Skip to main content
Log in

The first fossil fungus gardens of Isoptera: oldest evidence of symbiotic termite fungiculture (Miocene, Chad basin)

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Higher termites of the subfamily Macrotermitinae (fungus-growing termites) are known to build fungus gardens where a symbiotic fungus (Termitomyces sp.) is cultivated. The fungus grows on a substrate called fungus comb, a structure built with the termites’ own faeces. Here we present the first fossil fungus combs ever found in the world. They were extracted from 7-million-year-old continental sandstone (Chad basin). Fossilized fungus combs have an ovoid morphology with a more or less flattened concave base and a characteristic general alveolar aspect. Under lens, they display a typical millimetre-scale pelletal structure. The latter, as well as the general shape and alveolar aspect, are similar to the morphology of fungus combs from extant fungus-growing termites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855

    Article  CAS  PubMed  Google Scholar 

  • Aanen DK, Eggleton P, Rouland-Lefèvre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci U S A 99:14887–14892

    Article  CAS  PubMed  Google Scholar 

  • Alibert J (1964) L’évolution dans le temps des meules à champigons construites par les termites. C R Acad Sci Paris 258:5260–5263

    Google Scholar 

  • Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 189–208

    Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 363–387

    Google Scholar 

  • Brunet M, Guy F, Pilbeam D, Mackaye HT, Likius A, Ahounta D, Beauvilain A, Blondel C, Bocherens H, Boisserie JB, De Bonis L, Coppens C, Dejax J, Denys Ch, Duringer Ph, Eisenmann V, Fanone G, Fronty P, Geraads D, Lehmann Th, Lihoreau F, Louchart A, Merceron G, Otero O, Pelaez Campomanes P, Ponce De Leon M, Rage JC, Sapanet M, Schuster M, Sudre J, Tassy P, Valentin X, Vignaud P, Viriot L, Zazzo A, Zollikofer Ch (2002) A new hominid from the Miocene of Chad, Central Africa. Nature 418:145–151

    Article  CAS  PubMed  Google Scholar 

  • Bown TM (1982) fossils and rhizoliths of the nearshore Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 40:255–309

    Article  Google Scholar 

  • Bown TM, Laza JH (1990) A Miocene fossil termite nest from southern Argentina and its palaeoclimatological implications. Ichnos 1:73–79

    Google Scholar 

  • Cloud P, Gustafson LB, Watson JAL (1980) The works of living social insects as pseudofossils and the age of the oldest known Metazoa. Science 210:1013–1015

    Article  PubMed  Google Scholar 

  • Coaton WGH (1981) Fossilised nests of Hodotermitidae (Isoptera) from the Clanwilliam district, Cape Province. J Entomol Soc South Afr 44(2):79–81

    Google Scholar 

  • Darlington JPEC (1997) Comparison of nest structure and caste parameters of sympatric species of Odontotermes (Termitidae, Macrotermitinae) in Kenya. Insectes Soc 44:393–408

    Article  Google Scholar 

  • Darlington JPEC (2005) Distinctive fossilised nest at Laetoli, Tanzania. Insectes Soc 52:408–409

    Article  Google Scholar 

  • Genise JF (2004) Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, ants and termites. Spec Publ Geol Soc Lond 228:419–453

    Google Scholar 

  • Genise JF, Bown TM (1994) New trace fossils of termites (Insecta: Isoptera) from the late Eocene-early Miocene of Egypt, and the reconstruction of ancient isopteran social behaviour. Ichnos 3:155–183

    Article  Google Scholar 

  • Grassé PP (1978) Physiologie des insects. Sur la veritable nature et le role des meules à champignons construites par les termites Macrotermitinae (Isoptera: Rhinotermitida). C R Acad Sci Paris 287:1223–1226

    Google Scholar 

  • Grassé PP (1982) Termitologia. Anatomie, physiologie et biologie. Tome I. Masson, New York

    Google Scholar 

  • Grassé PP (1984) Termitologia. Fondation des sociétés, construction. Tome II. Masson, New York

    Google Scholar 

  • Heim R (1977) Termites et champignons. Société Nouvelle Editions Boubée, Paris

  • Hyodo F, Inoue T, Azuma JI, Tayasu I, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658

    Article  CAS  Google Scholar 

  • Josens G (1971) Les renouvellement des meules construites par quatre Macrotermitinae des savanes de Lamto-Pakoto (Côte d’Ivoire). C R Acad Sci Paris 272:3329–3332

    Google Scholar 

  • Mueller UG, Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci U S A 99, 24:15247–15249

    Article  CAS  Google Scholar 

  • Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 733–756

    Google Scholar 

  • Sands WA (1960) Initiation of fungus comb construction in laboratory colonies of Ancistrotermes guineensis (Silvestri). Insectes Soc 7:251–259

    Article  Google Scholar 

  • Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM (eds) Biology of termites. Academic, New York, pp 495–524

    Google Scholar 

  • Sands WA (1987) Ichnoceonoses of probable termite origin from Laetoli. In: Leakey MD, Harris JM (eds) Laetoli, a Pliocene site in Northern Tanzania. Oxford, Oxford, pp 409–433

    Google Scholar 

  • Schneider JL (1968) Notice explicative. Carte hydrogéologique de reconnaissance de la République du Tchad au 1/5.000.000ième. Feuille Pays Bas-Largeau. BRGM, Brazzaville

    Google Scholar 

  • Schneider JL (1989) Géologie et hydrogéologie de la république du Tchad (3 vols). Thesis, Université Avignon

  • Schuster M, Duringer Ph, Nel A, Brunet M, Vignaud P, Mackaye HT (2000) Découverte de termitières fossiles dans les sites à vertébrés du Pliocène tchadien: description, identification et implications paléoécologiques. C R Acad Sci Paris 331:15–20

    Google Scholar 

  • Schuster M, Roquin C, Duringer Ph, Caugy M, Fontugne M, Brunet M, Mackaye HT, Vignaud P, Ghienne JF (2005) Holocene Lake Mega-Chad palaeoshorelines from space. Quat Sci Rev 24:1821–1827

    Article  Google Scholar 

  • Schuster M, Duringer Ph, Ghienne JF, Vignaud P, Mackaye HT, Likius A, Brunet M (2006) The age of the Sahara desert. Science 311:821

    Article  CAS  PubMed  Google Scholar 

  • Tessier F (1959) Termitières fossiles dans la latérite de Dakar (Sénégal). Remarque sur les structures létéritiques. Ann Fac Sci Univ Dakar 4:92–132

    Google Scholar 

  • Vignaud P, Duringer PH, Mackaye HT, Andossa L, Blondel C, Boisserie JR, De Bonis L, Eisenmann V, Géraads D, Guy F, Lehmann T, Lihoreau F, Lopez-Martinez N, Mourer-Chauviré C, Otero O, Rage JC, Schuster M, Viriot L, Zazzo A, Brunet M (2002) Geology and Palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature 418:152–155

    Article  CAS  PubMed  Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 245–292

    Google Scholar 

  • Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insects-fungus interactions. Academic, New York, pp 69–92

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministère Tchadien de l’Enseignement Supérieur et de la Recherche and the Centre National d’Appui de la Recherche (CNAR), the Ministère Français des Affaires Etrangères (SCAC, N’Djaména and DCSUR, Paris), Ministère de l’Education Nationale et de la Recherche (CNRS, Programme Eclipse and Faculté des Sciences de l’Université de Poitiers) and Région Poitou Charentes and the National Science Foundation (NSF/RHOI). We thank the French Army (MAM, Epervier), all the MPFT members and G. Florent for secretarial support and A. Bouzeghaia for artwork support. The help of many colleagues is gratefully acknowledged: A. Richard, A. Peppuy, and Ch. Bordereau from the University of Dijon, Dijon, France. We wish to thank particularly C. Lefevre-Rouland (University of Paris XII, Paris, France) and Dr. Ch. Noirot for endless constructive discussions and for the interpretation of the termite fossil fungus combs. The investigation complies with the current law of the country in which it was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Duringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duringer, P., Schuster, M., Genise, J.F. et al. The first fossil fungus gardens of Isoptera: oldest evidence of symbiotic termite fungiculture (Miocene, Chad basin). Naturwissenschaften 93, 610–615 (2006). https://doi.org/10.1007/s00114-006-0149-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0149-3

Keywords

Navigation