Skip to main content

Coherence and saturation of exciton polaritons in semiconductors

  • Excitons and Polaritons, High Excitation
  • Chapter
  • First Online:
Festkörperprobleme 25

Part of the book series: Advances in Solid State Physics ((ASSP,volume 25))

Abstract

Electrodynamics of the semiconductor band edge is governed by a set of constitutive equations which are a direct generalization of the quasispin Bloch equations for two level atoms. The band edge model yields a closed set of equations for the following quantities: Electromagnetic fields, valence band and conduction band carrier distributions and a coherent exciton wave function. Conceptual peculiarities of the band edge model are the occurrence of macroscopic coherence in electron-hole configuration space and the saturation of paired excitons by the unpaired densities. Special solutions of the band edge model that have been studied so far are related to the following phenomena:

  1. 1.

    Resonances and Landau decay of bulk exciton polaritons;

  2. 2.

    Formation of an exciton free surface layer in reflection experiments;

  3. 3.

    Band edge resonance of the nonlinear susceptibility x(3);

  4. 4.

    Self induced transparency of pulsed exciton polaritons;

  5. 5.

    Resonant Raman Scattering by phonons and plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Hopfield, Phys. Rev. 182, 945 (1969).

    Article  ADS  Google Scholar 

  2. O. Madelung, Introduction to Solid State Theory, (Springer 1978).

    Google Scholar 

  3. H. Haken and S. Nikitine (eds.), Excitons at High Density, Springer Tracts in Mod. Phys. 73 (1975).

    Google Scholar 

  4. A. Stahl, Sol. St. Comm. 49, 91 (1984).

    Article  ADS  Google Scholar 

  5. W. Huhn and A. Stahl, phys. stat. sol (b) 124, 167 (1984).

    Article  ADS  Google Scholar 

  6. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley 1974).

    Google Scholar 

  7. K. S. Singwi and M. P. Tosi in: Sol. State Phys., edited H. Ehrenreich, F. Seitz, D. Turnbull, 36, 177 (1981).

    Google Scholar 

  8. R. S. Knox, Theory of Excitons, in: Sol. State Phys., edited by F. Seitz and D. Turnbull, supplement 5 (Academic Press 1963).

    Google Scholar 

  9. A. Stahl and I. Balsley, phys. stat. sol. (b), 113, 583 (1982).

    Article  ADS  Google Scholar 

  10. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, Springer series in solid state sciences, vol. 42, 1984.

    Google Scholar 

  11. S. I. Pekar, Sov. Phys. JETP 6, 785 (1958).

    MathSciNet  ADS  Google Scholar 

  12. A. A. Maradudin, D. L. Mills, Phys. Rev. B7, 2787 (1973).

    Article  ADS  Google Scholar 

  13. R. Zeyher, J. L. Birman, W. Brening, Phys. Rev. B6, 4613 (1972).

    Article  ADS  Google Scholar 

  14. A. Mead, Phys. Rev. B17, 4644 (1978).

    Article  ADS  Google Scholar 

  15. A. D'Andrea and R. Del Sole, Phys. Rev. B29, 4782 (1984).

    Article  ADS  Google Scholar 

  16. I. Balslev, phys. stat. sol. (b) 88, 155 (1978).

    Article  ADS  Google Scholar 

  17. J. Hopfield and D. Thomas, Phys. Rev. 132, 563 (1963).

    Article  ADS  Google Scholar 

  18. L. Gotthard, Sol. St. Comm., to be published.

    Google Scholar 

  19. A. Miller, D. Miller and S. D. Smith, Adv. Phys. 30, 697 (1981).

    Article  ADS  Google Scholar 

  20. D. Frank and A. Stahl, Sol. St. Comm. 52, 861 (1984).

    Article  ADS  Google Scholar 

  21. B. S. Wherrett and N. A. Higgins, Proc. R. Soc. Lond. A379, 67 (1982).

    Article  ADS  Google Scholar 

  22. D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).

    Article  ADS  Google Scholar 

  23. I. Balslev, Sol. St. Comm 52, 351 (1984).

    Article  ADS  Google Scholar 

  24. K.-P. Dörpelkus, Proc. EPS-CMD Conf. Berlin 1985.

    Google Scholar 

  25. W. Huhn, Proc. EPS-CMD Conf. Berlin 1985.

    Google Scholar 

  26. H. Haken, A. Schenzle, Z. Phys. 258, 231 (1973).

    Article  ADS  Google Scholar 

  27. J. Goll, H. Haken, Phys. Rev. A18, 2241 (1978).

    Article  ADS  Google Scholar 

  28. Gan Zi-zhao, Yang Guo-zhen, Phys. Rev. B26, 6826 (1982).

    Article  Google Scholar 

  29. H. Ehrenreich and M. Cohen, Phys. Rev. 115, 786 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. I. Broser, M. Rosenzweig, R. Broser, M. Richard and E. Birkicht, phys. stat sol (b), 90 77 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Stahl, A. (1985). Coherence and saturation of exciton polaritons in semiconductors. In: Grosse, P. (eds) Festkörperprobleme 25. Advances in Solid State Physics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108161

Download citation

  • DOI: https://doi.org/10.1007/BFb0108161

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08031-0

  • Online ISBN: 978-3-540-75361-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics