish CT, Gooding WE, Grandis JR, Siegfried JM (2011) Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res 17(13):4425–4438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon S, Cong WT, Bang Y et al (2009) Proteome response to ochratoxin A-induced apoptotic cell death in mouse hippocampal HT22 cells. Neurotoxicology 30(4):666–676

    Article  CAS  PubMed  Google Scholar 

  • Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Claret FX (2012) Phosphatases: the new brakes for cancer development? Enzyme Res 2012:659649

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhuang S, Schnellmann RG (2006) A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 319(3):991–997

    Article  CAS  PubMed  Google Scholar 

  • Zlender V, Breljak D, Ljubojevic M et al (2009) Low doses of ochratoxin A upregulate the protein expression of organic anion transporters Oat1, Oat2, Oat3 and Oat5 in rat kidney cortex. Toxicol Appl Pharmacol 239(3):284–296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Department of Molecular Biology and Genetics of Bogazici University for providing a scientifically very stimulating environment and access to core facilities. We thank Dr. Ferruh Özcan for making some of the reagents and phospho-MEK1-2 antibody available to us, and Tuncay Şeker for technical assistance in flow cytometric analyses. We express our gratitude to Drs. Stefan Fuss, Arzu Çelik Fuss, and N.C. Tolga Emre for their valuable comments and help in editing the manuscript.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Yaman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan, Z., Gül, G. & Yaman, I. Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells. Arch Toxicol 89, 1313–1327 (2015). https://doi.org/10.1007/s00204-014-1311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1311-x

Keywords

Navigation