Skip to main content

Surface forces in wetting, flotation and capillary phenomena

  • Thomas-Graham-Medal
  • Chapter
  • First Online:
Interfaces, Surfactants and Colloids in Engineering

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 101))

Abstract

Surface forces play a crucial role in disperse systems, containing colloidal particles or thin films. Theory of wetting, based on the Frumkin-Derjaguin approach, relates the contact angles with isotherms of disjoining pressure Π(h) of wetting films. On the basis of the isotherms obtained, contact angles were calculated and compared with experimental data. It was shown that in the region of contact angles from 10 to 50 degrees it is sufficient in some cases to take into account the molecular and electrostatic forces only. Complete wetting is guaranteed by the action of hydrophilic repulsion forces, whereas large contact angles arise under the action of hydrophobic attraction forces. The effects of surfactants on contact angles’ formation, wetting films’ stability and flotation are discussed. Capillary phenomena, influencing kinetics of penetration and mutual displacement of fluids were investigated using model systems. The kinetics is crucially influenced by addition of surfactants. Capillary pressure of a moving meniscus changes as a result of a mass exchange of surfactant molecules between the meniscus, solid wall and forming film interfaces. The arising effects were investigated in dependence on flow rates, electrolyte and surfactant concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Derjaguin BV, Churaev NV (1985) Surface Forces, Nauka, Moscow; (1987) Cons. Bureau — Plenum, New York

    Google Scholar 

  2. Israelachvili J (1985) Intermolecular and Surface Forces, Acad. Press, New York

    Google Scholar 

  3. Derjaguin BV, Churaev NV (1987) Langmuir 3:607–612

    Article  Google Scholar 

  4. Churaev NV (1988) Rev Phys Appl 23:975–987

    CAS  Google Scholar 

  5. Churaev NV (1995) J Colloid Interface Sci 172:479–484

    Article  CAS  Google Scholar 

  6. Israelachvili JN, Pashley RM (1982) Nature 300:341–342

    Article  CAS  Google Scholar 

  7. Pashley RM, McGuiggan PM, Ninham BV, Evans DF (1985) Science 229:1088–1089

    Article  CAS  Google Scholar 

  8. Claesson PM, Blom CE, Herder PC, Ninham BV (1986 J Colloid Interface Sci 114:234–242

    Article  CAS  Google Scholar 

  9. Claesson PM, Christenson HK (1988) J Phys Chem 92:1650–1655

    Article  CAS  Google Scholar 

  10. Rabinovich YaI, Derjaguin BV (1988) colloids Surf 30:243–249

    CAS  Google Scholar 

  11. Frumkin AN (1938) Zh. Fiz Khim 12:337–345

    CAS  Google Scholar 

  12. Derjaguin BV (1940) Zh Fiz Khim 14:137–147

    Google Scholar 

  13. Churaev NV (1993) Colloids Surf 79:25–31

    Article  CAS  Google Scholar 

  14. Sergeeva IP, Sobolev VD, Churaev NV, Derjaguin BV (1981) J Colloid Interface Sci 84:451–460

    Article  Google Scholar 

  15. Churaev NV, Sergeeva IP, Sobolev VD, Zorin ZM, Gasanov EK (1993) Colloids Surf 76:23–32

    Article  CAS  Google Scholar 

  16. Churaev NV (1994) Kolloid Zh 56:707–723

    CAS  Google Scholar 

  17. Aronson MP, Princen HM (1978) Colloid Polym Sci 256:140–149

    Article  CAS  Google Scholar 

  18. Churaev NV, Ershov AP, Esipova NE, Iskandarjan GA, Madjarova EA, Sergeeva IP, Sobolev VD, Svitova TF, Zakharova MA, Zorin ZM, Poirier JE (1994) Colloids Surf 91:97–112

    Article  CAS  Google Scholar 

  19. Ershov AP, Zorin ZM, Svitova TF, Churaev NV (1993) Kolloid Zh 55(3):39–47; 55(4):45–53

    CAS  Google Scholar 

  20. Ershov AP, Zorin ZM, Churaev NV (1995) Kolloid Zh 57:329–334

    Google Scholar 

  21. Churaev NV, Ershov AP, Zorin ZM (1996) J Colloid Interface Sci 177:589–601

    Article  CAS  Google Scholar 

  22. Zorin ZM, Churaev NV (1992) Adv Colloid Interface Sci 40:85–108

    Article  CAS  Google Scholar 

  23. Washburn EW (1921) Phys Rev 17:273–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -J. Jacobasch

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Steinkopff Verlag

About this chapter

Cite this chapter

Churaev, N.V. (1996). Surface forces in wetting, flotation and capillary phenomena. In: Jacobasch, H.J. (eds) Interfaces, Surfactants and Colloids in Engineering. Progress in Colloid & Polymer Science, vol 101. Steinkopff. https://doi.org/10.1007/BFb0114443

Download citation

  • DOI: https://doi.org/10.1007/BFb0114443

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1057-9

  • Online ISBN: 978-3-7985-1664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics