Skip to main content
Log in

A phylogenetic study of endo-beta-1,4-glucanase in higher termites

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Cellulose is the most abundant polymer in the world and termites are the most important metazoan cellulose processors. Termites are divided into lower and higher termites, with the latter being the most derived and most specious. Although termites are known for their ability to digest wood, members of the family Termitidae (higher termites) are nutritionally diverse in their use of cellulose. This study investigated the evolution of endogenous cellulases in 25 species of higher termites, using phylogenetic inferences from mitochondrial (16S) and nuclear (28S) ribosomal RNA and endo-β-1,4-glucanase sequences. The translated endo-β-1,4-glucanase amino acid order in all 41 sequences obtained showed high similarity to endo-β-1,4-glucanases in the glycosyl hydrolase family 9. The inferred endo-β-1,4-glucanase phylogenetic tree showed congruency with the mitochondrial/nuclear tree, with the fungus-growers being the most basal group and the soil/litter- and wood/lichen/grass/litter-feeders being the most distal diphyletic feeding groups. The bacterial comb-grower formed a separate clade from the fungus-growers and is sister groups with the soil/litter- and wood/lichen/grass/litter-feeders. There was also a strong diphyletic relationship between endo-β-1,4-glucanases of upper layer soil-feeders and the other soil-feeders. Within the monophyletic wood/lichen/grass/litter-feeding termites’ subclade, the nasutitermitines were polyphyletic and a strong diphyletic relationship was observed in the most distal lichen- and the grass/litter-feeders groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arshad M.A., Schnitzer M. and Preston C. 1987. Characteristics of a termite fungus comb studied by chemical and spectroscopic methods. Soil Biol. Biochem. 19: 227-230

    Google Scholar 

  • Brauman A., Bignell D.E. and Tayasu I. 2000. Soil-feeding termites: Biology, microbial associations and digestive mechanisms. In: Termites: Evolution, Sociality, Symbioses, Ecology (T. Abe, D.E. Bignell and M. Higashi, Eds). Kluwer Academic Publisher, Dordrecht, The Netherlands. pp 233-259

  • Bujang N.S., Harrison N.A. and Su N.-Y. 2011. An improved method for extraction and purification of termite endo-β-1,4-glucanase from FTA® cards. Fla. Entomol. 94: 356-358

    Google Scholar 

  • Darlington J.P.E.C. 1994. Nutrition and evolution in fungus-growing termites. In: Nourishment and Evolution in Insect Societies (J.H. Hunt and C.A. Nalepa, Eds). Westview Press, Boulder, Colorado. pp 105-130

  • Davison A. and Blaxter M. 2005. Ancient origin of Glycosyl Hydrolase Family 9 cellulase genes. Mol. Biol. Evol. 22: 1273-1284

    Google Scholar 

  • Donovan S.E., Eggleton P. and Bignell D.E. 2001. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26: 356-366

    Google Scholar 

  • Eggleton P. and Bignell D.E. 1995. Monitoring the response of tropical insects to changes in the environment. In: Insects in a Changing Environment (R. Harrington and N.E. Stork, Eds) Academic Press, London. pp 473-497

  • Eggleton P., Bignell D.E., Sands W.A., Waite B., Wood T.G. and Lawton J.H. 1995. The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. J. Trop. Ecol. 11: 85-98

    Google Scholar 

  • Engel M.S. and Krishna K. 2004. Family-group names for termites (Isoptera). Am. Mus. Novit. 3432: 1-9

    Google Scholar 

  • Engel M.S., Grimaldi D.A. and Krishna K. 2009. Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. Am. Mus. Novit. 3650: 1-27

    Google Scholar 

  • Garnier-Sillam E., Toutain F., Villemin G. and Renoux J. 1989. Études préliminaires des meules originales du termite xylophage Sphaerotermes sphaerothorax (Sjostedt). Insect. Soc. 36: 293-312

  • Grassé P.P. 1978. Physiologie des insectes. Sur la véritable nature et le rôle des meules à champignons construites par les termites Macrotermitinae (Isoptera: Termitidae). C.R. Acad. Sci. Paris. 287: 1223-1226

    Google Scholar 

  • Heim R. 1977. Termites et Champignons. Boubée, Paris.

  • Innis M.A. and Gelfand D.H. 1990. Optimization of PCRs. In: PCR Protocols: A Guide to Methods and Applications (M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White, Eds). Academic Press, San Diego, CA, USA. pp 3-12

  • Inward D., Vogler A.P. and Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44: 953-967

    Google Scholar 

  • Ji R. and Brune A. 2001. Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. Biol. Fertil. Soils. 33: 166-174

    Google Scholar 

  • Khademi S., Guarino L.A., Watanabe H., Tokuda G. and Meyer E.F. 2002. Structure of an endoglucanase from termite, Nasutitermes takasagoensis. Acta Cryst. D58: 653-659

    Google Scholar 

  • Kovoor J. 1970. Presence d’enzymes cellulolytiques dans l’intestin d’un termite supérieur, Microcerotermes edentatus (Was.). Ann. Sci. Nat. Zool. Biol. Anim. 12: 65-71

  • Legendre F., Whiting M.F. and Bordereau C. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol. 48: 615-627

    Google Scholar 

  • Li Z.-Q, Liu B.-R., Zeng W.-H., Xiao W.-L., Li Q.-J. and Zhong J.-H. 2013. Character of cellulase activity in the guts of flagellate-free termites with different feeding habits. J. Insect Sci. 13: 37

    Google Scholar 

  • Lo N., Watanabe H. and Sugimura M. 2003. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc. R. Soc. Lond. B. 270: S69-S72

    Google Scholar 

  • Lo N., Tokuda G. and Watanabe H. 2011. Evolution and function of endogenous termite celulases. In: Biology of Termites: A Modern Synthesis (D.E. Bignell, Y. Roisin and N. Lo, Eds). Springer, New York. pp 51-67

  • Marini M. and Mantovani B. 2002. Molecular relationships among European samples of Reticulitermes (Isoptera, Rhinotermitidae). Mol. Phylogenet. Evol. 22: 454-459

    Google Scholar 

  • Nakashima K., Watanabe H., Saitoh H., Tokuda G. and Azuma J.-I. 2002. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem. Mol. Biol. 32: 777-784

  • Ni J., Takehara M. and Watanabe H. 2010. Identification of activity related amino acid mutations of a GH9 termite cellulase. Bioresource Technol. 101: 6438-6443

    Google Scholar 

  • Noirot C. 1992. From wood- to humus-feeding: an important trend in termite evolution. In: Biology and Evolution of Social Insects (J. Billen, Ed). Leuven University Press, Leuven. pp 107-119

  • Ohkuma M. 2003. Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl. Microbiol. Biotechnol. 61: 1-9

    Google Scholar 

  • Posada D. and Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818

    Google Scholar 

  • Robson L.M. and Chambliss G.H. 1989. Cellulases of bacterial origin. Enzyme Microb. Tech. 11: 626-644

    Google Scholar 

  • Ronquist F. and Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574

    Google Scholar 

  • Rouland-Lefevre C. and Bignell D.E. 2001. Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Symbiosis: Mechanisms and Model Systems (J. Seckbach, Ed). Kluwer Academic Publisher, Dordrecht, The Netherlands. pp 731-756

  • Sakon J., Irwin D., Wilson D.B. and Karplus P.A. 1997. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat. Struct. Biol. 4: 810-818

    Google Scholar 

  • Sands W.A. 1956. Some factors affecting the survival of Odontotermes badius. Insect. Soc. 3: 531-536

    Google Scholar 

  • Sands W.A. 1969. The association of termites and fungi. In: Biology of Termites, Volume I (K. Krishna and F.M. Weesner, Eds). Academic Press, New York. pp 495-524

  • Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87: 651-701

    Google Scholar 

  • Slaytor M. 1992. Cellulase digestion in termites and cockroaches; do symbionts play a role? Comp. Biochem. Physiol. 103: 775-784

    Google Scholar 

  • Slaytor M., Veivers P.C. and Lo N. 1997. Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochem. Mol. Biol. 27: 291-303

    Google Scholar 

  • Swofford D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and other Methods). Sinauer Associates, Sunderland, MA.

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599

    Google Scholar 

  • Tokuda G., Lo N., Watanabe H., Slaytor M., Matsumoto T. and Noda H. 1999. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta 1447: 146-159

    Google Scholar 

  • Tokuda G., Lo N., Watanabe H., Arakawa G., Matsumoto T. and Noda H. 2004. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol. Ecol. 13: 3219-3228

    Google Scholar 

  • Tokuda G., Lo N., Watanabe H., Hojo M., Fujita A., Makiya H., Miyagi M., Arakawa G. and Arioka M. 2012. Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis. J. Insect Physiol. 58: 147-154

    Google Scholar 

  • Tomme P.R., Warren A.J. and Gilkes N.R. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81

    Google Scholar 

  • Watanabe H. and Tokuda G. 2001. Animal cellulases. Cell. Mol. Life Sci. 58: 1167-1178

    Google Scholar 

  • Ware J.L., Grimaldi D.A. and Engel M.S. 2010. The effects of fossil placement and calibration on divergence times and rates: An example from the termites (Insecta: Isoptera). Arthropod Struct. Dev. 39: 204-219

    Google Scholar 

  • Willis J.D., Oppert C. and Jurat-Fuentes J.L. 2010. Methods for discovery and characterization of cellulolytic enzymes from insects. Insect Sci. 17: 184-198

    Google Scholar 

  • Ye W., Lee C.-Y, Scheffrahn R.H., Aleong J.M., Su N.-Y., Bennett G.W. and Scharf M.E. 2004. Phylogenetic relationships of nearctic Reticulitermes species (Isoptera: Rhinotermitidae) with particular reference to Reticulitermes arenincola Goellner. Mol. Phylogenet. Evol. 30: 815-822

    Google Scholar 

  • Zhang M., Gaschen B., Blay W., Foley B., Haigwood N., Kuiken C. and Korber B. 2004. Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14: 1229-1246

    Google Scholar 

  • Zhou X., Smith J.A., Oi F.M., Koehler P.G., Bennett G.W. and Scharf M.E. 2007. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395: 29-39

    Google Scholar 

Download references

Acknowledgments

The authors thank R. Scheffrahn (University of Florida), C.Y. Lee (Universiti Sains Malaysia), A. Robert (Institut De Recherche Pour Le Développement), N. Kanzaki (Forestry and Forest Products Research Institute) and H.F. Li for providing us with the termite samples. We also thank R. Giblin-Davis and R. Scheffrahn (University of Florida) for the critical review of this manuscript. This study was supported in part by a grant from USDA-ARS under the grant agreement No. 58-6435-8-276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bujang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujang, N.S., Harrison, N.A. & Su, NY. A phylogenetic study of endo-beta-1,4-glucanase in higher termites. Insect. Soc. 61, 29–40 (2014). https://doi.org/10.1007/s00040-013-0321-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-013-0321-7

Keywords

Navigation