Skip to main content

Composition and union of general algorithms of optimization

  • Chapter
  • First Online:
Point-to-Set Maps and Mathematical Programming

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 10))

Abstract

The study of the convergence of algorithms of optimization obtained by composition or union, taken in sense of the relaxation, is done. After having recalled the Zangwill’s theorem and given two extensions we study the obtainment of generalized fixed points in the framework of the composition or the union of algorithms obtained in a free steering way for, firstly functions having a unique maximum over some particular subsets, ranges of the current point, and secondly for general functions. The validity of the different hypotheses is discussed through some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Auslender, “Méthodes numériques pour la décomposition et la minimisation de fonctions non différentiables”, Numerische Mathematik 18 (1971) 213–223.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Cea et R. Glowinski, “Sur les méthodes d’optimisation par relaxation”, Revue Française d’Automatique, d’Informatique et de Recherche Opérationnelle (Décembre 1973) 5–32.

    Google Scholar 

  3. R. Boyer, “Quelques algorithmes diagonaux en optimisation convexe”, Thèse 3ème cycle, Université de Provence (1974).

    Google Scholar 

  4. D. Chazan and W. Miranker, “Chaotic relaxation”, Linear Algebra and its Applications 2 (1969) 199–222.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Dubois, “Theorems of convergence for improved nonlinear programming algorithms”, Operations Research 21 (1973) 328–332.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.C. Fiorot et P. Huard, “Composition et réunion d’algorithmes généraux”, Compte-Rendus Académie des Sciences Paris, tome 280 (2 juin 1975), Série A, 1455–1458—Séminaire d’Analyse Numérique No. 229, Université de Grenoble (Mai 1975).

    MATH  MathSciNet  Google Scholar 

  7. P. Huard, “Optimization algorithms and point-to-set maps”, Mathematical Programming 8 (1975) 308–331.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Huard, “Extensions of Zangwill’s theorem”, this volume.

    Google Scholar 

  9. P. Huard, “A method of centers by upper-bounding functions with applications”, in: J.B. Rosen, O.L. Mangasarian, K. Ritter, eds., Nonlinear programming (Academic Press, New-York, 1970) 1–30.

    Google Scholar 

  10. B. Martinet et A. Auslender, “Méthodes de décomposition pour la minimisation d’une fonction sur un espace produit”, SIAM Journal on Control 12 (1974) 635–643.

    Article  MATH  MathSciNet  Google Scholar 

  11. G.G.L. Meyer, “Conditions de convergence pour les algorithmes itératifs monotones, autonomes et non déterministes”, Revue Française d’Automatique, d’Informatique et de Recherche Opérationnelle 11 (1977) 61–74.

    MATH  Google Scholar 

  12. G.G.L. Meyer, “Convergence conditions for a type of algorithm model”, SIAM Journal on Control and Optimization 15 (1977) 779–784.

    Article  MATH  MathSciNet  Google Scholar 

  13. G.G.L. Meyer, “A systematic approach to the synthesis of algorithms”, Numerische Mathematik 24 (1975) 277–289.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Meyer, “On the convergence of algorithms with restart”, SIAM Journal of Numerical Analysis 13 (1976) 696–704.

    Article  MATH  Google Scholar 

  15. R. Meyer, “Sufficient conditions for the convergence of monotonic mathematical programming algorithms”, Journal of Computer and System Sciences 12 (1976) 108–121.

    MATH  MathSciNet  Google Scholar 

  16. R. Meyer, “A comparison of the forcing function and point-to-set mapping approaches to convergence analysis”, SIAM Journal on Control and Optimization 15 (1977) 699–715.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.C. Miellou, “Méthode de Jacobi, Gauss-Seidel, sur-(sous) relaxation par blocs appliquée à une classe de problèmes non linéaires”, Compte-Rendus Académie des Sciences Paris tome 273 (20 Décembre 1971) Série A, 1257–1260.

    MATH  MathSciNet  Google Scholar 

  18. J.C. Miellou, “Algorithme de relaxation chaotique à retards”, Revue Française d’Automatique, d’Informatique et de Recherche Opérationnelle (Avril 1975) 55–82.

    Google Scholar 

  19. J.M. Ortega et W.C. Rheinboldt, Iteration solution of nonlinear equations in several variables (Academic Press, New York, 1970).

    Google Scholar 

  20. J.M. Ortega et W.C. Rheinboldt, “A general convergence result for unconstrained minimization methods”, SIAM Journal of Numerical Analysis 9 (1972) 40–43.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.M. Ostroswki, Solution of equations and systems of equations, (Academic Press, New York, 1966).

    Google Scholar 

  22. B.T. Poljak, “Existence theorems and convergence of minimizing sequences in extremum problems with restrictions”, Soviet Mathematics Doklady 7 (1966) 72–75.

    MATH  Google Scholar 

  23. E. Polak, Computational methods in optimization, a unified approach (Academic Press, New York 1971).

    Google Scholar 

  24. F. Robert, “Contraction en norme vectorielle: convergence d’itérations chaotique pour des équations de point fixe à plusieurs variables”, Colloque d’Analyse Numérique (Gourette 1974).

    Google Scholar 

  25. F. Robert, M. Charnay et F. Musy, “Itérations chaotiques série parallèle pour des équations non linéaires de point fixe”, Aplikace Mathematiky 20 (1975) 1–37.

    MATH  MathSciNet  Google Scholar 

  26. S. Schechter, “Relaxation methods for linear equations”, Communications on Pure and Applied Mathematics 12 (1959) 313–335.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Schechter, “Minimization of a convex function by relaxation”, in: Abadie, ed., Integer and nonlinear programming (North Holland, Amsterdam, 1970) 177–189.

    Google Scholar 

  28. R.S. Varga, Matrix iterative analysis (Prentice Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

  29. W.I. Zangwill, Nonlinear programming: a unified approach (Prentice Hall, Englewood Cliffs, NJ, 1969).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Huard

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The Mathematical Programming Society

About this chapter

Cite this chapter

Fiorot, J.C., Huard, P. (1979). Composition and union of general algorithms of optimization. In: Huard, P. (eds) Point-to-Set Maps and Mathematical Programming. Mathematical Programming Studies, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120844

Download citation

  • DOI: https://doi.org/10.1007/BFb0120844

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00797-2

  • Online ISBN: 978-3-642-00798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics