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Abstract: When the cosmological constant is considered to be a thermodynamical vari-

able in black hole thermodynamics, analogous to a pressure, its conjugate variable can be

thought of as a thermodynamic volume for the black hole. In the AdS/CFT correspondence

this interpretation cannot be applied to the CFT on the boundary but, from the point of

view of the boundary SU(N) gauge theory, varying the cosmological constant in the bulk

is equivalent to varying the number of colors in the gauge theory. This interpretation is

examined in the case of AdS5 × S5, for N = 4 SUSY Yang-Mills at large N , and the vari-

able thermodynamically conjugate to N , a chemical potential for color, is determined. It is

shown that the chemical potential in the high temperature phase of the Yang-Mills theory

is negative and decreases as temperature increases, as expected. For spherical black holes

in the bulk the chemical potential approaches zero as the temperature is lowered below the

Hawking-Page temperature and changes sign at a temperature that is within one part in

a thousand of the temperature at which the heat capacity diverges.
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1 Introduction

It was suggested in [1] that in the presence of a cosmological constant a black hole with

mass M should be viewed as a thermodynamic system for which the mass is interpreted

as the enthalpy, M = H(S, P ), with entropy S and pressure P = − Λ
8πGN

. The variable

thermodynamically conjugate to P would then have the natural interpretation of a vol-

ume, [1, 2],

V =
∂H

∂P

∣∣∣∣
S

, (1.1)

although it does not in general have any a priori connection to a notion of volume in the

geometric sense [3].

This picture has been extensively investigated recently, for a review see [4], with most

work focusing on the case of negative Λ (an exception being [5]). A natural question to

ask in this context is what the role of the cosmological constant might be on the boundary

CFT, at finite temperature, in the AdS/CFT correspondence. As Λ is then related to

the number, N , of branes in the bulk, and this translates to the number of colors in the

boundary gauge theory, the variable thermodynamically conjugate to Λ should behave as

a chemical potential for color,1 [1, 6, 7].

The chemical potential µ is calculated in AdS5 × S5, with a black hole in AdS5,

corresponding to a finite temperature N = 4 SUSY gauge theory on the boundary at

large N , [8]. The Hawking-Page phase transition in the bulk is equivalent to a phase

transition in the boundary gauge theory with a mass gap in the high temperature phase, [9,

10]. We show that, in the high temperature phase of the boundary theory, µ is negative

and is a decreasing function of temperature, consistent with general expectations for a

chemical potential, [11]. Conversely if the Hawking temperature is lowered below that of

the Hawking-Page phase transition the chemical potential associated with a 5-dimensional

asymptotically AdS spherical black hole can become zero or even positive. Though the

black hole solution is not the one most relevant for the physics when that happens, the

temperature at which µ vanishes is very close to, within one part in a thousand, the

1This should not be confused with a chemical potential for gluons or quarks, the former should vanish

just as for photons and the latter vanishes in the absence of baryon violating processes. The chemical

potential for color does not break supersymmetry.
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temperature at which the heat capacity diverges. The phase with µ ≤ 0 could conceivably

be accessed by supercooling the quark gluon plasma.

In the AdS/CFT correspondence the cosmological constant is normally considered to

be a fixed parameter that does not vary. In AdS5×S5 however it is not given a priori, it is

just a parameter in a solution of 10-dimensional supergravity, and is no more fundamental

to the theory than a black hole mass or any other parameter in the metric. Indeed in

some scenarios it can be dynamically determined by a scalar potential, [12, 13]. In [14] the

thermodynamic energy of the boundary conformal field theory was calculated as a function

of volume, temperature and N , but the bulk metric only has one parameter if Λ is fixed,

and even allowing Λ to vary gives only two parameters which is not enough to provide

thermodynamic potentials as a function of three independent parameters, that requires an

extra assumption. Our philosophy here is to trade the two geometric parameters in the

AdS5 black hole, rh and L below, for two thermodynamic variables, which are taken to be

entropy and N2 in the micro-canonical ensemble.

2 The chemical potential

The line element for an asymptotically AdS Schwarzschild black hole in 5-dimensions is

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2d2Ω(3), (2.1)

where d2Ω(3) is the (dimensionless) line element on a compact 3-dimensional space Σ3 and

f(r) = k −
8G(5)M

3πr2
+

r2

L2
. (2.2)

Here L is the anti-de Sitter length scale, with Λ = − 6
L2 , and we shall consider the two

cases k = 1 (Σ3 a unit 3-sphere) and k = 0 (Σ3 a 3-torus).

The event horizon radius, rh, is the largest root of f(r) = 0, allowingM to be expressed

as a function of rh and L,

M =
3πrh

2(kL2 + rh
2)

8G(5)L2
. (2.3)

One must bear in mind however that, in the AdS/CFT correspondence, G(5) is itself

a function of L since
1

16πG(5)
=

VS5

16πG(10)
=

π2L5

16G(10)
, (2.4)

where VS5 = π3L5 is the volume of the 5-dimensional sphere with radius L and G(10) is the

(fixed) 10-dimensional Newton constant. Hence

M =
3π4rh

2L3(kL2 + rh
2)

8G(10)
. (2.5)

We now wish to express M as a function of the entropy, S, and the number of colors of

the gauge theory, N , with N large. The Bekenstein-Hawking entropy of the black hole is

S =
1

4

A

~G(5)
=

π5L5rh
3

2ℓ8P
, (2.6)
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where A = 2π2rh
3 is the “area” of the black hole (for k = 1 the volume of a unit 3-sphere is

2π2 and for simplicity we have used the same value for the 3-torus, this is not necessary for

k = 0 but any other choice does not materially affect the argument). ~G(5) =
~G(10)

π3L5 , is the

cube of the 5-dimensional Planck length and ~G(10) = ℓ8P where ℓP is the 10-dimensional

Planck length, which is kept fixed throughout.

The other relation we need is [8]

L4 = 4πgs(~α
′)2N =

√
2N

π2
ℓ4P . (2.7)

Using (2.6) and (2.7) in (2.5) gives the mass as

M(S,N) =
3 m̃P

4

{
k

(
S

π

) 2
3

N
5
12 +

(
S

π

) 4
3

N− 11
12

}
, (2.8)

with m̃P =
√
πmP

21/8
and mP =

ℓ7P
G(10)

the 10-dimensional Planck mass.

The Hawking temperature follows from the standard thermodynamic relation

T =
∂M

∂S

∣∣∣∣
N

=
m̃P

2π

{
k

(
S

π

)− 1
3

N
5
12 + 2

(
S

π

) 1
3

N− 11
12

}
, (2.9)

(with Boltzmann’s constant set to one). There is no magic here, this is just a trivial re-

writing of Hawking’s formula relating temperature to the surface gravity of the black hole,

T =
~f ′(rh)

4π
=

~(kL2 + 2rh
2)

2πrhL2
. (2.10)

Note that, at fixed N , the k = 1 temperature as a function of S has a minimum of√
2m̃P

πN
1
4
. For any value of T above this there are two values of S with the same temperature,

giving large black holes and small black holes. This minimum in T corresponds to a

divergence in the heat capacity, CN = T
(
∂S
∂T

)
N
, small black holes have negative heat

capacity and are always unstable.

The Gibbs free energy is

G(T,N) = M − TS =
m̃P

4

{
k

(
S

π

) 2
3

N
5
12 −

(
S

π

) 4
3

N− 11
12

}
. (2.11)

For spherical black holes, with k = 1, this is negative for N2 < S
π , corresponding to

L < rh, and black holes in this regime are more stable than 5-dimensional AdS with

thermal radiation at the same temperature, this is the Hawking-Page phase transition [15]

which is distinct from the instability due to negative heat capacity mentioned above. When

G is positive spherical black holes are susceptible to decay to pure AdS plus radiation and

this happens at the Hawking-Page transition temperature

T∗ =
3

2π

m̃P

N1/4
. (2.12)

k = 1 black holes are stable against Hawking-Page decay only or T > T∗.

– 3 –
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The derivative of M with respect to N2 will be interpreted as a chemical potential for

the number of colors, [1, 6, 7],

µ :=
∂M

∂N2

∣∣∣∣
S

=
m̃P

32

{
5k

(
S

π

) 2
3

N− 19
12 − 11

(
S

π

) 4
3

N− 35
12

}
(2.13)

(N2 is used in the definition of µ, rather than N , because all fields in the boundary N = 4

SUSY Yang-Mills theory are in the adjoint representation of SU(N)). µ is a measure of

the energy cost to the system of increasing the number of colors.

3 Discussion

For flat k = 0 black holes µ is always negative, but for spherical k = 1 black holes it

becomes positive when

N2 >

(
11

5

) 3
2 S

π
. (3.1)

For a bosonic system the vanishing of the chemical potential would be a signal of Bose-

Einstein condensation, for a fermionic system it is a signal that the exclusion principle is

coming into play. In terms of temperature the bound (3.1) is saturated at a temperature

some 6% below T∗,

T0 =
21

2π
√
55

m̃P

N
1
4

= 0.944T∗. (3.2)

The condition that the black hole be stable against Hawking-Page decay to AdS plus

thermal radiation is, in geometric variables, rh > L and the inequality (3.1) translates to

rh
2 <

5

11
L2, (3.3)

putting positive µ into the region of phase space where black holes are unstable against

the Hawking-Page transition, i.e. in the low temperature phase of the gauge theory. Such

black holes are not necessarily irrelevant though, for temperatures just below T∗ one expects

black holes to make their presences felt through thermal fluctuations and they would also

be important if the quark-gluon plasma were supercooled.

As stated earlier the Hawking-Page instability at rh = L is distinct from the instability

due to negative heat capacity, the latter is in the regime rh
2 < L2

2 . The singularity in heat

capacity at

T∞ =

√
2 m̃P

πN
1
4

, (3.4)

is the lowest value the k = 1 black hole temperature (2.9) can achieve and it is only

marginally below T0,

T∞ = 0.999T0. (3.5)

It should be borne in mind however that the singularity in heat capacity at T∞ is not a

cusp, as T cannot go below T∞: as a function of S, with N fixed, T has two branches and

CN is negative on the low S branch and positive on the high S branch.
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For a classical gas µ is negative and becomes more negative as T is increased, quantum

effects become important when µ approaches zero and switches sign. Indeed these are

general properties of a chemical potential [11] and we see that they are satisfied in the

present case. In the high temperature phase, where the entropy per degree of freedom S
N2

is large, equations (2.9) and (2.13) show that indeed

µ ≈ −11N
3
4

2m̃3
P

(
πT

2

)4

(3.6)

is negative and a decreasing function of T . (3.6) is a strict equality for all T when k = 0.

An important parameter in the discussion of chemical potentials is the fugacity

ξ = e
µ
T . (3.7)

ξ < 1 in the classical regime and tends to zero as T → ∞, with quantum effects corre-

sponding to ξ ≈ 1. The figure below shows a plot of ξ as a function of the dimension-

less temperature

t = 2π
N

1
4T

m̃P
(3.8)

for k = 1. On the lower branch ξ is less than unity and is a decreasing function of T above

T∞. At fixed T , ξ → 0 as N → ∞ on the lower branch and ξ → 1 on the upper branch,

but finite t is possible in the regime of validity of the solution with T
m̃P

≪ 1 and N ≫ 1

at the same time. Note that as the curve is traced from the high T , low ξ branch, through

T∗, T∞ is encountered before µ = 0, even though T0 > T∞.

Bose-Einstein condensation and/or Fermion repulsion can viewed in terms of flux den-

sity of the 5-form flux on S5. The density of flux on S5 decreases as n = N
π3L5 ∼ N− 1

4 l−5
P

as N is increased. For large N the flux is of course classical but as N is decreased quantum

effects will become important at some stage, when µ approaches zero. If the flux is quan-

tised and each unit of flux has a size λ then the classical picture is only valid for n ≪ 1/λ5

or N ≫
(

λ
lP

)20
.

In the brane picture, when the event horizon is flat rather than spherical, the first

term in (2.8) is not present and the chemical potential is always negative, which is a good

thing as there is no Hawking-Page phase transition in this topology, all such black branes,

no matter how small rh is, are stable against decay to AdS plus thermal radiation. The

limit of N co-incident branes can be obtained by first taking a stack of branes with all

adjacent branes having the same separation, s, and then letting s → 0. If the branes each

have large mass MB then their Compton wavelength, λB, will be small. We want to take

the limit s → 0 and MB → ∞ and an important parameter characterising the physics is

the ratio s
λB

, with s → 0 and λB → 0. Provided this ratio is greater than unity the brane

wave functions do not overlap in the large N limit and quantum effects are not expected

to be important, so we should be taken with s ≫ 1 for consistency.

For simplicity, the discussion here has been restricted to maximally symmetric N = 4

Yang-Mills, in which the number of flavours is not independent of the number of colors

and all fields are in the adjoint of SU(N). It would be interesting to extend the analysis

– 5 –
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Figure 1. Fugacity as a function of t. The blue (lower) dot denotes the Hawking-Page phase

transition, where t = 3 and ξ = e−
π

8 : black holes are stable on the branch below this point. The

black (upper) dot is the point T∞ where CP diverges, it lies marginally below ξ = 1 (horizontal

dotted line). CP > 0 on the red (lower) branch of the curve and CP < 0 on the green (upper)

branch.

to N = 1 and varying Nf , by using classical solutions corresponding to less symmetric

situations such as finite temperature black hole versions of the N = ∞ solutions in [16]

or [17] for example.

If the gauge symmetry is broken, e.g. U(N) → U(N1)×U(N2), then one could envisage

extending the analysis to look for non-supersymmetric bulk gravity solutions for which the

black hole mass depends on N1 and N2 separately, generating two chemical potentials.

Thermodynamic equilibrium would then dictate the values of N1 and N2 in a similar

manner to the way chemical equilibrium is achieved in a system consisting of a molecular

soup of different chemical species.

Acknowledgments

It is a pleasure to thank R.C. Myers for useful conversations.

This research was supported in part by Perimeter Institute for Theoretical Physics.

Research at Perimeter Institute is supported by the Government of Canada through Indus-

try Canada and by the Province of Ontario through the Ministry of Economic Development

and Innovation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 6 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
1
4
)
1
7
9

References

[1] D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes,

Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

[2] B.P. Dolan, The cosmological constant and the black hole equation of state,

Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].
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