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Abstract
The International Height Reference System (IHRS), adopted by International Association of Geodesy (IAG) in its Resolution 
No. 1 at the XXVI General Assembly of the International Union of Geodesy and Geophysics (IUGG) in Prague in 2015, 
contains two novelties. Firstly, the mean-tide concept is adopted for handling the permanent tide. While many national height 
systems continue to apply the mean-tide concept, this was the first time that the IAG officially introduced it for a potential field 
quantity. Secondly, the reference level of the height system is defined by the equipotential surface where the geopotential has 
a conventional value W0 = 62,636,853.4 m2 s–2. This value was first determined empirically to provide a good approximation 
to the global mean sea level and then adopted as a reference value by convention. I analyse the tidal aspects of the reference 
level based on W0. By definition, W0 is independent of the tidal concept that was adopted for the equipotential surface, but for 
different concepts, different functions are involved in the W of the equation W = W0. I find that, in the empirical determina-
tion of the adopted estimate W0, the permanent tide is treated inconsistently. However, the consistent estimate from the same 
data rounds off to the same value. I discuss the tidal conventions and formulas for the International Height Reference Frame 
(IHRF) and the realisation of the IHRS. I propose a simplified definition of IHRF geopotential numbers that would make it 
possible to transform between the IHRF and zero-tide geopotential numbers using a simple datum-difference surface. Such a 
transformation would not be adequate if rigorous mean-tide formulas were imposed. The IHRF should adopt a conventional 
(best) estimate of the permanent tide-generating potential, such as that which is contained in the International Earth Rotation 
and Reference Systems Service Conventions, and use it as a basis for other conventional formulas. The tide-free coordinates 
of the International Terrestrial Reference Frame and tide-free Global Geopotential Models are central in the modelling of 
geopotential for the purposes of the IHRF. I present a set of correction formulas that can be used to move to the zero-tide 
model before, during, or after the processing, and finally to the mean-tide IHRF. To reduce the confusion around the mul-
titude of tidal concepts, I propose that modelling should primarily be done using the zero-tide concept, with the mean-tide 
potential as an add-on. The widespread use of the expression “systems of permanent tide” may also have contributed to the 
confusion, as such “systems” do not have the properties that are generally associated with other “systems” in geodesy. Hence, 
this paper mostly uses “concept” instead of “system” when referring to the permanent tide.

Keywords  World Height System · International Height Reference System (IHRS) · International Height Reference Frame 
(IHRF) · International Terrestrial Reference Frame ITRF · Permanent tide · Geopotential · Reference systems

1  Introduction

1.1 � Concepts

As the apparent motion of the Sun, the Moon, and the plan-
ets is concentrated above the low latitudes, the time aver-
ages of their tide-generating potentials are not zero. At the 
surface of the Earth, their summed contribution is a few 
parts of 10–8 of the potential of the Earth. To deal with the 
permanent deformation that is caused to the Earth and to the 
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gravity field by the permanent tide, two concepts (tide-free 
and mean-tide) are applied to the geometric shape of the 
Earth (which, in this context, is often called crust or topog-
raphy) and three concepts (tide-free, zero-tide, mean-tide) 
are applied to the gravity field.

1.	 In the tide-free concept (also called non-tidal), the per-
manent deformation is eliminated from the geometric 
shape of the Earth. From the potential field quantities 
(gravity, geoid, etc.), both the tide-generating potential 
and the deformation potential of the Earth (the indi-
rect effect) are eliminated. The permanent deforma-
tion is treated using the same Love numbers (h, k, and 
Shida number � ) as for the time-dependent tidal effects 
(conventional tide-free concept). The secular tide-free 
concept and the secular or fluid Love numbers refer to 
a thought experiment: to the long-term change in the 
shape and gravity field of the Earth if the permanent 
tidal potential is completely removed, i.e., if the Sun and 
the Moon are removed. It is an interesting experiment 
for considering the dynamic flattening of the Earth, for 
example. To the best of my knowledge, it has never been 
used nor has it been suggested as a reference for geodetic 
quantities.

2.	 In the mean-tide concept, the permanent effect is not 
removed from the geometric shape of the Earth. The 
shape, therefore, corresponds to the long-term aver-
age under tidal forcing. The potential field includes the 
potential of this “average Earth”, and the time average 
of the tide-generating potential, although the latter is not 
generated by the Earth’s masses.

3.	 The zero-tide concept is a “middle alternative”, for the 
potential field quantities. The potential field is that of the 
“average Earth”. The gravity field is generated only by 
the masses of the Earth (plus the centrifugal force). For 
the geometric shape of the Earth, the zero-tide concept 
is identical with the mean-tide concept.

Ekman (1989) introduced the systematic thinking about 
the permanent tide, terming the three different cases as 
“concepts” as in the above, as did Poutanen et al. (1996). 
Later Ekman (1996) used solely “cases”. However, starting 
in the 1990s, there was a gradual shift in the terminology 
to “systems of permanent tide”, within which the present 
author has also participated (Mäkinen and Ihde 2009). 
In retrospect, I think that this shift was unfortunate: The 
word “system” brings associations to geodetic systems like 
“coordinate reference systems”, where formal transforma-
tions between systems are valid without consideration of the 
physical background of the operations. But the “systems of 
permanent tide” are not that kind of system. I will discuss 
the subject further in Sects. 3 and 6. For the rest of the paper 
until Sect. 6, “concept” is used.

There is a lacuna in the conventional 3-point taxonomy 
presented above: It gives the impression that it is only the 
“crust” or “topography” of the Earth which could be pre-
sented either at the tide-free or at the mean-tide (= zero-tide) 
position. For instance, the 3-D geometric shape of the Earth 
is normally represented by the tide-free International Terres-
trial Reference Frame (ITRF) coordinates of the topography. 
But, what about the coordinate representation of intangible 
surfaces of the potential field such as the geoid, or geoid 
models? A moment’s reflection shows that for the potential 
field quantities there are two tidal concepts present: the tidal 
concept of the potential, and the tidal concept of the coor-
dinate representation. The two are logically independent of 
each other.

There is some danger of confusion: it may be tempting 
to think (not in very precise terms) of the mean-tide and the 
tide-free coordinates as two different coordinate systems. 
The misleading indication “Global Geopotential Models 
(GGMs) are given in ITRF coordinates” may channel the 
users’ thoughts in this direction. But, there is only one coor-
dinate system, the system that is also used everywhere in 
free space, and in which GGMs are given. The instantaneous 
position of reference points and other objects varies peri-
odically because of the tides. In the mean-tide concept, the 
coordinates are given at the time-averaged position. In the 
(conventional) tide-free concept, the coordinates are given 
at a conventional off-mean position within their tidal range. 
However, the coordinate system is the same in both cases. 
This line of thought is as valid for intangible surfaces as it 
is for concrete objects.

Obviously, by comparing tide-free positions and mean-
tide positions one can write a nonlinear coordinate trans-
formation simulating, to some extent, their relation. But the 
representation of space in the “tide-free coordinate system” 
would bring unsurmountable problems and normal physics 
would fail.

In the conventional 3-point taxonomy, it was tacitly 
assumed that the tidally different geoids would always be 
represented at their mean-tide positions; see for instance 
Fig. 1 in Mäkinen and Ihde (2009). The question is further 
discussed in the example at the end of Sect. 5.

1.2 � Historical background, current tasks

The first time that the International Association of Geod-
esy (IAG) took a position on the permanent tide was at the 
XVII General Assembly of the IUGG (International Union of 
Geodesy and Geophysics) in Canberra in 1979. The tide-free 
concept was adopted in the IAG Resolution No. 15. This was 
a rapid response after Heikkinen (1979) had warned about the 
problems in the application of Stokes’ formula that the use of 
mean-tide gravity, as implied by the Honkasalo (1964) cor-
rection, would cause. After this, several authors (e.g., Ekman 
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1979, 1981; Groten 1980, 1981) pointed out how the tide-free 
Earth is a problematic model for the actual Earth. At the 
XVIII General Assembly of the IUGG in Hamburg in 1983 
the IAG then reversed its position: in its Resolution No. 9 
the IAG recommended the zero-tide concept for the potential 
field quantities, and in its Resolution No. 16 the IAG recom-
mended the mean-tide concept for the shape of the Earth.

The tide-free quantities that are currently in use were 
not a response to the IAG Resolution No. 15 of 1979, in 
that they were mostly born unintentionally, rather than by 
weighing alternatives between different tidal concepts. With 
respect to the early tidal corrections to gravity and level-
ling (“luni-solar corrections”), the tide-free quantities were 
almost inevitable. The correction was made using the total 
tide-generating potential from (often simplified) ephemeri-
des. It would have required a special effort to contemplate 
the permanent component and to care about it, never mind 
restore it. Later, when corrections to geodetic quantities were 
made using tidal spectroscopy, the method for many quan-
tities usually was (and still is) to make, at the first step, a 
correction using the total tide-generating potential and then 
refine it for the most important waves. This is the method 
that has been applied in the International Earth Rotation and 
Reference Systems Service (IERS) Conventions, both for 
the geopotential and for the station positions, starting with 
McCarthy (1992). It was then very easy for the code-writers 
to overlook the fact that at the first step they also removed 
part of the Earth’s presumed response to the permanent tide-
generating potential. When Poutanen et al. (1996) pointed 
out that the ITRF coordinates are tide-free, the IERS Stand-
ards (McCarthy 1992) were still unambiguously prescribing 
mean-tide (= zero-tide) coordinates.

All three tidal concepts are currently used for referenc-
ing geodetic quantities. ITRF coordinates are tide-free 
(Poutanen et al. 1996). Regional and national 3-D reference 
frames, such as the ETRFxx (realisations of the ETRS89) 
derive from the ITRF and are tide-free. Their great practical 
importance implies that tide-free 3-D coordinates will stay 
with us for a long time. GGMs are provided either tide-
free or zero-tide or in both versions. Legacy national height 
systems from levelling are either tide-free (i.e., tide-free 
crust over tide-free geoid) or mean-tide (mean-tide crust 
over mean-tide geoid). National height systems that have 
been adopted since 2005 are zero-tide (mean-tide crust over 
zero-tide geoid), as is the regional height reference frame 
EVRF2007 (Sacher et al. 2009). The adoption of the mean-
tide concept for IHRS is now encouraging others to follow 
suit: the EVRF2019 update of EVRF2007 is provided in 
both zero-tide and mean-tide versions (Sacher and Liebsch 
2020). The International Gravity Standardization Net 1971 
(IGSN71) is mean-tide (Morelli et al. 1974) but all mod-
ern gravity reference values since the 1980s are provided in 

zero-tide (Boedecker 1988). For more history and detail, see 
e.g., Ekman (1989, 1996) and, especially for height systems, 
Mäkinen and Ihde (2009).

At the XXVI General Assembly of the IUGG in Prague, 
Czech Republic, in 2015 the IAG adopted the mean-tide 
concept for the IHRS. In its Resolution No.1, Definition and 
Realization of an International Height Reference System 
(IHRS), the IAG resolves (quoting from Drewes et al. 2016):

•	 the following conventions for the definition of an Inter-
national Height Reference System (see note 1):

1.	 the vertical reference level is an equipotential surface of 
the Earth gravity field with the geopotential value W0 (at 
the geoid);

2.	 parameters, observations, and data shall be related to the 
mean tidal system/mean crust;

3.	 the unit of length is the metre and the unit of time is the 
second (SI);

4.	 the vertical coordinates are the differences −ΔWP 
between the potential WP of the Earth gravity field at 
the considered points P, and the geoidal potential value 
W0 ; the potential difference −ΔWP is also designated as 
geopotential number CP = W0 −WP;

5.	 the spatial reference of the position P for the potential 
WP = W(�) is related as coordinates � of the Interna-
tional Terrestrial Reference System;

•	 W0 = 62636853.4 m2 s-2 as realisation of the potential 
value of the vertical reference level for the IHRS (see 
note 2).

‘Note 1’ in the resolution above refers to Ihde et  al. 
(2015), now available also in Ihde et al. (2017), and ‘note 2’ 
above refers to Sánchez et al. (2015), expanded to a detailed 
paper by Sánchez et al. (2016). Observe that item 2 means 
that the potential W  should be interpreted as the sum of the 
Newtonian potential of the masses of the Earth (including 
the potential of the permanent tidal deformation), the cen-
trifugal potential of the Earth’s rotation, and the time average 
of the tide-generating potential, although the last mentioned 
is not always considered part of the gravity field of the Earth 
as it is not generated by the masses of the Earth or by its 
rotation.

Does the IHRS bring some new elements to the treat-
ment of the permanent tide in height systems? After all, 
mean-tide height systems are not a novelty. Until recently, 
the overwhelming majority of national height systems were 
mean-tide and there has been much practice in their use, as 
well as in tide-free and zero-tide heights.

I do think that the IHRS now presents new questions to 
the way in which the permanent tide is handled, and not only 
in height systems. I think that this stems from three aspects:
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1.	 Instead of reference markers realising a potential level 
that is derived from recent or ancient sea level obser-
vations, the datum of the IHRS is fixed by an abstract 
potential value number W0 . The relationship of the dif-
ferent tidal concepts to W0 needs to be clarified.

2.	 The IHRS is global, unlike existing height systems that 
have maximally covered a single continent. It will be 
established by methods that are different from the pre-
vious mean-tide systems and the permanent tide will 
appear in these techniques in a different way. Conven-
tions and corrections that are acceptable over a limited 
area where, primarily, height differences are treated 
might not be adequate in a global system.

3.	 The role of the permanent tide in height systems has 
until now been taken to mean the datum surface only: 
the tide-free, the zero-tide, or the mean-tide geoid. Other 
aspects have been treated pragmatically. But, now we are 
told that “parameters, observations, and data shall be 
related to the mean tidal system/mean crust”. How rigor-
ously should we apply this? What are the consequences 
if we are absolutely rigorous or alternatively if we relax 
the rigour a little?

In what follows, I discuss various aspects of the per-
manent tide in the International Height Reference Frame 
(IHRF), the realisation of the IHRS. As a height system 
does not exist in isolation from other geodetic quantities, 
the exposition will necessarily cover permanent-tide con-
cepts in general.

Notation and units I use the indices MT, ZT, and NT 
to indicate mean-tide, zero-tide, and tide-free (= non-tidal) 
quantities, respectively. Geocentric latitude is denoted by 
� and geodetic latitude by � . For a quick assessment of the 
size of potential quantities from the perspective of say, the 
management of levelling networks, I occasionally use the 
“geopotential unit”, gpu ( 1 gpu = 10 m2 s−2 ). Thus, 1 mgpu 
corresponds to approximately 1 mm in height. For the same 
reason, formulas are presented to the precision of 0.01 mgpu, 
which is a usual computation precision in precise levelling.

Section 2 presents general results on the permanent tide 
and aims to clarify its relationship with the reference poten-
tial W0 . After reviewing different determinations of the time 
average of the tide-generating potential, I propose to use for 
the IHRF the function of the IERS Conventions but with 
a different and more transparent normalisation. Section 2.4 
discusses tide-free coordinates from the ITRF, and tide-free 
GGMs, which play a central role in gravity field modelling. 
IHRF requires zero-tide potentials as a stepping-stone to the 
final mean-tide potentials and mean-tide coordinates: I pro-
vide specific formulas to correct for the tide-free quantities 
at different phases of the modelling.

Section 3 points out that the permanent tide was treated 
inconsistently in the empirical estimation of W0 that was the 

basis for the IAG adoption of the IHRS conventional W0 . 
The consistent estimate differs by +0.0943 m2 s−2 from the 
estimate preferred by Sánchez et al. (2015, 2016). However, 
after the rounding off to 0.1 m2 s−2 precision, the consistent 
estimate agrees with the IAG conventional value.

Section 4 treats the practical and theoretical difficulties 
that the (minor) dependence of the permanent tide-gen-
erating potential WT on height could cause for the IHRF 
mean-tide geopotential numbers. In Sect. 5, I then propose 
a solution: use the mean-tide geoid as a reference surface 
for the IHRF geopotential numbers but eliminate the height 
dependence of WT from them by convention. This amounts 
to the way the permanent tide is treated when national and 
regional mean-tide height systems are created using level-
ling networks.

2 � General results on permanent tide

2.1 � Basic relations

In the spectral decomposition of the tide-generating poten-
tial, only the even-degree zonal tides have nonzero time 
averages (Zadro and Marussi 1973). We have

Here,

•	 WT (r,�) is the sum of the time averages of the tide-gen-
erating potential for Sun, Moon, and planets

•	 (r,�) are the geocentric radius and latitude, respectively
•	 WT ,i(r,�) is the spectral component of degree i
•	 Pi(⋅) is the Legendre polynomial of degree i
•	 R is a scaling factor for distances
•	 Bi is a coefficient that depends on R, such that for another 

choice of R (say R′ ) the corresponding coefficient B′
i
 ful-

fils B�
i

/

(R�)i =Bi

/

Ri

When we only retain the terms WT ,i(r,�) that are at least 
0.0001m2 s−2 ( = 0.01 mgpu ) in absolute value and select 
R = a , where a is the semi-major axis of the GRS80 ellip-
soid, we obtain at the epoch 2000.0. 

(1)

W
T
(r,�) = W

T ,2(r,�) +W
T ,4(r,�) +⋯

= B2

(

r

R

)2

P2(sin�) + B4

(

r

R

)4

P4(sin�) +⋯

(2)

W
T
(r,�) =

[

−1.94438 m2s−2
]

(

r

a

)2

P2(sin�)

+
[

0.00011 m2s−2
]

(

r

a

)4

P4(sin�)
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where the coefficients have been derived from the KSM03 
tidal expansion (Kudryavtsev 2004, 2007).1 They agree with 
the digits shown with the HW95 tidal expansion (Hartmann 
and Wenzel 1995a, b). The coefficient of the second-degree 
term changes by −0.00063 m2 s−2 per century, due to the 
change in the inclination of the ecliptic. The second-degree 
term is generated by the Moon, the Sun, and the planets—
the contributions of the planets sum to one unit in the last 
decimal shown. The fourth-degree term is generated by the 
Moon; the contribution of the Sun and the planets are negli-
gible. In tidal spectroscopy the second-degree term with the 
Sun and the Moon (sometimes also including the planets) 
is usually called M0S0. I will return to the numerical values 
later in this paper.

In what follows, I drop the fourth-degree term, although it 
has the size of the last digit (0.01 mgpu) which is tradition-
ally carried over in e.g., precise levelling calculations. That 
is, however, done in order to decrease round-off errors (when 
the objective is 0.1 mgpu precision), which in the present 
case is not relevant. Thus, in the sequel I identify WT (r,�) 
with WT ,2(r,�)

If V  is the potential of the Newtonian attraction of the 
masses of the Earth including the permanent tidal deforma-
tion, and WΩ is the potential of the centrifugal acceleration of 
the Earth’s rotation, the potential WZT in the zero-tide case is

Using the same notation, the potential WMT in the mean-
tide case is

The generation of the conventional tide-free potential can 
be illustrated using the deformation response of a spheri-
cal non-rotating elastic and isotropic Earth. The Newtonian 
potential field of the model Earth deformed by the potential 
of Eq. (3) is Ṽ = V + kVT with

where k is a Love number. If the tidal response of the Earth 
is modelled by forcing the Earth with the full tide-generating 
potential, including the time-independent part, the response 
will also include the contribution kVT with the same value of 

(3)WT (r,�) ≈ WT ,2(r,�) = B2

(

r

R

)2

P2(sin�).

(4)WZT ∶= V +WΩ.

(5)WMT ∶= V +WΩ +WT .

(6)VT = B2

(

R

r

)3

P2(sin�),

k as for the time dependent tides, nominally k = 0.3 . Remov-
ing the total response (time-dependent and time-independent 
parts) gives us the conventional tide-free potential WNT

In modern geodetic practice, the time-dependent tidal 
response of a realistic rotating Earth is modelled using a 
large spectrum of spherical harmonics, frequency-dependent 
Love numbers, and taking into account the anelasticity of 
the mantle (e.g., Petit and Luzum 2010). Nevertheless, if 
there is a modelling step where the complete tide-generating 
potential (including the time average) is used, the corrected 
geopotential will have a tide-free second-degree zonal har-
monic, just as in the simplified case above [Eqs. (6) and 
(7)], with the Love number k used at that particular step. In 
addition, depending on the computation scheme, there might 
be a tide-free fourth-degree zonal term. This is treated in 
Sect. 2.4, along with the restoration of the zero-tide values.

The conventional tide-free coordinates are generated 
analogously: by forcing the Earth with a tide-generating 
potential that also contains the time-independent part. The 
correction then removes the time-independent part with the 
same Love number h and Shida number � with which the 
time-dependent tide is corrected for.

In the “secular tide-free concept” a “secular” or “fluid 
limit” Love number of about ks = 0.93 is found. The secular 
tide-free concept was never considered viable as a refer-
ence for geodetic quantities. It would create a reference very 
much different from physical reality. Compared with this, the 
traditional argument against it (Groten 1980, 1981; Anger-
mann et al. 2016) “that the ks is poorly known and in practice 
unknowable” is insignificant.

Henceforth, I use “tide-free” without attributes as being 
synonymous with “conventional tide-free”. This is in line 
with Chapter 2 ff. of IERS Conventions 2010 (Petit and 
Luzum 2010). Although Fig. 1.1 and Fig. 1.2 of Sect. 1.1 
(op cit) appear to suggest that “tide-free” without attributes 
should point to secular tide-free quantities, it would be quite 
impractical to reserve the concise expression “tide-free” to 
the secular concept that is never used in geodetic referenc-
ing, and to always have to use the long “conventional tide-
free” for the concept that is actually used.

Taking the zero-tide potential WZT as reference, we have 
the difference of the tide-free potential WNT and of the mean-
tide potential WMT relative to it

Equations (8a) and (8b) may appear rather symmetrical 
for WNT and WMT . On the surface of a sphere, we get for the 
differences −kVT and WT the same surface harmonic spectral 

(7)WNT = V − kVT +WΩ.

(8a)WNT −WZT = −kVT

(8b)WMT −WZT = WT .
1  Kudryavtsev (2007) also shows a permanent third-degree tide of 
6 × 10–7 m2s−2. It seems to be an artefact of the spectral analysis of 
the third-degree tides where the latter are discretely sampled over 
a limited time interval (personal information by e-mail from SM 
Kudryavtsev on November 1, 2017).
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component P2(sin�) (with different coefficients). But, there 
is a fundamental distinction: the potential −kVT is generated 
by the (deformation of the) masses of the Earth and WT is 
not. Thus −kVT in Eq. (7) can be fused with the standard 
spherical harmonic representation of the Newtonian attrac-
tion V , while WT in Eq. (5) must be represented separately by 
Eq. (3). This point is sometimes overlooked, and the second-
degree spherical surface harmonic obtained from WT is then 
imported into the second-degree zonal harmonic in a GGM.2 
This is erroneous: while it makes sense to talk about a tide-
free J2 or tide-free C20 , there is no such thing as mean-tide 
J2 or mean-tide C20 , except for surface spherical harmonics. 
For the same reason, the shorthand term “mean-tide geo-
potential” may easily result in misunderstandings about the 
character of the permanent tide-generating potential.

An example about the numerical values involved: Let us 
use the equatorial radius a of the GRS80 ellipsoid as the 
scale parameter R in Eq. (3) for the permanent tide-gener-
ating potential.

In the spherical-harmonic expansion of a zero-tide GGM 
using the same scale parameter a, the second-degree zonal 
term is

(9)WT ,2(r,�) = B2

(

r

a

)2

P2(sin�).

Here GM is the geocentric gravitational constant and CZT
20

 
is the zero-tide second-degree zonal coefficient. We can 
merge the geopotential and the permanent tide-generating 
potential in the surface spherical harmonic on a sphere. On 
the sphere r = a

But we cannot replace CZT
20

 in Eq. (10) by 
[

CZT
20

+ B2
a

GM

]

 
from Eq. (11) and claim that the result would represent “the 
second-degree zonal term in a mean tide GGM”. If we nev-
ertheless try to use such a construct for computations, we 
will get erroneous results. For instance, at the poles 
( P2(sin�) = 1 , r = b ) the permanent tide that we have erro-
neously embedded in the expansion would contribute 
B2

(

a3
/

b3
)

 to the total potential, instead of the correct num-
ber B2

(

b2
/

a2
)

 from Eq. (9). Using the value −1.9444 m2s−2 
for B2 , the error committed corresponds to + 3.3 mm in 
height.

Thus, while 2-D displays and spherical formulas of the 
permanent-tide quantities, such as in Fig. 1 of Mäkinen and 
Ihde (2009) and Table 1 (op cit) can be instructive, they can-
not replace rigorous calculations. If we treat global problems 
and want to use global models rigorously, we cannot handle 
the permanent tide as just a surface spherical harmonic on 
a sphere.

(10)VZT
20
(r,�) = GM

1

r

a2

r2
CZT
20

P2(sin�).

(11)

VZT
20
(a,�) +WT ,2(a,�) = GM

1

a

[

CZT
20

+ B2

a

GM

]

P2(sin�).

Table 1   Time average of the 
tide-generating potential from 
various spectral expansions, 
rewritten in the form of Eq. (17) 
and compared in terms of 
the coefficient A at the epoch 
2000.0

The rate of A is − 0.00095 m2 s–2 per century. “Numerical” refers to spectral analysis of time series gener-
ated from numerical ephemeris, “analytical” refers to algebraic manipulations. For more details, see the 
text

# Reference Method Ephemeris lunar solar Number of terms A [m2 s−2]

1 Doodson (1921) Analytical Brown 378 − 2.9181
2 Cartwright and Tayler (1971)

Cartwright and Edden (1973)
Numerical Brown/EJC

Newcomb
505 − 2.9165(2)

3 Büllesfeld (1985) Numerical Brown
Newcomb

656 − 2.9164

4 Tamura (1987, 1993) Numerical DE118/LE62 1200 − 2.91656
5 Xi (1989) Analytical Brown/EJC

Meeus
2933 − 2.91647

6 Hartmann and Wenzel (1995a, b) Numerical DE200 12,935 − 2.91657
7 Roosbeek (1996) Analytical ELP2000-85

VSOP87
6499 − 2.91665

8 Kudryavtsev (2004, 2007) Numerical DE/LE-406 28,806 − 2.91657
9 McCarthy and Petit (2004), Petit 

and Luzum (2010)
From (#2) − 2.9166(2)

2  The mean-tide ellipsoid of Burša (1995a, 1995b), recently revived 
by Angermann et al. (2016), was made in this way: fusing the spheri-
cal surface harmonic from the permanent tide into the harmonic J2. 
Subsequently, he used the modified J2 as an input to calculating a 
Somigliana-Pizzetti level ellipsoid.
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2.2 � Geoids in different concepts of the permanent 
tide

It is frequently stated that the potential W0 at the geoid is 
“free of zero-frequency tidal distortion”, “independent of 
the tidal concept used”, i.e., that the same W0 is appropriate 
for the secular tide-free, conventional tide-free, the zero-
tide, and the mean-tide geoid. This statement is sometimes 
(e.g., Burša 1995c) treated as a theorem that requires proof, 
for instance using Bruns’ formula or an explicit form of the 
permanent tide-generating potential. However, the statement 
is better considered as the definition of the tidally different 
geoids.3 Suppose we take for instance the zero-tide geoid

with a given value W0 as a starting surface. We then “dis-
tort” it by adding the permanent tide-generating potential 
WT . Which of the new equipotential surfaces

with various values of the constant W1 can be regarded as the 
tidally distorted version of the original surface of Eq. (12)? 
Surely the answer is W1 = W0 . The same logic applies 
between all of the tidal geoids. The distances between the 
geoids can then be calculated using Bruns’ formula. The 
height of the mean-tide geoid above the zero-tide geoid is

and the height of the tide-free geoid above the zero-tide 
geoid is

where g is gravity.
When we consider a range of geoids with different tidal 

definitions but all with the same W0 , it is important to keep 
in mind that the potential function W, by which the equipo-
tential surface is defined, is different in each case.

(12)WZT = V +WΩ = W0

(13)WMT = WZT +WT = W1

(14)ΔNMT =
WT

g

(15)ΔNNT = −
kVT

g

2.3 � Numerical values for permanent‑tide quantities

2.3.1 � Time average of the tide‑generating potential

Consistent formulas for all quantities that are related to the 
permanent tide can/should be derived from a (conventional 
or best) formula for the time average of the tide-generating 
potential WT . Formulas for WT are often presented in dif-
ferent normalisations. For instance, the IERS Conventions 
(2010) (Petit and Luzum 2010) use the Cartwright–Tay-
ler–Edden normalisation

where H0 = −0.31460 m is the height of the permanent tide 
(Cartwright and Tayler 1971; Cartwright and Edden 1973), 
ge = 9.79828685ms−1 , Re = 6378136.55 m . To compare the 
formulas, I write them in the form

where a = 6378137 m is the semi-major axis of the GRS80 
ellipsoid, and compare the coefficients A. Where can we 
obtain good estimates for WT , i.e., for the coefficient A? That 
would be from the time-independent terms (M0S0) of the 
time-harmonic expansion of the tide-generating potential 
(Table 1).

Except for items Nº 8 and Nº 9, the values in the column 
“A” in Table 1 were derived not from the original papers 
(column “Reference”) but from Hartmann and Wenzel 
(1995b) and Wenzel (1996), where they have been renormal-
ised to the same format (“HW95”) as item Nº 6, and when 
necessary also updated with new astronomical constants. 
Where the original paper has less digits than those given in 
Table 1, I have put the extra digit in parentheses. The coef-
ficient H0 = −0.31460 m in Eq. (16) enters Table 1 through 
both items Nº 2 and Nº 9. Item Nº 9 uses the renormalisa-
tion advice of Petit and Luzum (2010); the values are given 
under Eq. (16). The advice appears to ignore the original 
parameters of Cartwright–Tayler–Edden. Wenzel (1996) 
states that they have been taken into account (item Nº 2). 
This apparently leads to the minor difference between items 
Nº 2 and Nº 9, column “A”.

Starting with item Nº 2, the differences in the coef-
ficient A (the last column of Table  1) are maximally 
0.0002 m2 s-2 = 0.02 mgpu only. In the rest of this paper, the 
value −2.9166 m2 s−2 derived from the IERS Conventions 
(2010) is used; it differs by less than 0.01 mgpu from the 
latest estimates, those of Hartmann and Wenzel (1995a, b), 
Roosbeek (1996) and Kudryavtsev (2004, 2007). It is pro-
posed to adopt the WT (r,�) of IERS Conventions also for the 

(16)

Wr(r,�) = B2

(

r

R

)2

P2(sin�) = H0

√

5

4�
ge

(

r

Re

)2
(

3

2
sin2 � −

1

2

)

(17)WT (r,�) = A
(

r

a

)2 (

sin2 � −
1

3

)

3  In order that the equality of the potentials be considered as a theo-
rem requiring proof, we would need a definition of the distorted geoid 
that is independent of the equality of potentials. Otherwise, a proof 
can only amount to tautology.
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IHRF Conventions. However, the Cartwright–Taylor–Edden 
normalisation is unwieldy and opaque for analysts outside 
of the tide community. Thus, for the IHRF we should adopt

with A = −2.9166 m2 s−2 ,  A� =
2

3
A = −1.9444 m2 s−2 , 

A�� =
A�

√

5
= −0.86956 m2 s−2 . Here P2(⋅) is the second-

degree Legendre polynomial and P̄2(⋅) is the second-degree 
fully normalised Legendre polynomial.

2.3.2 � Derived expressions

It is useful to derive from Eq. (18) expressions in ellipsoi-
dal coordinates. The formula for WT  in geodetic latitude 
and height (�, h) , close to the surface of the GRS80 ellip-
soid, reads as (Ihde et al. 2008)

where the overbar in W̄T (𝜙, h) is not normalisation-related, 
but is used to avoid possible confusion due to change of vari-
ables compared with earlier notation. Equation (19) is valid 
at any height of the terrestrial topography.

The contribution of WT to the acceleration of free fall is

The dependence of gT (�) on h is negligible and is not 
shown. Equation (20) shows the value that should be added 
to zero-tide gravity in order to obtain mean-tide gravity 
(The IAG definition of gravity is zero-tide).

The ratio, W̄T (𝜑, 0)
/

𝛾0(𝜑) , where �0(�) is the GRS80 
normal gravity at the ellipsoid, can for instance be used to 
get an idea about the difference between metric zero-tide 
heights and metric mean-tide heights.

2.4 � Tide‑free quantities

In the IHRF both coordinates and potential shall be mean-
tide. Gravity field modelling, however, cannot be done 
with the mean-tide potential, as it contains the perma-
nent tide-generating potential WT  , generated by masses 
outside the Earth. The potential WT can only be added at 

(18)

W
T
(r,𝜙) = A

(

r

a

)2 (

sin
2 𝜙 −

1

3

)

= A
�
(

r

a

)2

P2(sin𝜙) = A
��
(

r

a

)2

P̄2(sin𝜙)

(19)

W̄
T
(𝜑, h) =

(

1 +
2h

a

)

(0.9722

−2.8841 sin2 𝜑 − 0.0195 sin
4 𝜑

)

[m2 s−2]

(20)
gT (�) = −30.49 + 90.95 sin2 � + 0.31 sin4 �

[

μGal
]

.

(21)

H
T
(𝜑) = W̄

T
(𝜑, 0)

/

𝛾0(𝜑)

= +99.40 − 295.41 sin
2 𝜑 − 0.42 sin

4 𝜑 [mm]

the end. It is straightforward to do the modelling in zero-
tide. However, key inputs are tide-free: the published ITRF 
coordinates, and many GGMs. Therefore, many analysts 
prefer to work with tide-free quantities and reduce to the 
zero-tide at the end. This reduction is often done by using 
the generic formulas of Ekman (1989).

The purpose of this section is to recount how the zero-
tide quantities can be restored before the computation. If 
the computation is, nevertheless, performed with tide-free 
quantities, formulas are provided to restore zero-tide at 
the end. They are specific to tide-free ITRF coordinates 
and to tide-free GGMs that are generated by applying the 
IERS Conventions.

2.4.1 � ITRF coordinates

IERS Conventions of 2003 (McCarthy and Petit 2004) and 
2010 (Petit and Luzum 2010) provide the formula for restor-
ing the mean-tide position for ITRF tide-free Cartesian 
coordinates; it was already provided as an alternative in the 
1996 Conventions (McCarthy 1996). The restoring formulas 
of the IERS Conventions (2010) are given with a precision 
of 0.1 mm (Eqs. [7.14a] and [7.14b], Sect. 7.1.1.2). Ihde 
et al. (2008) calculated them with one more decimal, using 
Eqs. (7.1a) and (7.2) (Sect. 7.1.1.1). The vector to be added is

Here, r̂ is the unit vector from the origin to the station, n̂ is 
the unit vector at right angles to it in the northward direction, 
� is the geocentric latitude, and P2(⋅) is the second-degree 
Legendre polynomial.

It is useful to express Eq. (22) in ellipsoidal coordinates 
(GRS80). The projection hT (�) of the vector Δr⃗ on the ellip-
soidal normal is (Ihde et al. 2008)

taken positive outwards. The projection of the vector Δr⃗ on 
the North-pointing normal of the ellipsoidal normal is

Thus, vT (�) is the correction from the tide-free north 
coordinate to the mean-tide north coordinate in a local 
(north, east, up) coordinate system at station height. Equa-
tions (23) and (24) are valid wherever Eq. (22) is. The cor-
rection to the geodetic latitude corresponding to Eq. (22) is

It decreases insignificantly (in absolute value) with 
increasing height of the station above the ellipsoid: at 10 km 
the coefficient of the sin 2� term is –0.813.

(22)

Δr⃗ =
{ [

−120.61 + 0.12P2(sin𝜙)
]

P2(sin𝜙)
}

r̂

+
{ [

−25.21 − 0.06P2(sin𝜙)
]

sin 2𝜙
}

n̂ [mm].

(23)hT (�) = 60.34 − 179.01 sin2 � − 1.82 sin4 � [mm]

(24)vT (�) = −25.13 sin 2� − 0.04 sin 4� [mm].

(25)Δ�T (�) = −0.814 sin 2� − 0.004 sin 4� [mas].
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When the potential WNT or WZT is to be evaluated using 
a geopotential model and tide-free 3-D coordinates from 
ITRF, firstly, the mean-tide position should be restored using 
Eq. (22). If the GGM is, nevertheless, evaluated at the ITRF 
tide-free position, the correction ΔW to the GGM + the cen-
trifugal potential, corresponding to Eq. (22), can be calcu-
lated from Eq. (23), multiplying it by (–g) where g is gravity. 
We can get a good estimate of the correction by replacing g 
with the normal gravity at ellipsoid

Equation (26) is in error for ΔWITRF to the extent that �0 
differs from g, that is, up to a couple of parts per thousand. 
Nevertheless, it is presented with all of the decimals, since 
for each individual point it can be corrected by scaling it with 
g
/

�0 . The worst-case error in ΔWITRF without rescaling is less 
than 1 mgpu.

2.4.2 � Restoring the zero tide to GGMs and consequences 
for the potential

Petit and Luzum (2010) provide a formula (6–14 in Sect. 6.2) 
for restoring the zero tide to the tide-free fully normalised 
zonal coefficient C̄NT

20
 , obtained by processing the solid Earth 

tides with the IERS Conventions. I will look at the general 
formulas. The second-degree zonal term of a GGM is for 
fully normalised spherical harmonics

where GM and the scale parameter r0 are specific to the 
model. Normally, we are free to re-scale GGMs but here 
r0 should be the scale that was originally used in the pro-
cessing of satellite gravity observations, i.e., to scale the 
effects of the solid Earth tide on the geopotential. If C̄20 in 
Eq. (27) has been provided tide-free, it means that in the 
model the permanent tide-generating potential was part of 
the forcing by zonal tides. Thus, a part of the Earth’s actual 
contribution to zero-tide C̄20 (there is no mean-tide C̄20 ) was 
already removed together with the time-dependent part. 
As in Eqs. (3), (6), and Eq. (8a), at the surface r = r0 the 
presumed change ΔV20(r,�) in V20(r,�) induced by forc-
ing by the permanent tide-generating potential is equal to 
the value of the permanent tide-generating potential at this 
surface, multiplied by the Love number k20 . We do not need 
to first renormalise the expression Eq. (18) by r0 . Instead 
and equivalently we just evaluate Eq. (18) (in this case the 
third form) at r = r0

(26)

ΔWITRF(�) ≈ (−�0(�))hT (�)

= −0.5901 + 1.7475 sin
2 � + 0.0273 sin

4 � [m2s−2].

(27)V20(r,𝜙) = GM
1

r
C̄20

( r0

r

)2

P̄2(sin𝜙)

Thus, at the surface r = r0 we can solve for the relation 
between the tide-free C̄NT

20
 and zero-tide C̄ZT

20

From Eq. (29c) we get for the corresponding zonal com-
ponents of the GGM

Obviously, the formulas would look simpler if we would 
also have the same scalr r0 in Eq. (18). In view of the accu-
racy that is needed, in Eq. (29c) and Eq. (30) we can con-
sider (r0

/

a) ≈ 1 in any case.
The IERS Conventions starting with McCarthy 

(1996) have the same GM = 3.986004415 × 1014 m3s−2 , 
r0= 6378136.55 m , and k20 = 0.30190 . It appears that most 
of the recent GGMs were calculated using these values or 
values that are sufficiently close to them. The correction 
term of Eq. (29c) agrees with the formula (6–14, Sect. 6.2) 
by Petit and Luzum (2010) within the number of significant 
digits that are involved in their computation.

In a tide-free GGM that is produced by observing the 
IERS Conventions (Petit and Luzum 2010), there is also a 
tide-free fourth-degree zonal coefficient C̄40 . It comes from 
the correction to fourth-degree geopotential coefficients 
due to second-degree tides and has nothing to do with 
fourth-degree tides. From Eqs. (6.6) and (6.7), p. 71 (op 
cit) the time-dependent tidal corrections ΔtC̄20 and ΔtC̄40 
to fully normalised C̄20 and C̄40 , respectively, are related by

with k+
20

= −0.00089 . Taking the average in time of Eq. (31), 
we obtain the differences between the tide-free and zero-tide 
values of the coefficients

(28)ΔV20(r0,𝜙) = k20A
��
( r0

a

)2

P̄2(sin𝜙).

(29a)VNT
20

(r0,�) = VZT
20
(r0,�) − ΔV20(r0,�)

(29b)

GM
1

r0

C̄
NT

20

(

r0

r0

)2

P̄2(sin𝜙)

= GM
1

r0

C̄
ZT

20

(

r0

r0

)2

P̄2(sin𝜙) − k20A
��
(

r0

a

)2

P̄2(sin𝜙)

(29c)C̄ZT
20

= C̄NT
20

+ k20
r0

GM
A��

( r0

a

)2

.

(30)VZT
20
(r,𝜙) = VNT

20
(r,𝜙) + k20A

��
( r0

a

)2( r0

r

)3

P̄2(sin𝜙).

(31)ΔtC̄40 =
k+
20

k20
ΔtC̄20
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Using Eq. (29c) and putting (r0
/

a) ≈ 1

The fourth-degree zero-tide and tide-free zonal compo-
nents of the GGM are then related by

The coefficient of 
(

r0
/

r
)5 in the correction term (the sec-

ond term at right) is

where the function of geocentric latitude in parenthesis 
(= P40(sin�) ) is maximally one in absolute value. Thus, the 
correction term in Eq. (34) is maximally 0.23 mgpu in abso-
lute value. It is not clear in which tide-free GGMs the tidal 
correction to C̄40 according to Eq. (6.7) of Petit and Luzum 
(2010) was in fact applied. Therefore, the correction term 
of Eq. (34) is not included here in corrections to tide-free 
GGMs.

Now, suppose that the potential values of the GGM were 
evaluated using the tide-free version and we want to restore 
the zero-tide potential a posteriori. Denote by ΔWGGM the 
correction sought

From Eq. (30), we have

Putting r0= 6378136.55 m and expressing ΔWGGM in 
ellipsoidal coordinates (GRS80).

Equation (38) after the Love number looks quite different 
from Eq. (19) even when neglecting the height dependence. 
The explanation is obvious: In Eq. (19) we have the perma-
nent tide-generating potential itself. In Eq. (38) we have the 
presumed Earth response. The two expressions agree at the 
equator.

For older GGMs the values k20 and r0 may be different 
from those used in the IERS Conventions. Those values (say 
k2 , r1 ) can be found in the documentation of the GGM and 

(32)C̄NT
40

− C̄ZT
40

=
k+
20

k20

(

C̄NT
20

− C̄ZT
20

)

.

(33)C̄ZT
40

= C̄NT
40

+ k+
20
A��

r0

GM
.

(34)VZT
40
(r,𝜙) = VNT

40
(r,𝜙) + k+

20
A��

( r0

r

)5

P̄40(sin𝜙).

(35)
k+
20
A��P̄40(sin𝜙) ≈ 0.0023

(

35

8
sin4 𝜙 −

15

4
sin2 𝜙 +

3

8

)

[

m2 s−2
]

(36)WGGM
ZT

= WGGM
NT

+ ΔWGGM .

(37)ΔWGGM = k20A
��
( r0

a

)2( r0

r

)3

P̄20(sin𝜙).

(38)

ΔW̄GGM( 𝜑, h) = k20

(

1 −
3h

a

)

(

0.9722 − 2.8673 sin
2 𝜑 − 0.0690 sin

4 𝜑
)

[m2 s−2].

inserted into Eq. (29c). Then, Eq. (38) is not strictly valid, 
but an inspection of Eq. (37) shows how Eq. (38) can be 
scaled for ( k2 , r1).

If the GGM has a tide-free C̄40 that was created accord-
ing to the IERS Conventions 2010, the additional correction

can be deduced from Eq. (35) and summed to Eq. (38).
Except for Eq. (39), the formulas with ellipsoidal coor-

dinates in this section were obtained by fitting their coef-
ficients to the corresponding closed expressions, usually in 
Cartesian or spherical coordinates. The formulas are precise 
within the last decimal given. Of course, one never needs to 
use them: even after the computation in tide-free ITRF one 
can evaluate the GGM (plus the centrifugal potential) at the 
two positions provided by the vector of Eq. (22) and use 
the difference as a correction instead of Eq. (26). Similarly, 
when correcting a posteriori for tide-free GGM, one can 
simply evaluate Eq. (37) instead of Eq. (38). Expressions 
with ellipsoidal coordinates may provide a little more “feel” 
for the quantities though.

2.4.3 � Combine the corrections for tide‑free ITRF 
coordinates and for tide‑free GGM: a levelling 
analogy

We have seen that the corrections for tide-free ITRF coor-
dinates and for tide-free GGM are independent, both theo-
retically and practically. The pseudo-obligatory binding of 
“tide-free crust” and “tide-free potential” to a single tide-
free concept originated with precise levelling and ceased 
to be valid when GGMs became the method with which to 
evaluate potential values at a large scale.

Nevertheless, it is interesting to see what happens when 
we combine the two corrections Eq.  (26) and Eq.  (38). 
The former corrects the potential for the tide-free ITRF 
coordinates, and the latter corrects for the tide-free GGM. 
We neglect the height dependence in Eq.  (38) and use 
k20 = 0.30190 . Then

If we work with tide-free ITRF coordinates and with a 
tide-free GGM but, nevertheless, skip both of the two correc-
tions going into Eq. (40) then we have evaluated the tide-free 
geopotential at the tide-free coordinates. This is an analogy 
to tide-free geopotential numbers from levelling. They are 
interesting for us because many analysts who work with ITRF 
tide-free coordinates and tide-free geopotential verify their 
results by comparing them with tide-free levelling results.

(39)

ΔW̄GGM

4
(𝜑) = 0.0023

(

35

8
sin

4 𝜑 −
15

4
sin

2 𝜑 +
3

8

)

[

m2 s−2
]

(40)

ΔWITRF + ΔW̄GGM = −0.2966

+ 0.8819 sin
2 𝜑 + 0.0065 sin

4 𝜑 [m2 s−2].
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If we keep the coordinate representation at mean-tide, as 
we normally should, the tide-free geopotential number CNT 
is (from Eq. [7])

The last form of Eq. (41) refers specifically to Eq. (37). 
In the levelling analogy we define

with ΔWITRF + ΔW̄GGM from Eq. (40).
Now, a tide-free geopotential number arising from a tide-

free correction to levelling is not necessarily influenced by the 
permanent tide-generating potential exactly in the same way as 
C̃NT is. Details will depend on the correction. It is unlikely to 
contain the complicated tidal response of the shape and poten-
tial of the Earth that the ITRF and GGM corrections above 
imply. Suppose that the levelling correction derives from an 
accurate computation of the gradients of the tide-generating 
potential (i.e., the tilt) in combination with nominal Love num-
bers h2 and k2. If we take h2 = 0.605 and k2 = 0.30190 (the best 
we can do to mimic ΔWITRF and ΔW̄GGM ), the contribution of 
the permanent tide to ̃̃CNT from levelling will be

with

The coefficients in Eq. (40) and Eq. (43b) differ by less 
than 1 mgpu. Levelling is a relative technique, such that 
we should be comparing differences of the geopotential 
numbers within Eq. (40) with differences within Eq. (43b). 
They, too, differ by less than 1 mgpu. Within this accuracy, 
tide-free precise levelling can be compared with tide-free 
potential modelling.

Many of the formulas in this section update and supersede 
the popular formulas by Ekman (1989). The context, how-
ever, is different because Ekman (1989) presented formulas 
for transforming between different tidal concepts. Here, the 
perspective is strictly that of correcting tide-free quantities 
to obtain zero-tide/mean-tide quantities. As to the numeri-
cal differences between the formulas, Ekman worked in a 
spherical approximation evaluating potentials on the sur-
face of a sphere, and his tide-free model is a generic model. 
Here, there are two specific tide-free models: ITRF coordi-
nates and tide-free GGMs generated by IERS computation 
schemes were addressed. Ekman (1989) was only concerned 
with differences and one-mm accuracy. Comparisons show 
that the differences of his formulas to mine are of the order 
of one millimetre only. Since the flattening of the Earth 

(41)
CNT = W0 − (WZT − kVT ) = CZT + kVT = CZT + ΔWGGM .

(42)C̃NT ∶= CZT + ΔWITRF + ΔW̄GGM

(43a)̃̃CNT = CZT + (−h2 + k2)W̄T (𝜑)

(43b)

(−h2 + k2)W̄T
(𝜑) = −0.2947 + 0.8742 sin

2 𝜑

+ 0.0059 sin
4 𝜑 [m2s−2].

corresponds in proportion to 1 mgpu of the permanent tide-
generating potential, one millimetre is the best that one can 
achieve in a spherical approximation.

3 � Permanent‑tide in the empirical 
estimation of W0

Sánchez et al. (2016) published an estimation of the W0 value 
that provides the best approximation of the global mean sea 
level (MSL). Their method amounts to averaging the potential 
estimates obtained from GGMs over the 3-D surface of MSL 
determined by satellite altimetry. They perform the calcula-
tion with three different tidal concepts and find three different 
results. In view of the discussion in Sect. 2.2 of the present 
paper, this is baffling. What is the reason for the outcome?

Denote by WGGM
ZT

 a zero-tide GGM, with the centrifugal 
potential included. The corresponding “mean-tide GGM” (with 
some terminological inaccuracy) is WGGM

MT
= WGGM

ZT
+WT 

where WT is the permanent tide-generating potential. The 
tide-free GGM is WGGM

NT
= WGGM

ZT
− kVT . Now, in estimating 

W0 each tidal version of the GGM should be averaged over a 
surface which approximates the geoid of the corresponding 
tidal concept, i.e., over a surface where in the idealised case 
the corresponding potential would be constant. Only then can 
we hope for consistent results. Denote by SMT, SZT , SNT such 
approximating 3-D surfaces over the pertinent sea domain, 
for the mean, zero, and tide-free potential, respectively. In the 
idealised case (in the absence of steric, atmospheric, salinity, 
and ocean dynamic effects, etc.) we would expect the MSL 
to follow an equipotential surface of the mean-tide concept. 
This, after all, is the whole rationale of adopting the mean-tide 
concept for the IHRS. The MSL is an SMT , while the corre-
sponding SZT and SNT must be computationally constructed.

Thus, the average Ŵ01 of WGGM
MT

= WGGM
ZT

+WT over SMT , 
the 3-D representation of the MSL is a tidally consistent esti-
mate of W0 . This is the mean-tide estimate of Sánchez et al. 
(2016). How can we construct the other surfaces? None of 
the surfaces SMT , SZT , SNT is a geoid but in order to provide 
consistent estimates they must be spaced as the corresponding 
geoids. Let P be a point at SMT . If P′ and P′′ are the correspond-
ing points at SZT and SNT , respectively, the defining property 
of these other surfaces is WMT (P) = WZT (P

�) = WNT (P
��) . But, 

since WGGM
ZT

 is a very good estimate of WZT we have for the 
differences

Thus, the GGMs with other tidal components, and their 
surfaces, bring nothing new, it is the same estimate repeated 
three times over.

(44)

WGGM
ZT

(P�) −WGGM
MT

(P) = WZT (P
�) −WMT (P)

WGGM
NT

(P��) −WGGM
MT

(P) = WNT (P
��) −WMT (P)

⇒ WGGM
MT

(P) = WGGM
ZT

(P�) = WGGM
NT

(P��)
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What will happen if the potential models and the surfaces 
are paired in another way? Suppose that, for instance, we 
average the zero-tide potential model WGGM

ZT
= WGGM

MT
−WT 

over the MSL surface, as Sánchez et al. (2016) do when 
they calculate their “zero-tide” estimate. We will get the 
consistent estimate Ŵ0 plus the average of −WT over the 
region in question. The averaging of the tide-free poten-
tial WGGM

NT
= WGGM

MT
−WT − kVT  over the MSL produces 

the consistent estimate Ŵ0 plus the average of −WT − kVT . 
Since in the spherical-surface approximation VT ≈ WT , we 
see that any mis-pairing produces the consistent estimate Ŵ0 
plus a bias term, which is the average of the permanent tide-
generating potential WT multiplied by one of the constants 
(1, – 1, k, – k, 1 + k, – 1 – k). The average of WT (and of VT ) 
over the ellipsoidal surface is nearly zero, hence, if we would 
be able to integrate over the whole globe, the biases would 
almost disappear.

So far, we have used the same coordinates (mean-tide) 
for all three geopotential models. Should we not use tide-
free coordinates as well? No, we should not because using 
them would be inconsistent with our purpose. We want to 
calculate the average of the potential model over the position 
of the MSL. For this purpose, the position of the Mean Sea 
Level must not be taken at the tide-free coordinates, which 
represent an off-Mean position. (Warning: the argument has 
absolutely nothing to do with ocean tides.)

I have discussed the tidal issues around W0 at a non-tech-
nical, first-principles level because I think that is where their 
features appear most clearly. Nevertheless, it is instructive 
to examine how they show up in the linearised set-up where 
Sánchez et al. (2016) estimate W0.

Take the point P at the 3-D representation of the mean sea 
surface and denote by U the GRS80 normal potential, by Q 
the point at the surface of the GRS80 ellipsoid, correspond-
ing to P, by WGGM

ZT
 as before a zero-tide geopotential model, 

and by WT the permanent tide-generating potential. Then

Here, TP is the anomalous potential from WGGM
ZT

 and U 
at P, hP is the ellipsoidal height of P, 𝛾̄P is the mean normal 
gravity over ̄PQ , and U0 is the normal potential at the GRS80 
ellipsoid. W0 is estimated as

where I have denoted by avgS(⋅) the average taken over the 
region S of the ellipsoidal surface corresponding to the sea 
region in question. Sánchez et al. (2016) take a weighted 
average, with 1

/

𝛾̄2
P
 as weights (Eq. [12], op cit); my notation 

(45)

W
T
(P) +W

GGM

ZT
(P) = W

T
(P) +W

GGM

ZT
(P) − U(P)

+ U(P) − U(Q) + U(Q)

= W
T
+ TP − h

P
𝛾̄
P
+ U0.

(46)Ŵ0 = U0 + avgS(WT + TP − hP𝛾̄P)

and the discussion below cover both a weighted and a non-
weighted average.

I have argued above that the potential and the surface 
must be matched. Thus, when the point P is on the MSL, we 
must include the permanent tide-generating potential WT in 
the averaging as I just did above in Eqs. (45) and (46). Then 
we get the mean-tide estimate of Sánchez et al. (2016).

If we exclude WT  from the averaging, i.e., average 
WGGM

ZT
 only, we must evaluate it at the surface SZT . With 

P′ at SZT  , we have WGGM
ZT

(P�) = WT (P) +WGGM
ZT

(P) in 
Eq.  (45). The tide-free function WGGM

NT
= WGGM

ZT
− kVT 

is evaluated at the point P′′ at the surface SNT  with 
WGGM

ZT
(P��) − kVT (P

��) = WT (P) +WGGM
ZT

(P) . Thus, even in 
the linearised setup we get the same averaging three times 
over.

The mean-tide estimate by Sánchez et al. (2016) is the 
correct estimate out of their three estimates. I will now look 
at the other two. In their zero-tide alternative, they average 
WGGM

ZT
 over the MSL. The resulting estimate is Ŵ01

Comparison with Eq. (46) shows that Ŵ01 is biased by the 
amount of −avgS(WT ) . If we would be able to integrate over 
the whole ellipsoid, the bias (whether from a weighted or a 
non-weighted average) would nearly disappear. (It would 
not be exactly zero.) As things are, the Legendre polynomial 
P2(sin(�)) in WT means that the bias will decisively depend 
on the latitude range and ocean mask used.

In their tide-free alternative, Sánchez et al. (2015, 2016) 
average the tide-free potential model WGGM

ZT
− kVT over the 

MSL which they shift to its tide-free position. They obtain 
the tide-free position by replacing hP in (25) by hP + ΔhT 
where ΔhT is the projection on the ellipsoidal normal of the 
vector from a 3-D mean-tide to ITRF tide-free coordinates. 
Here ΔhT = −hT where hT (Ihde et al. 2008, Eq. [5–7]) is the 
same formula as Eq. (23).4 We get the estimate

To first order

(47)

Ŵ01 = U0 + avgS(TP − hP𝛾̄P) = U0 + avgS(TP +WT − hP𝛾̄P −WT )

= U0 + avgS(TP +WT − hP𝛾̄P) + avgS(−WT ) = Ŵ0 − avgS(WT ).

(48)

Ŵ02 = U0 + avgS(TP − kTV − (hP + ΔhT )𝛾̄P)

= U0 + avgS(TP +WT − hP𝛾̄P − kV −WT − ΔhT 𝛾̄P)

= U0 + avgS(TP +WT − hP𝛾̄P) + avgS(−kV −WT − ΔhT 𝛾̄P)

= Ŵ0 + avgS(−kV −WT − ΔhT 𝛾̄P).

4  Sánchez et  al. (2016, Eq. [22]) give for Δh
T
 a formula which is 

actually that of h
T
 but it seems that in their calculations the correct 

sign was used.
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where h ≈ 0.61 is the nominal second-degree Love num-
ber used in the IERS Conventions, and g is gravity. Further 
VT ≈ WT on the ellipsoid (within flattening accuracy) and 
we get the approximate bias

In overview

The ratio of the biases is

given that k ≈ 0.30 . The numerical values by Sánchez et al. 
(2015, 2016) produce the corresponding ratio as – 0.0665/
(– 0.0943) = 0.705, which is close enough to Eq. (52). The 
negative signs of the biases of their “tide-free” and “zero-
tide” estimates are obviously a consequence of the latitudes 
where WT is positive (up to ± 35 degrees) dominating their 
estimates. They state that the discrepancies between their 
different estimates increase when the latitudinal coverage 
decreases, and the explanation would be the same.

Sánchez et al. (2016) considered their “zero-tide” esti-
mate to be their best estimate,

in the notation of this paper. They did not provide an uncer-
tainty but noted that the formal error of their estimate is 
about 0.02 m2s−2 . They could not explain the discrepancies 
between their zero-tide estimate (Eq. [53]), their mean-tide 
estimate

and their tide-free-estimate

In view of this, they rounded their zero-tide estimate 
(Eq.  [53]) to one decimal place after the decimal point 
Ŵ01 = 62 636 853.4 m2 s−2 They recommended it to the 
IAG which adopted it in the resolution quoted in the Intro-
duction to the present paper. I have argued above that only 
their “mean-tide” estimate (Eq. [54]) treats the permanent 

(49)ΔhT 𝛾̄P = h
−WT

g
𝛾̄P = −hWT

(50)

Ŵ02 = Ŵ0 + avg
S
(−kV −W

T
− Δh

T
𝛾̄
P
)

= Ŵ0 + avg
S
(−kW

T
−W

T
+ hW

T
).

(51)
Ŵ01 = Ŵ0 − avgS(WT )

Ŵ02 = Ŵ0 − (1 + k − h)avgS(WT ).

(52)

Ŵ02 − Ŵ0

Ŵ01 − Ŵ0

=
−(1 + k − h)avgS(WT )

−avgS(WT )
= 1 + k − h ≈ 0.69

(53)Ŵ01 = 62 636 853.353 m2 s−2

(54)
Ŵ0 = 62 636 853.353 + 0.0943 = 62 636 853.447 m2 s−2

(55)
Ŵ02 = 62 636 853.353 − 0.0278 = 62 636 853.325 m2 s−2.

tide consistently. When it is rounded to one decimal place it 
agrees with the adopted W0.

It seems to me that the problem with the approach by 
Sánchez et al. (2015, 2016) is that they try to use the sys-
tems of permanent tide as if they were, well, systems. That 
is, they perform formal transformations between them as 
one would do between, say, coordinate reference systems. 
But tidal systems are not like that. One must always keep in 
mind the physical significance of the operations. I believe 
this case study makes for a good tutorial about what tidal 
concepts/systems are and what they are not. The subject is 
further treated in the Discussion.

4 � Mean‑tide heights in a rigorous 
definition?

Using the notation of Sect. 2, the mean-tide geopotential 
number CMT (�) is defined by

where CZT (�) is the corresponding zero-tide geopotential 
number. Here � is any 3-D coordinate triple, say, 3-D Car-
tesian or 3-D ellipsoidal coordinates.

From Eq. (56), it might appear that the mean-tide geo-
potential numbers are obtained from the zero-tide geopoten-
tial numbers by a simple datum-surface transformation, by 
subtracting WT (�) . However, WT (�) depends not only on 
latitude but also on height (see Eq. 19). The height depend-
ence is small, but it is there. Most of this section is dedicated 
to pondering what we should do about it. Existing mean-
tide height systems never had to worry about this. They 
were constructed using precise levelling, and then the issue 
does not show up. The issue shows up now because IHRS is 
defined in 3-D space. Then, we cannot avoid taking a posi-
tion on the 3-D WT (�).

4.1 � Technique‑related issues

The first question is whether the dependence of WT (�) on the 
height h in Eq. (19) will naturally show up in some of our 
observations or data. Then, it would be more difficult to dis-
miss the height dependence in our conventions and practice.

Global geopotential models (GGMs) do not include the 
time average of the tide-generating potential, let alone its 
height dependence. Both are parts of the total tide-gener-
ating potential in modelling observations in satellite grav-
ity, but they do not show up in the end-product, the GGM. 
The formula of Eq. (18) can be added as an extra member 
to a GGM (but it cannot be merged with its second-degree 

(56)

C
MT

(�) = W0 −W
MT

(�) = W0 −
[

W
ZT
(�) +W

T
(�)

]

= C
ZT
(�) −W

T
(�)
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zonal term). The augmented GGM would then include the 
dependence on h. In the conventional proposal for IHRF 
geopotential numbers (Sect. 5), if Eq. (18) is used for the 
IHRF stations, it would need to be evaluated at the ellipsoid, 
not at the observation point.

The possibility of determining potential differences using 
the redshift effect of the frequency of clocks (Bjerhammar 
1975, 1985; Vermeer 1983) is progressing rapidly (e.g., Wu 
and Müller 2020). The frequency stability of the best clocks 
is now around 1 × 10−18 (McGrew et al. 2018; Oelker et al. 
2019). A frequency shift of 1 × 10−18 corresponds to a poten-
tial difference of 0.09 m2s–2, which is approximately 9 mm. 
For geodesy, high accuracy in frequency comparisons at a 
distance are needed (Lisdat et al. 2016). The clocks sense 
the total potential including the permanent tide-generat-
ing potential, but only potential differences are accessible 
through clock comparisons. The accuracy needed for clock 
pairs situated at different elevations on topography, to detect 
the effect of the elevation h on the permanent tide-generating 
potential (Eq. [19]), does not seem attainable in the near 
future.

In precise levelling, an observed height difference Δh1,2 
between two bench marks (1 and 2) is converted to a geo-
potential difference ΔC1,2 by multiplying it with the average 
gravity on the interval. In practice this is usually the average 
gravity of the two bench marks

Now, in a rigorous mean-tide height system, the gravity 
g in Eq. (57) shall obviously represent the gradient of the 
total potential field, i.e., include gT (�) , the contribution of 
WT to gravity (Eq. 20). Note that this theoretical issue is 
separate and independent from the tidal correction to Δh1,2 , 
i.e., from what is the reference surface of ΔC1,2 . This can be 
understood by the thought experiment of levelling straight 
up or down along the plumb line, where the tidal correction 
to Δh1,2 does not enter. Using mean tidal gravity in Eq. (57) 
produces the rigorous dependence of the WT component in 
CMT on the height h (Eq. [19]). Whether or not we should 
do it is a different question that will be discussed in the next 
sections.

4.2 � Conversion of hypothetic rigorous mean‑tide 
geopotential numbers to metric heights

4.2.1 � Orthometric heights

The orthometric height of a point P is the distance of P from 
the geoid, measured along the plumb line. In this defini-
tion, the tidal type of geopotential only appears through the 
geoid definition (tide-free, zero-tide, mean-tide) and the 
plumb line, not through what quantities are contained in 

(57)ΔC1,2 =
1

2
(g1 + g2)Δh1,2.

the geopotential number that gives the potential difference 
between the geoid and P. The geopotential number becomes 
just a computational means to an end. Thus, it would seem 
that there are no theoretical problems involved, when we 
convert a mean-tide geopotential number to an orthometric 
height above the mean-tide geoid by dividing it with aver-
age gravity along the plumb line. If the geopotential number 
contains the small height-dependent part and we want to 
be rigorous, then we divide it by mean-tide average gravity 
(i.e., zero-tide gravity augmented by gT (�) from Eq. [20]). 
If not, we divide it by zero-tide gravity and still are rigorous. 
If we do not care and would rather use a mix, that would 
also present no problem. The situation would be comparable 
to an error in the gravity value at the levelling benchmark. 
The value often comes from interpolation and might have 
an uncertainty larger than the error of less than 0.1 mGal 
that would come from using the wrong kind of gravity in the 
conversion. This line of thought is equally valid for Helmert 
heights and rigorous orthometric heights. In Sect. 5, how-
ever, I will propose a definition of IHRF geopotential num-
bers that circumvents the issues just discussed.

4.2.2 � Normal heights

Normal height is the height above the ellipsoid that produces 
the same potential difference in the normal gravity field as 
the geopotential number gives in the actual gravity field. The 
key expression here is “normal gravity field”. If the conven-
tions are rigorously mean-tide, then we must have a normal 
gravity field that includes the permanent tide-generating 
potential. The concept of normal height is not just some 
pretext to conveniently allow us to divide the geopotential 
number with average normal gravity instead of the trou-
blesome (if done rigorously) calculation that is needed for 
orthometric heights. Instead, the normal height is a building 
block in a rigorous theory to solve for the shape of the Earth. 
Making mean-tide normal heights rigorous would force us to 
include the permanent tide-generating potential in the nor-
mal potential field, in the same way that the potential field of 
the centrifugal force is already included, i.e., to enlarge upon 
the Somigliana–Pizzetti theory. It can be done as has been 
demonstrated by Vermeer and Poutanen (1997). Obviously, 
it would mean a complete disruption of all or of a part of 
the current ellipsoid-based reference system. (Vermeer and 
Poutanen [1997] demonstrated how the enlargement can be 
performed without changing the geometric ellipsoid.) The 
level ellipsoid is then an equipotential surface of the attrac-
tion of the Earth’s masses + centrifugal force + permanent 
tide. Observed and normal gravity include the contribution 
of the permanent tide-generating potential which is elimi-
nated from gravity anomalies, just as the centrifugal force 
already is. Stokes’ formula would be valid. Such a model 
might be worthwhile in connection with a total overhaul of 
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the ellipsoidal reference, if ever undertaken. Note that such 
an overhaul would not in any way interfere with the ITRS 
or ITRF.

In Sect. 5, I propose a definition of IHRF geopotential 
numbers that excludes the height dependence of the per-
manent tide-generating potential.

5 � A conventional definition for geopotential 
numbers in IHRF

Recall the generic relation (Eq. [56]) between mean-tide 
and zero-tide geopotential numbers

where P is the field point. The dependence of WT (P) on the 
height of P is minuscule (Eq. [19]) but troublesome both 
practically and theoretically. We could just ignore it by 
implicit common consent. However, that would create an 
unclear situation about the exact definition of IHRF geo-
potential numbers. From Sect. 4, it appears that the best 
method is to eliminate the height dependence by a conven-
tion, by replacing WT at the field point P by WT at the foot 
point Q at the mean-tide geoid, projected along the plumb 
line

The definition of Eq. (59) corresponds to the intuitive 
idea that most geodesists have had all along about the 
IHRF, i.e., that the difference between mean-tide heights 
and zero-tide heights should be in the datum surface only. 
The datum surface where CIHRF

MT
= 0 is the mean-tide geoid 

instead of the zero-tide geoid, but the potential differences 
on the plumb line through Q are measured the same way 
for both zero-tide geopotential numbers and IHRF geo-
potential numbers. Equation (59) is in fact the definition 
of mean-tide geopotential numbers that is used in national 
and regional levelling networks.

Since the distance between the geoid and ellipsoid is 
maximally around 100  m, in practice WT0 = WT (Q) in 
Eq. (59) can always be calculated from WT at the ellipsoid 
(cf. Eq. [19])

with an error of, maximally, one unit in the last decimal 
given or 0.01 mgpu. Obviously, one can also evaluate 
Eq. (18) at the ellipsoid.

The definition of Eq. (59) means that the IHRF geopoten-
tial number will differ (very slightly) from the “natural” or 
“generic” mean-tide geopotential number of Eq. (58) with 

(58)CMT (P) = CZT (P) −WT (P)

(59)CIHRF
MT

(P) ∶= CZT (P) −WT (Q).

(60)
WT0 ≈ W̄T (𝜑, 0) = 0.9722 − 2.8841 sin2 𝜑 − 0.0195 sin4 𝜑 [m2 s−2]

the same datum at the same location. The difference on the 
Earth’s topography will always be less than 0.3 mgpu.

The treatment of the permanent tide in CIHRF
MT

 is then the 
same as in familiar mean-tide geopotential numbers from 
levelling networks. The orthometric height HIHRF

ORT
 above the 

mean-tide geoid is rigorously defined and is computed from 
CIHRF
MT

 using zero-tide gravity in the standard way, either rig-
orously or as Helmert heights. The normal height HIHRF

NORM
 is 

formally defined in the standard way, as the height above the 
ellipsoid that produces the same potential difference in the 
GRS80 normal gravity field as CIHRF

MT
 represents in the actual 

gravity field. Mean-tide normal heights of this kind do not 
have a place in the Molodensky theory (see Sect. 4.2). This 
does not cause practical problems.

According to conventional wisdom, neither HIHRF
ORT

 nor 
HIHRF

NORM
 should be used to calculate free air gravity anoma-

lies if the anomalies are going to be input to Stokes’ formula: 
If the zero-tide geoid is our reference, the mean-tide geoid 
is at WT∕g . The geoid calculated using Stokes’ formula and 
global free-air anomalies that use mean-tide heights would 
be at the height −2WT∕g relative to the zero-tide geoid, but 
not at WT∕g where the mean-tide geoid is. (If we in addi-
tion use mean-tide gravity, we would be at −4WT∕g ). This 
argumentation with respect to Stokes’ formula that was 
decisive at the IAG 1979 Assembly has lost its weight as 
the relevant wavelengths in modern geoid computations are 
taken from GGMs. Sánchez and Sideris (2017) show that the 
residual effects from disparate national height systems that 
are implicit in the gravity anomalies are negligible. IHRF 
mean-tide metric heights embedded in gravity anomalies 
will be harmless in the same way. Thus, there is no reason to 
discourage the use of the IHRF metric heights in producing 
gravity anomalies. On the contrary, the IHRF heights could 
also provide a long-overdue unification in this respect.

Equation (21) can be used to get an idea about the differ-
ences of IHRF metric heights and corresponding zero-tide 
metric heights.

5.1 � Dissemination issues

By the IHRS definition, the IHRF geopotential CIHRF
MT

(�) 
numbers shall be related to mean-tide coordinates � . Sec-
tion 2.3 provided formulas on how to deal with the tide-
free ITRF coordinates in geopotential modelling. The issue 
will emerge again when IHRF heights are disseminated. 
The users only have immediate access to tide-free ITRF 
coordinates �′ . It might be too awkward and error-prone 
to have them perform their own conversion from �′ to � 
before accessing IHRF. Instead, the IHRF models that are 
distributed to them should contain the conversion, i.e., be 
expressed as a function of �′.
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Example  Sánchez et al. (2021, Eq. [4]) present the results of 
regional geopotential modelling in the form.

where the coordinates of P must be mean-tide. Here � is the 
height anomaly from the solution of the Geodetic Boundary 
Value Problem using the GRS80 normal gravity field as a 
reference, and �(P) is normal gravity at P . Then

Suppose that, firstly, we want to disseminate normal 
heights HIHRF

NORM
 . Then, by the definition of � we have

where hell(P) is the height of P above the GRS80 ellipsoid 
and HT (�) is defined by Eq. (21). From ITRF coordinates 
one does not, however, obtain hell(P) but rather the tide-free 
hITRF
ell

(P) , i.e.

where hT (�) is given by Eq. (23). Thus,

For a gridded/interpolated � = �(�, �) outside the original 
computation points Eq. (65) expresses a height-anomaly/
quasigeoid model

where

In the model of Eq. (66) the potential is mean-tide and 
at first sight the coordinate representation appears to be 
tide-free. Is it therefore in conflict with the IHRS defini-
tion which prescribes that “parameters, observations, and 
data shall be related to the mean tidal system/mean crust”? 
No. The surface S(�, �) incorporates the shift from the tide-
free ellipsoidal height hITRF

ell
(P) to the mean-tide ellipsoidal 

height hell(P) . The minor difference between the tide-free 
ITRF latitude and the corresponding mean-tide latitude can 
be ignored in this connection (cf. Eq. 25).

Similarly, it is customary to represent national or regional 
geoid models based on zero-tide/mean-tide potential in tide-
free coordinates derived from the ITRF. But then the model 
surface invariably contains (either implicitly or explicitly) 
a coordinate shift for the height component, from tide-free 
ellipsoidal height to mean-tide ellipsoidal height. Thus, the 
geoid model is given at the mean-tide position. Otherwise 
it would not be consistent with, say, underlying precise 

(61)WZT (P) = U(P) + �(P) ⋅ � +W0 − U0

(62)
CIHRF
MT

(P) = W0 −WZT (P) −WT0 = U0 − U(P) − �(P) ⋅ � −WT0.

(63)HIHRF
NORM

(P) = hell(P) − � − HT (�)

(64)hITRF
ell

(P) = hell(P) − hT (�)

(65)HIHRF
NORM

(P) = hITRF
ell

(P) + hT (�) − � − HT (�).

(66)HIHRF
NORM

(P) = hITRF
ell

(P) − S(�, �)

(67)S(�, �) = �(�, �) − hT (�) + HT (�).

levelling in the zero-tide/mean-tide concept. However, when 
the geoid model is aligned to precise levelling in the tide-
free concept, then the model surface does not contain a shift 
to mean-tide ellipsoidal height and the model is effectively 
given at the tide-free position.

The geopotential number CIHRF
MT

(P) can be found pointwise 
from Eq. (66) by multiplying both sides by the mean value of 
the normal gravity �(h) over the interval h ∈ [0,HIHRF

NORM
(P)].

6 � Summary and discussion

I have written the previous sections while consistently using 
“concepts” instead of “systems” of permanent tide, as I con-
sider the term “systems” to be misleading. In this section, I 
will discuss the current practices where the use of “systems” 
is firmly embedded. Because of that I will also be using 
“systems”.

In Sect. 3, I demonstrated the tidal inconsistencies in 
the empirical estimation of W0 , which was the basis for the 
IAG adoption of the IHRS conventional W0 . My point is not 
“what should be the first digit behind the decimal point in 
the W0 ”. My point is that the errors that were made in the 
estimation of W0 were a consequence of the current “sys-
tems” approach to permanent tide.

The standard way of operating with these systems, which 
by now is deeply ingrained in the minds of geodesists’, is like 
this: (1) Learn the mantra given by the three bullet points 
in the Introduction (replacing “concept” by “system”); (2) 
Locate where your quantity is in the taxonomy of the three 
entities of the permanent tide; (3) This provides an identi-
fier for your quantity in the same way that coordinate ref-
erence systems have identifiers in transformation libraries; 
(4) Transform all of your quantities to the same tidal system 
using the identifiers thus established and formulas from the 
literature; (5) Now you are alright.

Except that you are not alright, as Chapter 3 shows. The 
problem comes from implicitly assuming that the three 
systems of permanent tide are equally valid for any pur-
pose and that it is sufficient to consider formal operations 
between them. Now, of course there is nothing wrong with 
the geodesists’ wish to perform operations between systems 
without going deep into the meaning of those systems. On 
the contrary, that is the very utility of systems. We do not 
want a situation where you must know the history and deep 
properties of, say, ED50 and ETRF2000 in order to be able 
to transform coordinates between them. But the “systems” 
of the permanent tide are too complicated for this simplistic 
mode of operating. Instead, the physical significance of the 
operations must always be understood.

This obviously raises the questions: if the systems of per-
manent tide do not help us to automatise the work and we 
always must consider the physics of the situation, why do 
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we need the systems? Why not just consider the physics? 
Using the names tide-free, zero-tide, and mean-tide give us 
a convenient shorthand with which to describe quantities, 
but in what sense, if any, do the quantities with the same 
attribute form a system? Would it not be better to go back to 
the original terminology of Ekman (1989, 1996): “concepts” 
or “cases”?

One can indeed argue that the confusion might be less 
today if we had stayed with “concepts” or “cases”. The word 
“systems” prompted the creation of geodetic quantities in all 
the “system” varieties as it was taken to imply that all such 
quantities are needed or useful, or they at least make sense. 
But some of those quantities were inconsistent, such as the 
“mean-tide ellipsoid” of Burša (1995a, 1995b) as explained 
in Sect. 2.1. Others are of questionable physical validity, for 
instance, many tide-free quantities related to the physical 
properties of the Earth [see the discussion by Ekman (1981, 
1996)].

More importantly, the illusory clarity of the “systems” 
removed the urgency from harmonising the treatment of the 
permanent tide in geodesy. After the initial embarrassment 
at the accidental adoption of the tide-free quantities, it was 
possible to take the standpoint of: “Well, the situation is 
not ideal, but if there is a system for these things, it is OK”.

Would it help to return to “concepts” now? I do not think 
so. Just changing names would not make a difference any-
more. We would continue to operate with “concepts” in the 
same way as we now operate with “systems”.

Does all of this matter? After all, the error in the case 
discussed was the equivalent of + 10 mm of sea level only. 
However, one might point out that this was the fortuitous 
result of much larger biases averaging out in the integration. 
The bias at the equator is + 99 mm (Eq. [21]). The bias at 
the North Pole would be ‒196 mm. Further, obviously, the 
pitfalls in the current paradigm of treating the permanent 
tide are not limited to the problem of estimating W0 , or more 
generally to questions concerning the MSL. Is a paradigm 
that facilitates (one is tempted to write “invites”) such confu-
sion in the treatment of the permanent tide sustainable in the 
long run? What could be done to remedy this?

The “systems” and the quantities already produced in 
them are not going away. But, below, I aim to sketch one 
possible line of development on how to use them.

1.	 There are too many systems in use. The zero-tide and the 
mean-tide are nature’s systems. The tide-free is a human 
system: an assemblage of mostly non-connected mis-
steps, and of decisions with unintended consequences. 
In the long run, discontinue this system as a data envi-
ronment.

2.	 In the short run, work with zero-tide quantities. As long 
as the normal gravity field does not contain the perma-
nent tide (see Sect. 4), the zero-tide system is the only 

set of quantities that both describes the actual Earth and 
facilitates the solution of the geodetic boundary value 
problem. To emphasise this, it might be useful to re-
introduce zero-tide coordinates as a synonym for mean-
tide coordinates.

3.	 If one cannot work in the zero-tide system, it may be 
useful to at least think in it, as a reality checkpoint.

4.	 From this perspective, the tide-free quantities are just 
biased quantities, but they must be managed. There are 
tide-free coordinates and tide-free potential models. Sec-
tion 2.4 contains exact formulas to correct for the two 
most common biases: in the ITRF coordinates and in 
the tide-free potential models in line with IERS Conven-
tions.

5.	 The mean-tide system for the potential is an add-on after 
everything else has been done. Formulas for this can be 
found in Sect. 2.3, and for the IHRF geopotential num-
bers in Sect. 4.

6.	 Maintain realism. Whenever possible, talk about tide-
free/zero-tide/mean-tide potential, tide-free/zero-
tide = mean-tide coordinates, etc., rather than about 
potential/coordinates/etc., in the tide-free/zero-tide/
mean-tide/system. The increased level of abstraction 
seldom illuminates anything and may imply a system 
that, possibly, is not even there. Almost always, two tidal 
systems are present and are independent: the coordinates 
and the potential. That is not scary. Specify both.

This physically realistic framework would be easier to 
explain to non-specialists than the present setup. Currently, 
most non-specialists seem to regard the tidal systems as an 
esoteric subject where they do not dare to venture, a sub-
ject that needs special erudition. On the other hand, any 
geodesist understands immediately the two fundamental 
features of tide-free quantities when they are explained in 
basic physics language: (1) ITRF coordinates of markers 
are not given at the time average of their tidal variation in 
position, but off-average, and (2) many geodesists prefer 
to model the Earth with a part of the Earth’s gravity field 
missing.

But, when they are told that these two facts are a part of 
a theoretical framework called “systems of permanent tide 
for geodetic quantities” and of its particular branch “con-
ventional tide-free quantities”, and somehow they must go 
together, many of them get confused and decide that the 
subject is not for them. Thus, in many cases the “systems 
of permanent tide” mystify things, instead of clarifying 
them. I believe that the protocol described in Items 1–6 
above would have an empowering effect on geodesists in 
general.

The supplementary material contains a compendium of 
legacy formulas related to the permanent tide.
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