Skip to main content

On the inverse seismic problem for horizontally layered media: Subsidiary study

  • Conference paper
  • First Online:
Book cover Inverse Problems of Wave Propagation and Diffraction

Part of the book series: Lecture Notes in Physics ((LNP,volume 486))

  • 1176 Accesses

Abstract

The starting point of this work is the inversion of vertical seismic profiling (VSP) data. The usual processing of VSP data by inverse techniques is restricted to 1D propagation model. In this case, the parameters to identify are the acoustic impedance as function of travel time and the seismic source so that we have as unknowns two functions of one variable and as data a function of two variables, the time and the depth positions of geophones. The problem is thus largely overdetermined and an elementary mathematical analysis can be made. The source is modelled as a boundary condition at the top of the geophones zone. So this boundary condition replaces the true source function and the medium parameters above the geophones zone. The question asked by V. Richard from IFP was the “management” of this unknown source when 3D propagation effects are taken into account in horizontally layered medium where the propagation equations are parametrized by the k parameter of the Hankel transform. Now we think that the answer is that it is impossible to work round the fact that there are at least two unknown functions, the source and the medium parameters above the geophones zone. During this study, we have searched for some non local boundary conditions and this was the opportunity to obtain some results on exact transparent conditions for 3D propagation in 1D media (preliminary communication was made by Petit and Cuer (1994)) and on the discretization of such conditions in the acoustic case (preliminary communication was made by Cuer and Petit (1995)). This is the mathematical substance of this work in which the Poisson summation formula is used to prove the stability of a discrete non local boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bamberger A., Chavent G., Lailly P. (1979): About the stability of the inverse problem in 1-D wave equations: Application to the interpretation of seismic profiles. Appl. Math. Optim., 5, 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  • Bube K.P., Burridge R. (1983): The one-dimensional inverse problem of reflection seismology. Siam Rev., 25, 497–559.

    Article  MATH  MathSciNet  Google Scholar 

  • Candel S.M. (1981): Simultaneous calculation of Fourier-Bessel transforms up to order N. J. of Comp. Phys., 44, 243–261.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Carazzone J.J. (1986): Inversion of P-SV seismic data. Geophysics, 51(5), 1056–1068.

    Article  ADS  Google Scholar 

  • Chavent G. (1974): Identification of functional parameters in partial differential equation: in “Identification of parameter distributed systems”, Goodson, R.E. and Polis, Eds., NY, ASME.

    Google Scholar 

  • Colton D., Kress R. (1983): Integral equation methods in scattering theory. John Wiley & Sons, N.Y.

    MATH  Google Scholar 

  • Cuer M., Petit J.L. (1995): Schémas de discrétisation de conditions transparentes exactes pour la propagation 3D des ondes sismiques en milieu stratifié 1D cas acoustique). Communication au 27 ième Congrès National d'Analyse Numérique, 179–180.

    Google Scholar 

  • Engquist B., Majda A. (1977): Absorbing boundary conditions for the numerical simulation of waves. Math. Comp., 31(139), 629–651.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Engquist B., Majda A. (1979): Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure and Appl. Math., 32, 313–357.

    Article  MATH  MathSciNet  Google Scholar 

  • He S. (1991): Factorization of a dissipative wave equation and the Green functions technique for axially symmetric fields in a stratified slab. J. Math. Phys. 33(3), 953–966.

    Article  ADS  Google Scholar 

  • He S., Karlsson A. (1993): Time domain Green function technique for a point source over a dissipative stratified half-space. Radio Science, 28(4), 513–526.

    Article  ADS  Google Scholar 

  • He S., Ström A. (1992): The electromagnetic inverse problem in the time domain for a dissipative slab and a point source using invariant imbedding: Reconstruction of the permittivity and conductivity: J. Comput. Appl. Math., 42, 137–155.

    Article  MATH  MathSciNet  Google Scholar 

  • Henrici P. (1977): Applied and computational complex analysis, Vol 2, 270–276. John Wiley & Sons, N.Y.

    MATH  Google Scholar 

  • Jurado F., Cuer M., Richard V. (1995a): 1-D layered media: Part 1, 3-D elastic modeling. Geophysics, 40(6), 1843–1856.

    Article  Google Scholar 

  • Jurado F., Cuer M., Richard V. (1995b): 1-D layered media: Part 2, Layer-based waveform inversion. Geophysics, 40(6), 1857–1869.

    Article  Google Scholar 

  • Lavrent'ev M.M., Reznitskaya K.G., Yakhno V.G. (1986): One-dimensional inverse problems of mathematical physics. American Mathematical Society Translations, Series 2, Volume 130, Providence, Rhode Island.

    Google Scholar 

  • Lefebvre D. (1985): Inversion of VSP data. 55th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstract, 69–72.

    Google Scholar 

  • Lions J.L. (1968): Contrôle de système gouvernés par des équations aux dérivées partielles. Dunod, Paris.

    Google Scholar 

  • Macé D., Lailly P. (1986): Solution of the VSP one-dimensional inverse problem. Geophysical Prospecting, 34, 1002–1021.

    Article  ADS  Google Scholar 

  • Madariaga R., (1976): Dynamics of an expanding circular fault. Bull. Seis. Soc. Am., 66, 639–666.

    Google Scholar 

  • Mari J.L., Coppens F. (1989): La sismique de puits. Editions Technip, Paris.

    Google Scholar 

  • Petit J.L., Cuer M. (1994): Conditions transparentes exactes pour la propagation 3D des ondes sismiques en milieu stratifié. Communication au 26 ième Congrès National d'Analyse Numérique, 207–209.

    Google Scholar 

  • Smirnov V.I. (1964): A course of higher mathematics, Vol II: Pergamon Press, Oxford.

    MATH  Google Scholar 

  • Virieux J. (1986): P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 51, 889–901.

    Article  ADS  Google Scholar 

  • Yagle A.E., Levy B.C. (1985): A layer-stripping solution of the inverse problem for a one dimensional elastic medium. Geophysics, 50(3), 425–433.

    Article  MathSciNet  ADS  Google Scholar 

  • Yilmaz O. (1987): Seismic data processing. Investigations in Geophysics no 2, Society of Exploration Geophysicists, Tulsa, OK.

    Google Scholar 

  • Watson, G.N. (1922): A treatise on the theory of Bessel functions. Cambridge at the University Press, London.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guy Chavent Pierre C. Sabatier

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Cuer, M., Petit, J.L. (1997). On the inverse seismic problem for horizontally layered media: Subsidiary study. In: Chavent, G., Sabatier, P.C. (eds) Inverse Problems of Wave Propagation and Diffraction. Lecture Notes in Physics, vol 486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105777

Download citation

  • DOI: https://doi.org/10.1007/BFb0105777

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62865-1

  • Online ISBN: 978-3-540-68713-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics