Skip to main content
Log in

Conformational change of the extracellular parts of the CFTR protein during channel gating

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cystic fibrosis can be treated by potentiators, drugs that interact directly with the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel to increase its open probability. These substances likely target key conformational changes occurring during channel opening and closing, however, the molecular bases of these conformational changes, and their susceptibility to manipulation are poorly understood. We have used patch clamp recording to identify changes in the three-dimensional organization of the extracellularly accessible parts of the CFTR protein during channel opening and closing. State-dependent formation of both disulfide bonds and Cd2+ bridges occurred for pairs of cysteine side-chains introduced into the extreme extracellular ends of transmembrane helices (TMs) 1, 6, and 12. Between each of these three TMs, we found that both disulfide bonds and metal bridges formed preferentially or exclusively in the closed state and that these inter-TM cross-links stabilized the closed state. These results indicate that the extracellular ends of these TMs are close together when the channel is closed and that they separate from each other when the channel opens. These findings identify for the first time key conformational changes in the extracellular parts of the CFTR protein that can potentially be manipulated to control channel activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

CF:

Cystic fibrosis

CFTR:

CF transmembrane conductance regulator

CHO:

Chinese hamster ovary

cryo-EM:

Cryo-electron microscopy

CuPhe:

Copper(II)-o-phenanthroline

DTT:

Dithiothreitol

ECL:

Extracellular loop

NBD:

Nucleotide-binding domain

TM:

Transmembrane helix

References

  1. Bosch B, De Boeck K (2016) Searching for a cure for cystic fibrosis. A 25-year quest in a nutshell. Eur J Pediatr 175:1–8

    Article  PubMed  Google Scholar 

  2. Zegarra-Moran O, Galieta LJV (2017) CFTR pharmacology. Cell Mol Life Sci 74:117–128

    Article  PubMed  CAS  Google Scholar 

  3. Linsdell P (2017) Structural changes fundamental to gating of the cystic fibrosis transmembrane conductance regulator anion channel pore. Adv Exp Med Biol 925:13–32

    Article  PubMed  CAS  Google Scholar 

  4. Callebaut I, Hoffmann B, Mornon J-P (2017) The implications of CFTR structural studies for cystic fibrosis drug development. Curr Opin Pharmacol 34:112–118

    Article  PubMed  CAS  Google Scholar 

  5. Chin S, Hung M, Bear CE (2017) Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants. Cell Mol Life Sci 74:57–66

    Article  PubMed  CAS  Google Scholar 

  6. Moran O (2017) The gating of the CFTR channel. Cell Mol Life Sci 74:85–92

    Article  PubMed  CAS  Google Scholar 

  7. Sorum B, Czégé D, Csanády L (2015) Timing of CFTR pore opening and structure of its transition state. Cell 163:724–733

    Article  PubMed  CAS  Google Scholar 

  8. Gao X, Hwang T-C (2015) Localizing a gate in CFTR. Proc Natl Acad Sci USA 112:2461–2466

    Article  PubMed  CAS  Google Scholar 

  9. Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL (2016) Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 30:1247–1262

    Article  PubMed  CAS  Google Scholar 

  10. Liu F, Zhang Z, Csanády L, Gadsby DC, Chen J (2017) Molecular structure of the human CFTR ion channel. Cell 169:85–95

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Z, Liu F, Chen J (2017) Conformational changes of CFTR upon phosphorylation and ATP binding. Cell 170:483–491

    Article  PubMed  CAS  Google Scholar 

  12. Tordai H, Leveles I, Hegedüs T (2017) Molecular dynamics of the cryo-EM CFTR structure. Biochem Biophys Res Commun 491:986–993

    Article  PubMed  CAS  Google Scholar 

  13. El Hiani Y, Linsdell P (2014) Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 289:28149–28159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Linsdell P (2017) Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 74:67–83

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Z-R, Song B, McCarty NA (2005) State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 280:41997–42003

    Article  PubMed  CAS  Google Scholar 

  16. Beck EJ, Yang Y, Yaemsiri S, Raghuram V (2008) Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 283:4957–4966

    Article  PubMed  CAS  Google Scholar 

  17. Wang W, Linsdell P (2012) Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7). J Biol Chem 287:10156–10165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang W, Linsdell P (2012) Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J Biol Chem 287:32136–32146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhou J-J, Li M-S, Qi J, Linsdell P (2010) Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J Gen Physiol 135:229–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC (2006) In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J 25:4728–4739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Li M-S, Demsey AFA, Qi J, Linsdell P (2009) Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate. Br J Pharmacol 157:1065–1071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhou J-J, Fatehi M, Linsdell P (2008) Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Pflügers Arch 457:351–360

    Article  PubMed  CAS  Google Scholar 

  23. Fatehi M, Linsdell P (2009) Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines. J Membr Biol 228:151–164

    Article  PubMed  CAS  Google Scholar 

  24. Gao X, Bai Y, Hwang T-C (2013) Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 104:786–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Vergani P, Nairn AC, Gadsby DC (2003) On the mechanism of MgATP-dependent gating of CFTR Cl channels. J Gen Physiol 121:17–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Broadbent SD, Wang W, Linsdell P (2014) Interaction between two extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochem Cell Biol 92:390–396

    Article  PubMed  CAS  Google Scholar 

  27. Negoda A, El Hiani Y, Cowley EA, Linsdell P (2017) Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel. Biochim Biophys Acta 1859:1049–1058

    Article  PubMed  CAS  Google Scholar 

  28. Linsdell P (2015) Metal bridges to probe membrane ion channel structure and function. Biomol Concepts 6:191–203

    Article  PubMed  CAS  Google Scholar 

  29. Holmgren M, Shin KS, Yellen G (1998) The activation gate of a voltage-gated K+ channel can be trapped in the open state by an inter-subunit metal bridge. Neuron 21:617–621

    Article  PubMed  CAS  Google Scholar 

  30. Heymann G, Dai J, Li M, Silberberg SD, Zhou H-X, Swartz KJ (2013) Inter- and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels. Proc Natl Acad Sci USA 110:E4045–E4054

    Article  PubMed  CAS  Google Scholar 

  31. Zhou Y, Xia X-M, Lingle CJ (2015) Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications. Proc Natl Acad Sci USA 112:5237–5242

    Article  PubMed  CAS  Google Scholar 

  32. Corradi V, Vergani P, Tieleman DP (2015) Cystic fibrosis transmembrane conductance regulator (CFTR): closed and open state channel models. J Biol Chem 290:22891–22906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bai Y, Li M, Hwang T-C (2010) Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136:293–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bai Y, Li M, Hwang T-C (2011) Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7). J Gen Physiol 138:495–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang W, El Hiani Y, Linsdell P (2011) Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Gen Physiol 138:165–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gao X, Hwang T-C (2016) Spatial positioning of CFTR’s pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway. J Gen Physiol 147:407–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Christina Irving for technical assistance. This work was supported by Cystic Fibrosis Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Linsdell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negoda, A., Cowley, E.A., El Hiani, Y. et al. Conformational change of the extracellular parts of the CFTR protein during channel gating. Cell. Mol. Life Sci. 75, 3027–3038 (2018). https://doi.org/10.1007/s00018-018-2777-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2777-0

Keywords

Navigation