Skip to main content

A study of the analytical and local semiclassical Wigner distribution

  • Dynamical Systems
  • Conference paper
  • First Online:
Book cover Dynamical Systems, Plasmas and Gravitation

Part of the book series: Lecture Notes in Physics ((LNP,volume 518))

  • 157 Accesses

Abstract

An analytical and local expression of the semiclassical Wigner distribution is performed using the Airy uniform approximation in the neighbourhood of a turning point. At the classical limit the one-dimensional Wigner distribution leads to the microcanonical distribution. For the two-dimensional systems the variables separable problems (nonchaotic dynamics) and the variables nonseparable problems (possibility of chaos) are not locally distinguishable by using the uniform approximation. Meanwhile the examination of a section of the phase space allows us to see that the apparent complexity of the Wigner distribution is not a proof of chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., Stegun, I. (1965): Handbook of Mathematical Functions (Dover Publications, New York)

    Google Scholar 

  • Balazs, N.L., Zipfel, G.G. (1973): Quantum oscillations in the semiclassical fermion μ-space density. Ann. Phys. 77, 139–156

    Article  ADS  Google Scholar 

  • Berry, M.V. (1977): Semiclassical mechanics in phase space: a study of Wigner's function. Phil. Trans. R. Soc. London A 287, 237–271

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Berry, M.V., Mount, K.E. (1972): Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35, 315–397

    Article  ADS  Google Scholar 

  • Dando, P.A., Monteiro, T.S. (1994): Quantum surfaces of section for the diamagnetic hydrogen atom: Husimi functions versus Wigner functions. J. Phys. B 27, 2681–2692

    Article  ADS  Google Scholar 

  • Ford, J. (1989): Quantum chaos, is there any? in: Directions in Chaos, Hao Bai-Lin ed. (World Scientific, Singapore) Vol 2

    Google Scholar 

  • Ford, J., Ilg, M. (1992): Eigenfunctions, eigenvalues, and time evolution of finite, bounded, undriven quantum systems are not chaotic. Phys. Rev. A 45, 6165–6173

    Article  ADS  Google Scholar 

  • Ford, J., Mantica, G. (1992): Does quantum mechanics obey the correspondence principle? Is it complete? Am. J. Phys. 60, 1086–1098

    Article  ADS  MathSciNet  Google Scholar 

  • Grémaud, B., Delande, D., Gay, J.C. (1993): Origin of narrow resonances in the diamagnetic Rydberg spectrum. Phys. Rev. Lett. 70, 1615–1618

    Article  ADS  Google Scholar 

  • Heller, E.J. (1976): Wigner phase space method: analysis for semiclassical applications. J. Chem. phys. 65, 1289–1298

    Article  ADS  MathSciNet  Google Scholar 

  • Heller, E.J. (1984): Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53, 1515–1518

    Article  ADS  MathSciNet  Google Scholar 

  • McDonald, S.W., Kaufman, A.N. (1979): Spectrum and eigenfunctions for a hamiltonian with stochastic trajectories. Phys. Rev. Lett. 42, 1189–1191

    Article  ADS  Google Scholar 

  • Meredith, D.C. (1992): Semiclassical wavefunctions of nonintegrable systems and localization on periodic orbits. J. Stat. Phys. 68, 97–130

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ozorio de Almeida, A.M., Hannay, J.H. (1982): Geometry of two dimensional tori in phase space: projections, sections and the Wigner function. Ann. Phys. 138, 115–154

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Percival, I.C. (1973): Regular and irregular spectra. J. Phys. B 6, L229–L232

    Article  ADS  Google Scholar 

  • Pomphrey, N. (1974): Numerical identification of regular and irregular spectra. J. Phys. B 7, 1909–1915

    Article  ADS  Google Scholar 

  • Tabor, M. (1989): Chaos and integrability in semiclassical mechanics. in Chaos and integrability in non-linear dynamics, Tabor, M. ed. (Wiley, New York)

    Google Scholar 

  • Tomsovic, S., Heller, E.J. (1993): Semiclassical construction of chaotic eigenstates. Phys. Rev. Lett. 70, 1405–1408

    Article  ADS  Google Scholar 

  • Voros, A. (1976): Semi-classical approximations. Ann. Inst. Henri Poincaré A XXIV, 31–90

    MathSciNet  Google Scholar 

  • Wigner, E.P. (1932): On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. G. L. Leach S. E. Bouquet J.-L. Rouet E. Fijalkow

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Soares, M., Vallée, O., de Izarra, C. (1999). A study of the analytical and local semiclassical Wigner distribution. In: Leach, P.G.L., Bouquet, S.E., Rouet, JL., Fijalkow, E. (eds) Dynamical Systems, Plasmas and Gravitation. Lecture Notes in Physics, vol 518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105942

Download citation

  • DOI: https://doi.org/10.1007/BFb0105942

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65467-4

  • Online ISBN: 978-3-540-49251-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics