Skip to main content
Log in

Feeding habits of Hymenoptera and Isoptera in a tropical rain forest as revealed by nitrogen and carbon isotope ratios

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Despite the recognition of the functional role of Hymenoptera (ants, bees and wasps) and Isoptera (termites) in tropical ecosystems, their detailed feeding habits are not well known. To examine the feeding habits of these groups, we measured nitrogen (N) and carbon (C) stable isotope ratios (δ15N and δ13C) of hymenopterans (12 families, ≥16 genera and ≥32 species) and isopterans (one family and 10 species) collected in a tropical rain forest, Sarawak, Malaysia. We compared the isotopic signatures of these insects to those previously reported for other consumers collected in the same forest. The δ15N and δ13C values of these insects overlapped with those of the other consumers, indicating that they have access to diverse C and N sources in the forest. The δ15N values of ants and termites indicated that their feeding habits range along a continuum from herbivory (i.e. dependent on honeydew and nectar) to predation and from wood-feeders to soil-feeders, respectively. In addition, the δ15N values of wasps varied greatly from −0.1‰ (Braconidae sp.) to 8.6‰ (Bembix sp.), suggesting that their feeding habits also range from omnivory to predation. The ant species Camponotus gigas had δ13C values similar to those of invertebrate detritivores and omnivores rather than to those of invertebrate herbivores, although the diet of this species consists mostly of honeydew. This discrepancy suggests that the ant uses carbohydrates as an energy source, the isotopic signatures of which are not well retained in the body tissues. Values of both δ15N and δ13C of the predatory army ant Leptogenys diminuta and the soil-feeding termite Dicuspiditermes nemorosus did not differ significantly, indicating that both trophic level and the humification of feeding substrates can increase the isotopic signatures of terrestrial consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe T. 1979. Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia (2) Food and feeding habits of termites in Pasoh Forest Reserve. Jap. J. Ecol. 29: 121-135

    Google Scholar 

  • Abe T., Bignell D.E. and Higashi M. 2000. Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer Academic Publishers, Dordrecht. 488 pp

  • Ambrose S.H. and Norr L. 1993. Carbon isotopic evidence for routing of dietary protein to bone collagen, and whole diet to bone apatite carbonate: purified diet growth experiments. In: Molecular Archaeology of Prehistoric Human Bone (Lambert J. and Grupe G., Eds). Springer-Verlag, Berlin, Germany. pp 1-37

  • Baker H. and Baker I. 1986. The occurrence and significance of amino acids in floral nectar. Plant Syst. Evol. 151: 175-186

    Google Scholar 

  • Bignell D.E. and Eggleton P. 2000. Termites in ecosystems. In: Termites: Evolution, Sociality, Symbiosis, Ecology (Abe T., Bignell D.E. and Higashi M., Eds). Kluwer Academic Publishers, Dordrecht. pp 363-387

  • Blüthgen N. and Fiedler K. 2002. Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. J. Anim. Ecol. 71: 793-801

    Google Scholar 

  • Blüthgen N., Gebauer G. and Fiedler K. 2003. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137: 426-435

    Google Scholar 

  • Blüthgen N., Gottsberger G. and Fiedler K. 2004. Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral Ecol. 29: 418-429

    Google Scholar 

  • Bohart R.M. and Menke A.S. 1976. Sphecid Wasps of the World. University of California Press, Berkeley. 600 pp

  • Bourguignon T., Šobotník J., Lepoint G., Martin J.M. and Roisin Y. 2009. Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biol. Biochem. 41: 2038-2043

    Google Scholar 

  • Breznak J.A. and Brune A. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487

    Google Scholar 

  • Brian M.V. 1978. Production Ecology of Ants and Termites. Cambridge University Press, Cambridge. 409 pp

  • Buschinger A., Klein R.W. and Maschwitz U. 1994. Colony structure of a bamboo-dwelling Tetraponera sp. (Hymenoptera: Formicidae: Pseudomyrmecinae) from Malaysia. Insect. Soc. 41: 29-41

    Google Scholar 

  • Davidson D.W., Cook S.C., Snelling R.R. and Chua T.H. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300: 969-972

    Google Scholar 

  • DeNiro M.J. and Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid-synthesis. Science 197: 261-263

    Google Scholar 

  • DeNiro M.J. and Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42: 495-506

    Google Scholar 

  • Eggleton P., Homathevi R., Jones D.T., MacDonald J.A., Jeeva D., Bignell D.E., Davies R.G. and Maryati M. 1999. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Phil. Trans. R. Soc. B 354: 1791-1802

    Google Scholar 

  • Feldhaar H., Gebauer G. and Blüthgen N. 2010. Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol. News 13: 3-13

    Google Scholar 

  • Fiala B., Maschwitz U., Tho Y.P. and Helbig A.J. 1989. Studies of a South East Asian ant-plant association - protection of Macaranga trees by Crematogaster borneensis. Oecologia 79: 463-470

  • Fittkau E.J. and Klinge H. 1973. On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5: 2-14

    Google Scholar 

  • Fry B. 2006. Stable Isotope Ecology. Springer, New York. 308 pp

  • Gadagkar R. 1991. Belonogaster, Mischocyttarus, Parapolybia, and independent-founding Ropalidia. In: The Social Biology of Wasps (Ross K.G. and Matthews R.W., Eds). Cornell University Press, Ithaca and London. pp 149-190

  • Gannes L.Z., O’Brien D.M. and Martínez del Rio C. 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78: 1271-1276

    Google Scholar 

  • Grimaldi D. and Engel M.S. 2005. Evolution of the Insects. Cambridge University Press, Cambridge, U.K. 755 pp

  • Heil M., Fiala B., Kaiser W. and Linsenmair K.E. 1998. Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Funct. Ecol. 12: 117-122

    Google Scholar 

  • Higashi M. and Abe T. 1996. Global diversification of termites driven by the evolution of symbiosis and sociality. In: Biodiversity: An Ecological Perspective (Abe T., Levin S.A. and Higashi M., Eds). Springer-Verlag, New York. pp 83-112

  • Hobbie E.A. and Werner R.A. 2004. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol. 161: 371-385

    Google Scholar 

  • Hölldobler B. and Wilson E.O. 1990. The Ants. Belknap Press of Harvard University Press, Cambridge. 732 pp

  • Hyodo F., Kohzu A. and Tayasu I. 2010a. Linking aboveground and belowground food webs through carbon and nitrogen stable isotope analyses. Ecol. Res. 25: 745-756

  • Hyodo F., Matsumoto T., Takematsu Y., Kamoi T., Fukuda D., Nakagawa M. and Itioka T. 2010b. The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. J. Trop. Ecol. 26: 205-214

  • Hyodo F., Tayasu I., Inoue T., Azuma J.-I. and Kudo T. 2003. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol. 17: 186-193

    Google Scholar 

  • Hyodo F., Tayasu I., Konate S., Tondoh J.E., Lavelle P. and Wada E. 2008. Gradual enrichment of 15N with humification of diets in a below-ground food web: relationship between 15N and diet age determined using 14C. Funct. Ecol. 22: 516-522

    Google Scholar 

  • Inui Y., Tanaka H.O., Hyodo F. and Itioka T. 2009. Within-nest abundance of a tropical cockroach Pseudoanaplectinia yumotoi associated with Crematogaster ants inhabiting epiphytic fern domatia in a Bornean dipterocarp forest. J. Nat. Hist. 43: 1139-1145

    Google Scholar 

  • Itino T., Davies S.J., Tada H., Hieda O., Inoguchi M., Itioka T., Yamane S. and Inoue T. 2001. Cospeciation of ants and plants. Ecol. Res. 16: 787-793

    Google Scholar 

  • Jeeva D., Bignell D.E., Eggleton P. and Maryati M. 1999. Respiratory gas exchanges of termites from the Sabah (Borneo) assemblage. Physiol. Entomol. 24: 11-17

    Google Scholar 

  • Jones D.T. and Gathorne-Hardy F.J. 1995. Foraging activity of the processional termite Hospitalitermes hospitalis (Termitidae, Nasutitermitinae) in the rain-forest of Brunei, North-West Borneo. Insect. Soc. 42: 359-369

    Google Scholar 

  • Jones D.T. and Praestyo A.H. 2002. A survey of the termites (Insecta: Isoptera) of Tabalong District, south Kalimantan, Indonesia. Raffles Bull. Zool. 50: 117-128

    Google Scholar 

  • Jones D.T., Rahman H., Bignell D.E. and Prasetyo A.H. 2010. Forests on ultramafic-derived soils in Borneo have very depauperate termite assemblages. J. Trop. Ecol. 26: 103-114

    Google Scholar 

  • Klein A.M., Steffan-Dewenter I. and Tscharntke T. 2004. Foraging trip duration and density of megachilid bees, eumenid wasps and pompilid wasps in tropical agroforestry systems. J. Anim. Ecol. 73: 517-525

    Google Scholar 

  • Lindeman R.L. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399-417

    Google Scholar 

  • Martin S.J. 1995. Hornets (Hymenoptera: Vespinae) of Malaysia. Malay. Nat. J. 49: 71-82

    Google Scholar 

  • Maschwitz U. and Mühlenberg M. 1975. Strategy of predation in some oriental Leptogenys species (Formicidae-Ponerinae). Oecologia 20: 65-83

    Google Scholar 

  • Matsuura K. 1991. Vespa and Provespa. In: The Social Biology of Wasps (Ross K.G. and Matthews R.W., Eds). Cornell University Press, Ithaca. pp 232-262

  • McCutchan J.H., Lewis W.M., Kendall C. and McGrath C.C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378-390

    Google Scholar 

  • Michener C.D. 2000. The Bees of the World. The Johns Hopkins University Press, Baltimore, Md. 913 pp

  • Minagawa M. and Wada E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta. 48: 1135-1140

    Google Scholar 

  • Momose K., Yumoto T., Nagamitsu T., Kato M., Nagamasu H., Sakai S., Harrison R.D., Itioka T., Hamid A.A. and Inoue T. 1998. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am. J. Bot. 85: 1477-1501

    Google Scholar 

  • Nadelhoffer K. and Fry B. 1994. Nitrogen isotope studies in forest ecosystems. In: Stable Isotopes in Ecology and Environmental Science (Lajtha K. and Michener R.H., Eds). Blackwell Scientific Publications, Oxford. pp 22-44

  • O’Neil K.M. 2001. Solitary Wasps: Behavior and Natural History. Cornell University Press, Ithaca. 406 pp

  • Pfeiffer M. and Linsenmair K.E. 2000. Contributions to the life history of the Malaysian giant ant Camponotus gigas (Hymenoptera, Formicidae). Insect. Soc. 47: 123-132

    Google Scholar 

  • Pollierer M.M., Langel R., Scheu S. and Maraun M. 2009. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol. Biochem. 41: 1221-1226

    Google Scholar 

  • Post D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703-718

    Google Scholar 

  • Richter M.R. 2000. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45: 121-150

    Google Scholar 

  • Roubik D.W. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press, New York. 514 pp

  • Tanaka H.O., Inui Y. and Itioka T. 2009. Anti-herbivore effects of an ant species, Crematogaster difformis, inhabiting myrmecophytic epiphytes in the canopy of a tropical lowland rainforest in Borneo. Ecol. Res. 24: 1393-1397

    Google Scholar 

  • Tayasu I. 1998. Use of carbon and nitrogen isotope ratios in termite research. Ecol. Res. 13: 377-387

    Google Scholar 

  • Tayasu I., Abe T., Eggleton P. and Bignell D.E. 1997. Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol. Entomol. 22: 343-351

    Google Scholar 

  • Tayasu I., Hyodo F., Takematsu Y., Sugimoto A., Inoue T., Kirtibutr N. and Abe T. 2000. Stable isotope ratios and uric acid preservation in termites belonging to three feeding habits in Thailand. Isotopes Environ. Health Stud. 36: 259-272

  • Tillberg C.V. and Breed M.D. 2004. Placing an omnivore in a complex food web: Dietary contributions to adult biomass of an ant. Biotropica 36: 266-272

    Google Scholar 

  • Tillberg C.V., McCarthy D.P., Dolezal A.G. and Suarez A.V. 2006. Measuring the trophic ecology of ants using stable isotopes. Insect. Soc. 53: 65-69

    Google Scholar 

  • Tilman D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, N.J. 296 pp

  • Van Mele P. and Cuc N.T.T. 2000. Evolution and status of Oecophylla smaragdina (Fabricius) as a pest control agent in citrus in the Mekong Delta, Vietnam. Int. J. Pest Manage. 46: 295-301

    Google Scholar 

  • Vanderklift M.A. and Ponsard S. 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169-182

    Google Scholar 

  • Wäckers F.L. 2004. Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol. Cont. 29: 307-314

    Google Scholar 

  • Watanabe H. and Tokuda G. 2010. Cellulolytic systems in insects. Annu. Rev. Entomol. 55: 609-632

    Google Scholar 

  • Wilson E.O. 1958. The beginnings of nomadic and group-predatory behavior in the Ponerine ants. Evolution 12: 24-31

    Google Scholar 

  • Yumoto T. and Nakashizuka T. 2005. The canopy biology program in Sarawak: Scope, methods, and merit. In: Pollination Ecology and the Rain Forest (Roubik D.W., Sakai S. and Hamid A.A., Eds). Springer, New York. pp 13-21

Download references

Acknowledgments

We thank Josef Kendawang (Forest Department, Sarawak) and Lucy Chong (Sarawak Forestry Corporation) for permission for research in Sarawak. We also thank Tohru Nakashizuka (Tohoku University) and Het Kaliang (Sarawak Forestry Corporation) for kind arrangement to conduct the field sampling, Seiki Yamane (Kagoshima University) for identification of ants and sphecid wasps and helpful discussion, Shuichi Ikudome (Kagoshima Women’s Junior College) for identification of bees and two anonymous reviewers and the Associate Editor for constructive comments on an earlier draft of this manuscript. This study was supported by Research Institute for Humanity and Nature, Japan (P3-1 and P3-5), by Grant-in-Aids (no. 17405006 to T.I., and no. 16405009 to Y.T.) and partly by Special Coordination funds for Promoting Sciences and Technology from the Japanese Ministry of Education, Science, and Culture. F.H. and T.M. were supported by the Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hyodo.

Appendix

Appendix

δ15N and δ13C values of Hymenoptera and Isoptera examined in this study.

 

No.

Taxa

n

δ15N (‰)

δ13C (‰)

Mean (SE)

  

Range (min–max)

Mean (SE)

  

Range (min–max)

 

Hymenoptera

 

Ants

 

 Formicidae

1

  Crematogaster borneensis

5

−1.2 (0.6)

D

hi

−2.3 to 0.8

−33.9 (0.7)

C

g

−35.7 to −31.7

2

  Crematogaster difformis

5

2.6 (0.5)

B

de

1.0 to 3.7

−26.4 (0.2)

A

ab

−27.0 to −25.9

3

  Camponotus gigas

9

1.8 (0.4)

B

def

0.5 to 4.3

−26.9 (0.2)

A

ab

−27.7 to −26.2

4

  Leptogenys diminuta

3

6.3 (0.6)

A

ab

5.0 to 7.0

−26.6 (0.2)

A

abc

−26.9 to −26.3

5

  Tetraponera attenuata

16

0.3 (0.1)

C

gh

−1.1 to 1.3

−28.4 (0.2)

B

cdef

−29.8 to −26.3

6

  Oecophylla smaragdina

4

3.1 (0.2)

B

d

2.6 to 3.5

−26.5 (0.2)

A

ab

−27.1 to −26.0

 

Bees

 

 Apidae

7

  Apis spp.

3

−2.0 (0.1)

B

ij

−2.2 to −1.7

−25.4 (0.3)

A

a

−25.8 to −24.7

8

  Trigona spp.

10

−0.6 (0.1)

A

ghi

−1.5 to 0.0

−27.2 (0.3)

B

abcd

−28.2 to −25.8

 

 Anthophoridae

9

  Amegilla sp.

1

−0.7

   

−28.9

   
 

 Halictidae

10

  Nomia sp.

1

1.0

   

−31.0

   

11

 Megachilidae sp.

1

1.8

   

−23.2

   
 

Wasps

12

 Braconidae sp.

2

−0.1

  

−0.9 to 0.7

−26.2

  

−26.8 to −25.5

13

 Ichneumonidae sp.

4

5.9 (0.9)

AB

bc

4.0 to 8.0

−26.9 (0.7)

A

abcd

−28.6 to −24.9

 

 Nyssonidae

14

  Bembix sp.

3

8.3 (0.9)

A

a

6.7 to 9.9

−25.4 (0.0)

A

a

−25.5 to −25.3

15

  Bembecinus sp.

3

3.6 (0.7)

BC

cd

2.2 to 4.6

−26.5 (0.0)

A

ab

−26.6 to −26.5

16

 Pompilidae sp.

2

7.4

  

5.4 to 9.4

−25.3

  

−26.1 to −24.5

17

 Scoliidae sp.

1

2.8

   

−27.3

   
 

 Sphecidae

18

  Chalybion bengalense

1

8.3

   

−28.4

   
 

 Vespidae

         

19

  Polybioides pescas

2

2.0

  

1.8 to 2.2

−26.2

  

−26.4 to −26.0

20

  Provespa anomala

6

2.3 (0.3)

C

def

1.3 to 3.3

−26.8 (0.1)

A

ab

−27.3 to −26.0

21

  Ropalidia spp.

3

1.1 (0.3)

C

defg

0.5 to 1.5

−27.3 (0.4)

A

abcdef

−28.0 to −26.7

22

  Vespa affinis

2

6.1

  

5.5 to 6.7

−26.5

  

−26.9 to −26.2

 

Termites

 

Isoptera

 

 Termitidae

23

  Hospitalitermes hospitalis

4

−3.4 (0.3)

E

j

−4.0 to −2.6

−28.9 (0.4)

B

def

−29.7 to −27.9

24

  Macrotermes malaccensis

5

−1.6 (0.2)

D

ij

−2.2 to −1.1

−27.0 (0.4)

A

abcd

−28.4 to −26.1

25

  Odontotermes sarawakensis

1

0.3

   

−25.4

   

26

  Odontotermes denticulatus

1

2.1

   

−25.9

   

27

  Microcerotermes sabahensis

4

−0.4 (0.3)

CD

ghi

−0.9 to 0.6

−29.2 (0.3)

B

e

−30.0 to −28.2

28

  Longipeditermes longipes

3

0.5 (0.2)

BC

efghi

0.1 to 0.9

−29.3 (0.2)

B

ef

−29.6 to −29.0

29

  Homallotermes foraminifer

9

0.7 (0.4)

B

fg

−1.0 to 2.6

−27.6 (0.4)

A

bcdef

−29.6 to -25.9

30

  Prohamitermes mirabilis

9

5.9 (0.2)

A

b

5.1 to 6.6

−27.5 (0.2)

A

bcdf

−28.1 to −26.7

31

  Termes rostratus

2

5.6

  

4.9 to 6.4

−25.3

  

−25.4 to −25.2

32

  Dicuspiditermes nemorosus

4

6.7 (0.2)

A

ab

6.3 to 7.2

−26.7 (0.2)

A

ab

−27.1 to −26.2

  1. Mean values with the same letter do not differ according to Tukey–Kramer HSD post hoc tests following ANOVA at P = 0.05. Uppercase and lowercase letters indicate the post hoc results for within-group tests (t test results for bees) and for tests among all species, respectively
  2. n = Number of colonies or individuals examined in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyodo, F., Takematsu, Y., Matsumoto, T. et al. Feeding habits of Hymenoptera and Isoptera in a tropical rain forest as revealed by nitrogen and carbon isotope ratios. Insect. Soc. 58, 417–426 (2011). https://doi.org/10.1007/s00040-011-0159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0159-9

Keywords

Navigation