Skip to main content

Incorporating Fluctuations and Dynamics in Self-Consistent Field Theories for Polymer Blends

  • Chapter
  • First Online:
Advanced Computer Simulation Approaches for Soft Matter Sciences II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 185))

Abstract

We review various methods to investigate the statics and the dynamics of collective composition fluctuations in dense polymer mixtures within fluctuating-field approaches. The central idea of fluctuating-field theories is to rewrite the partition function of the interacting multi-chain systems in terms of integrals over auxiliary, often complex, fields, which are introduced by means of appropriate Hubbard--Stratonovich transformations. Thermodynamic averages such as the average composition and the structure factor can be expressed exactly as averages of these fields. We discuss different analytical and numerical approaches to studying such a theory: The self-consistent field approach solves the integrals over the fluctuating fields in saddle-point approximation. Generalized random phase approximations allow one to incorporate Gaussian fluctuations around the saddle point. Field theoretical polymer simulations are used to study the statistical mechanics of the full system with Complex Langevin or Monte Carlo methods. Unfortunately, they are hampered by the presence of a sign problem. In a dense system, the latter can be avoided without losing essential physics by invoking a saddle point approximation for the complex field that couples to the total density. This leads to the external potential theory. We investigate the conditions under which this approximation is accurate. Finally, we discuss recent approaches to formulate realistic time evolution equations for such models. The methods are illustrated by two examples: A study of the fluctuation-induced formation of a polymeric microemulsion in a polymer-copolymer mixture and a study of early-stage spinodal decomposition in a binary blend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cahn RW, Haasen P, Kramer EJ (1993) Materials Science and Technology, A Comprehensive Treatment, Vol. 12. Wiley-VCH, Weinheim; Garbassi F, Morra M, Occhiello E (2000) Polymer Surface: From Physics to Technology. Wiley, Chichester, 510 pp

    Google Scholar 

  2. Shull KR, Mayes AM, Russell TP (1993) Macromolecules 26:3929; Mayes AM, Russell TP, Satija SK, Majkrzak CF (1992) Macromolecules 25:6523; Russell TP, Anastasiadis SH, Menelle A, Flecher GP, Satija SK (1991) Macromolecules 24:1575; Green PF, Russell TP (1991) Macromolecules 24:2931

    Article  CAS  Google Scholar 

  3. Dai KH, Norton LJ, Kramer EJ (1994) Macromolecules 27:1949; Dai KH, Kramer EJ (1994) Polymer 35:157; Dai KH, Kramer EJ, Shull KR (1992) Macromolecules 25:220; Jones RAL, Kramer EJ, Rafailovich MH, Schwarz SA (1989) Phys Rev Lett 62:280

    Article  CAS  Google Scholar 

  4. Budkowski A, Klein J, Fetters L (1995) Macromolecules 28:8571

    Article  CAS  Google Scholar 

  5. Tanaka H, Hasegawa H, Hashimoto T (1991) Macromolecules 24:240

    Article  CAS  Google Scholar 

  6. Jansen BJP, Rastogi S, Meijer HEH, Lemstra PJ (2001) Macromolecules 34:3998

    Article  CAS  Google Scholar 

  7. Tucker CL, Moldenaers P (2002) Ann Rev Fluid Mechanics 34:177

    Article  Google Scholar 

  8. Edwards SF (1965) Proc Phys Soc 85:613

    Article  CAS  Google Scholar 

  9. Helfand E, Tagami Y (1971) J Polym Sci B 9:741, J Chem Phys 56:3592; 57:1812 (1972); Helfand E, Sapse AM (1975) J Chem Phys 62:1327; Helfand E (1975) J Chem Phys 62:999

    Article  CAS  Google Scholar 

  10. Hong KM, Noolandi J (1981) Macromolecules 14:727; 14:737

    Article  CAS  Google Scholar 

  11. Scheutjens JMHM, Fleer GJ (1979) J Chem Phys 83:1619

    Article  CAS  Google Scholar 

  12. Matsen MW, Schick M (1994) Phys Rev Lett 72:2660; Matsen MW (1995) Phys Rev Lett 74:4225; (1995) Macromolecules 28:5765; (2001) J Phys: Cond Matt 14:R21

    Google Scholar 

  13. Schmid F (1998) J Phys: Cond Matt 10:8105

    CAS  Google Scholar 

  14. Flory PJ (1941) J Chem Phys 9:660; Huggins HL (1941) J Chem Phys 9:440

    Article  CAS  Google Scholar 

  15. In d = 2 dimensions N̄ is independent from the number of segments N per molecule and mean field theory is inaccurate, cf. Cavallo A, Müller M, Binder K (2003) Europhys Lett 61:214

    Google Scholar 

  16. de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, 319 pp

    Google Scholar 

  17. Wittmer JP et al. (2004) Phys Rev Lett 93:147601

    Article  CAS  Google Scholar 

  18. Kratky O, Porod G (1949) Rec Trav Chim 68:1106; Saito N, Takahashi K, Yunoki Y (1967) J Phys J Soc Jpn 22:219

    CAS  Google Scholar 

  19. Szleifer I (1997) Curr Opin Colloid Interface Sci 2:416; Szleifer I, Carignano MA (1996) Adv Chem Phys 94:742

    Google Scholar 

  20. Müller M, Schick M (1996) Macromolecules 29:8900

    Article  Google Scholar 

  21. Müller M, Mac LGDowell (2000) Macromolecules 33:3902; Müller M, Mac LGDowell, Yethiraj A (2003) J Chem Phys 118:2929

    Article  CAS  Google Scholar 

  22. Müller M (1998) Macromolecules 31:9044

    Article  Google Scholar 

  23. Matsen MW (2002) J Phys: Cond Matt 14:21

    Google Scholar 

  24. Rowlinson JS, Swinton FL (1982) Liquids and liquid mixtures. Butterworths, London; Van Konynenburg P, Scott RL (1980) Philos Trans Soc London Series A298:495

    Google Scholar 

  25. Barker A, Henderson D (1967) J Chem Phys 47:4714

    Article  CAS  Google Scholar 

  26. Hansen JP, Donald Mc IR (1986) Theory of simple liquids. Academic Press, New York, 568 pp

    Google Scholar 

  27. Orwoll RA, Arnold PA (1996) Polymer-Solvent Interaction Parameter χ. In: Mark JE (ed) Physical Properties of Polymers, Chapter 14. AIP, Woodbury, New York

    Google Scholar 

  28. Reister E (2001) PhD Thesis, Johannes Gutenberg-Universität, Mainz, Germany

    Google Scholar 

  29. Reister E, Müller M, Binder K (2001) Phys Rev E 64:041804

    Article  CAS  Google Scholar 

  30. We note that on the right hand side of Eq. 32 the second term is smaller than the first term by a factor of R e d/V and can therefore be neglected in large systems. R e dδϕα∗(r)/δWβ(r′) is independent of the system size

    Google Scholar 

  31. Maurits NM, Fraaije JGEM (1997) J Chem Phys 107:5879

    Article  CAS  Google Scholar 

  32. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical Recipes. Cambridge Univ Press, Cambridge

    Google Scholar 

  33. Yamamoto T (2000) J Comp App Math 124:1; Chen X (1997) J Comp App Math 80:105; Martinez JM (2000) J Comp App Math 124:45

    Google Scholar 

  34. Schmid F, Müller M (1995) Macromolecules 28:8639

    Article  CAS  Google Scholar 

  35. Anderson DG (1965) J Assoc Comput Mach 12:547

    Google Scholar 

  36. Eyert V (1996) J Comp Phys 124:271

    Article  Google Scholar 

  37. Thompson RB, Rasmussen Kø, Lookman T (2004) J Chem Phys 120:31

    Article  CAS  Google Scholar 

  38. Drolet F, Frederickson GH (1999) Phys Rev Lett 83:4317

    Article  CAS  Google Scholar 

  39. Mitchell AR, Griffiths DF (1980) The Finite Difference Method in Partial Differential Equations. Wiley, Chichester, 284 pp

    Google Scholar 

  40. Feit MD, Fleck JA Jr, Steiger A (1982) J Comp Phys 47:412

    Article  CAS  Google Scholar 

  41. Rasmussen Kø, Kalosakas G (2002) J Polym Sci B 40:777

    Google Scholar 

  42. Düchs D (2003) PhD Thesis, Univ of Bielefeld, Germany

    Google Scholar 

  43. Morse DC, Fredrickson GH (1994) Phys Rev Lett 73:3235

    Article  CAS  Google Scholar 

  44. Schmid F, Müller M (1995) Macromolecules 28:8639

    Article  CAS  Google Scholar 

  45. Müller M (1999) Macromol Theory Simul 8:343

    Article  Google Scholar 

  46. Müller M, Binder K (1998) Macromolecules 31:8323

    Article  Google Scholar 

  47. Amundson K, Helfand E, Davis DD, Quan X, Patel SS (1991) Macromolecules 24:6546; Lin CY, Schick M, Andelman D (2005) Macromolecules 38:5766

    Article  CAS  Google Scholar 

  48. Li XJ, Schick M (2001) J Biophys 80:1703

    Article  CAS  Google Scholar 

  49. Ginzburg VL (1960) Sov Phys Solid State 1:1824; de Gennes PG (1977) J Phys Lett (Paris) 38:L-441; Joanny JF (1978) J Phys A 11:L-117; Binder K (1984) Phys Rev A 29:341

    Google Scholar 

  50. Fisher ME (1974) Rev Mod Phys 46:587

    Article  Google Scholar 

  51. Gehlen MD, Rosedale JH, Bates FS, Wignall GD, Almdal K (1992) Phys Rev Lett 68:2452; Schwahn D, Meier G, Mortensen K, Janssen S (1994) J Phys II (France) 4:837; Frielinghaus H, Schwahn D, Willner L, Springer T (1998) Physica B 241:1022

    Article  Google Scholar 

  52. Deutsch HP, Binder K (1992) Macromolecules 25:6214; (1993) J Phys II (France) 3:1049

    Article  CAS  Google Scholar 

  53. Müller M, Binder K (1995) Macromolecules 28:1825

    Article  Google Scholar 

  54. Brazovskii SA (1975) Sov Phys JETP 41:85

    Google Scholar 

  55. Fredrickson GH, Helfand E (1987) J Chem Phys 87:697

    Article  CAS  Google Scholar 

  56. Buff FP, Lovett RA, Stillinger FH (1965) Phys Rev Lett 15:621

    Article  Google Scholar 

  57. Werner A, Schmid F, Müller M, Binder K (1997) J Chem Phys 107:8175

    Article  CAS  Google Scholar 

  58. Werner A, Schmid F, Müller M, Binder K (1999) Phys Rev E 59:728

    Article  CAS  Google Scholar 

  59. Müller M, Albano EV, Binder K (2000) Phys Rev E 62:5281

    Article  Google Scholar 

  60. Müller M, Schick M (1996) J Chem Phys 105:8885

    Article  Google Scholar 

  61. Holyst R, Schick M (1992) J Chem Phys 96:7728

    Article  CAS  Google Scholar 

  62. Taupin C, de Gennes PG (1982) J Phys Chem 86:2294

    Article  Google Scholar 

  63. Müller M, Gompper G (2002) Phys Rev E 66:041805

    Article  CAS  Google Scholar 

  64. Shakhnovich EI, Gutin AM (1989) J Phys France 50:1843; Fredrickson GH, Milner ST, Leibler L (1992) Macromolecules 25:6341; Fredrickson GH, Milner ST (1991) Phys Rev Lett 67:835; Subbotin AV, Semenov AN (2002) Eur Phys J 7:49

    Google Scholar 

  65. Houdayer J, Müller M (2002) Europhys Lett 58:660; Houdayer J, Müller M (2004) Macromolecules 37:4283

    Google Scholar 

  66. Shi AC, Noolandi J, Desai RC (1996) Macromolecules 29:6487

    Article  CAS  Google Scholar 

  67. Laradji M, Shi AC, Noolandi J, Desai RC (1997) Phys Rev Lett 78:2577; (1997) Macromolecules 30:3242

    Google Scholar 

  68. Montvay I, Münster G (1994) Quantum fields on the lattice. Cambridge Univ Press, Cambridge, 505 pp

    Google Scholar 

  69. Klauder JR (1983) J Phys A 16:L317

    Article  Google Scholar 

  70. Parisi G (1983) Phys Lett 131B:393

    Google Scholar 

  71. Lin HQ, Hirsch JE (1986) Phys Rev B 34:1964

    Article  Google Scholar 

  72. Baeurle SA (2002) Phys Rev Lett 89:080602

    Article  CAS  Google Scholar 

  73. Moreira AG, Baeurle SA, Fredrickson GH (2003) Phys Rev Lett 91:150201

    Article  CAS  Google Scholar 

  74. Ganesan V, Fredrickson GH (2001) Europhys Lett 55:814

    Article  CAS  Google Scholar 

  75. Fredrickson GH, Ganesan V, Drolet F (2002) Macromolecules 35:16

    Article  CAS  Google Scholar 

  76. Fredrickson GH (2002) J Chem Phys 117:6810

    Article  CAS  Google Scholar 

  77. Alexander-Katz A, Moreira AG, Fredrickson GH (2003) J Chem Phys 118:9030

    Article  CAS  Google Scholar 

  78. Gausterer H (1998) Nucl Phys 642:239

    Article  Google Scholar 

  79. Schoenmakers WJ (1987) Phys Rev D 36:1859

    Google Scholar 

  80. Düchs D, Ganesan V, Fredrickson GH, Schmid F (2003) Macromolecules 36:9237

    Article  CAS  Google Scholar 

  81. Yethiraj A, Schweizer KS (1993) J Chem Phys 98:9080; Schweizer KS, Yethiraj A (1993) J Chem Phys 98:9053

    Article  CAS  Google Scholar 

  82. Holyst R, Vilgis TA (1993) J Chem Phys 99:4835; (1994) Phys Rev E 50:2087

    Article  CAS  Google Scholar 

  83. Düchs D, Schmid F (2004) NIC Series 20:343

    Google Scholar 

  84. Duane S, Kennedy AD, Penleton BJ, Roweth D (1987) Phys Lett B 195:216; Mehlig B, Heermann DW, Forrest BM (1992) Phys Rev B 45:679; Forrest BM, Suter UW (1994) J Chem Phys 101:2616

    Google Scholar 

  85. Kotnis M, Muthukumar M (1992) Macromolecules 25:1716

    Article  CAS  Google Scholar 

  86. Chakrabarti A, Toral R, Gunton JD, Muthukumar M (1989) Phys Rev Lett 63:2072

    Article  CAS  Google Scholar 

  87. Castellano C, Glotzer SC (1995) J Chem Phys 103:9363

    Article  CAS  Google Scholar 

  88. Rouse PE (1953) J Chem Phys 21:1272

    Article  CAS  Google Scholar 

  89. Doi M, Edwards SF (1994) The Theory of Polymer Dynamics. Oxford University Press, Oxford, 402 pp

    Google Scholar 

  90. Binder K (1983) J Chem Phys 79:6387

    Article  CAS  Google Scholar 

  91. de Gennes PG (1980) J Chem Phys 72:4756

    Article  Google Scholar 

  92. Pincus P (1981) J Chem Phys 75:1996

    Article  CAS  Google Scholar 

  93. de Gennes PG (1971) J Chem Phys 55:572

    Article  Google Scholar 

  94. Hohenberg PC, Halperin BI (1977) Rev Mod Phys 49:435

    Article  CAS  Google Scholar 

  95. Particle-based SCF schemes like “single chain in mean field”–simulations [96] avoid the use of an Onsager coefficient and are applicable to systems with strong spatial inhomogeneities

    Google Scholar 

  96. Müller M, Smith GD (2005) J Polym Sci B 43:934

    Article  CAS  Google Scholar 

  97. Altevogt P, Evers OA, Fraaije JGEM, Maurits NM, van Vlimmeren BAC (1999) J Mol Struc Theochem 463:139; Fraaije JGEM (1993) J Chem Phys 99:9202

    Google Scholar 

  98. Soga KG, Zuckermann MJ, Guo H (1996) Macromolecules 29:1998; Besold G et al. (2000) J Polym Sci 38:1053

    Article  CAS  Google Scholar 

  99. Ganesan V, Pryamitsyn V (2003) J Chem Phys 118:4345

    Article  CAS  Google Scholar 

  100. Hornreich RM, Luban M, Shtrikman S (1975) Phys Rev Lett 35:1678

    Article  Google Scholar 

  101. Hornreich RM (1980) J Magn Magn Mat 15:387

    Article  Google Scholar 

  102. Diehl HW (2002) Acta Physica Slovaca 52:271

    Google Scholar 

  103. Morkved TL, Chapman BR, Bates FS, Lodge TP, Stepanek P, Almdal K (1999) Faraday Discuss 11:335

    Article  Google Scholar 

  104. Düchs D, Schmid F (2004) J Chem Phys 121:2798

    Article  CAS  Google Scholar 

  105. Cahn JW, Hilliard JE (1958) J Chem Phys 28:258; (1959) ibid 31:668; Cook HE (1970) Acta Metall 18:297

    Article  CAS  Google Scholar 

  106. Sariban A, Binder K (1989) Polym Comm 30:205; (1991) Macromolecules 24:578; Baumgärtner A, Heermann DW (1986) Polymer 27:1777

    Google Scholar 

  107. Carmesin I, Kremer K (1988) Macromolecules 21:2819; Wittmann HP, Kremer K (1990) Comp Phys Com 61:309; Deutsch HP, Binder K, (1991) J Chem Phys 94:294

    Article  CAS  Google Scholar 

  108. Müller M, Werner A (1997) J Chem Phys 107:10–764

    Google Scholar 

  109. Reister E, Müller M (2003) J Chem Phys 118:8476

    Article  CAS  Google Scholar 

  110. Maurits NM, Zvelindovsky AV, Fraaije JGEM (1998) J Chem Phys 108:9150; Koga T, Kawasaki K, Takenaka M, Hashimoto T (1993) Physica A198:473

    Article  CAS  Google Scholar 

  111. Keesta BJ, van Puyvelde PCJ, Anderson PD, Heijer HEH (2003) Phys Fluids 15:2567

    Article  CAS  Google Scholar 

  112. Tanaka HM (2000) J Phys: Cond Mat 12:R207; (1999) Prog Theo Phys 101:863

    CAS  Google Scholar 

  113. Lefebvre AA, Lee JH, Balsara NP, Vaidyanathan C (2002) J Chem Phys 117:9063 and 9074

    Article  CAS  Google Scholar 

  114. Muthukumar M, Nickel BG (1987) J Chem Phys 86:460

    Article  CAS  Google Scholar 

  115. des Cloizeaux J, Jannink G (1990) Polymers in Solution: Their Modeling and Structure, Oxford Science Publications, Oxford; Freed KF (1987) Renormalization Group Theory of Macromolecules. Wiley, New York; Le Guillou JC, Zinn-Justin J (1989) J Phys (France) 50:1365; Schäfer L (1999) Excluded Volume Effects in Polymer Solutions. Springer, Berlin, Heidelberg, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Müller .

Editor information

Christian Holm Kurt Kremer

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Müller, M., Schmid, F. Incorporating Fluctuations and Dynamics in Self-Consistent Field Theories for Polymer Blends . In: Holm, C., Kremer, K. (eds) Advanced Computer Simulation Approaches for Soft Matter Sciences II. Advances in Polymer Science, vol 185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136794

Download citation

Publish with us

Policies and ethics